Department of Physics Articles

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 192
  • Item
    Measurement of the Casimir Force between 0.2 and 8 μm: Experimental Procedures and Comparison with Theory
    (MDPI, 2021) Bimonte, Giuseppe; Spreng, Benjamin; Maia Neto, Paulo A.; Ingold, Gert-Ludwig; Klimchitskaya, Galina L.; Mostepanenko, Vladimir M.; Decca, Ricardo S.; Physics, School of Science
    We present results on the determination of the differential Casimir force between an Aucoated sapphire sphere and the top and bottom of Au-coated deep silicon trenches performed by means of the micromechanical torsional oscillator in the range of separations from 0.2 to 8 μm. The random and systematic errors in the measured force signal are determined at the 95% confidence level and combined into the total experimental error. The role of surface roughness and edge effects is investigated and shown to be negligibly small. The distribution of patch potentials is characterized by Kelvin probe microscopy, yielding an estimate of the typical size of patches, the respective r.m.s. voltage and their impact on the measured force. A comparison between the experimental results and theory is performed with no fitting parameters. For this purpose, the Casimir force in the sphere-plate geometry is computed independently on the basis of first principles of quantum electrodynamics using the scattering theory and the gradient expansion. In doing so, the frequency-dependent dielectric permittivity of Au is found from the optical data extrapolated to zero frequency by means of the plasma and Drude models. It is shown that the measurement results exclude the Drude model extrapolation over the region of separations from 0.2 to 4.8 μm, whereas the alternative extrapolation by means of the plasma model is experimentally consistent over the entire measurement range. A discussion of the obtained results is provided.
  • Item
    Computational Ways to Enhance Protein Inhibitor Design
    (Frontiers Media, 2021-02-03) Jernigan, Robert L.; Sankar, Kannan; Jia, Kejue; Faraggi, Eshel; Kloczkowski, Andrzej; Physics, School of Science
    Two new computational approaches are described to aid in the design of new peptide-based drugs by evaluating ensembles of protein structures from their dynamics and through the assessing of structures using empirical contact potential. These approaches build on the concept that conformational variability can aid in the binding process and, for disordered proteins, can even facilitate the binding of more diverse ligands. This latter consideration indicates that such a design process should be less restrictive so that multiple inhibitors might be effective. The example chosen here focuses on proteins/peptides that bind to hemagglutinin (HA) to block the large-scale conformational change for activation. Variability in the conformations is considered from sets of experimental structures, or as an alternative, from their simple computed dynamics; the set of designe peptides/small proteins from the David Baker lab designed to bind to hemagglutinin, is the large set considered and is assessed with the new empirical contact potentials.
  • Item
    Unsupervised automated retinal vessel segmentation based on Radon line detector and morphological reconstruction
    (Wiley, 2021) Tavakoli, Meysam; Mehdizadeh, Alireza; Pourreza Shahri, Reza; Dehmeshki, Jamshid; Physics, School of Science
    Retinal blood vessel segmentation and analysis is critical for the computer-aided diagnosis of different diseases such as diabetic retinopathy. This study presents an automated unsupervised method for segmenting the retinal vasculature based on hybrid methods. The algorithm initially applies a preprocessing step using morphological operators to enhance the vessel tree structure against a non-uniform image background. The main processing applies the Radon transform to overlapping windows, followed by vessel validation, vessel refinement and vessel reconstruction to achieve the final segmentation. The method was tested on three publicly available datasets and a local database comprising a total of 188 images. Segmentation performance was evaluated using three measures: accuracy, receiver operating characteristic (ROC) analysis, and the structural similarity index. ROC analysis resulted in area under curve values of 97.39%, 97.01%, and 97.12%, for the DRIVE, STARE, and CHASE-DB1, respectively. Also, the results of accuracy were 0.9688, 0.9646, and 0.9475 for the same datasets. Finally, the average values of structural similarity index were computed for all four datasets, with average values of 0.9650 (DRIVE), 0.9641 (STARE), and 0.9625 (CHASE-DB1). These results compare with the best published results to date, exceeding their performance for several of the datasets; similar performance is found using accuracy.
  • Item
    Automated Microaneurysms Detection in Retinal Images Using Radon Transform and Supervised Learning: Application to Mass Screening of Diabetic Retinopathy
    (IEEE, 2021) Tavakoli, Meysam; Mehdizadeh, Alireza; Aghayan, Afshin; Shahri, Reza Pourreza; Ellis, Tim; Dehmeshki, Jamshid; Physics, School of Science
    Detection of red lesions in color retinal images is a critical step to prevent the development of vision loss and blindness associated with diabetic retinopathy (DR). Microaneurysms (MAs) are the most frequently observed and are usually the first lesions to appear as a consequence of DR. Therefore, their detection is necessary for mass screening of DR. However, detecting these lesions is a challenging task because of the low image contrast, and the wide variation of imaging conditions. Recently, the emergence of computer-aided diagnosis systems offers promising approaches to detect these lesions for diagnostic purposes. In this paper we focus on developing unsupervised and supervised techniques to cope intelligently with the MAs detection problem. In the first step, the retinal images are preprocessed to remove background variation in order to achieve a high level of accuracy in the detection. In the main processing step, important landmarks such as the optic nerve head and retinal vessels are detected and masked using the Radon transform (RT) and multi-overlapping windows. Finally, the MAs are detected and numbered by using a combination of RT and a supervised support vector machine classifier. The method was tested on three publicly available datasets and a local database comprising a total of 749 images. Detection performance was evaluated using sensitivity, specificity, and FROC analysis. From the image analysis viewpoint, DR was detected with a sensitivity of 100% and a specificity of 93% on average across all of these databases. Moreover, from lesion-based analysis the proposed approach detected the MAs with sensitivity of 95.7% with an average of 7 false positives per image. These results compare favourably with the best of the published results to date.
  • Item
    Comparison Different Vessel Segmentation Methods in Automated Microaneurysms Detection in Retinal Images using Convolutional Neural Networks
    (SPIE, 2020) Tavakoli, Meysam; Nazar, Mahdieh; Physics, School of Science
    Image processing techniques provide important assistance to physicians and relieve their workload in different tasks. In particular, identifying objects of interest such as lesions and anatomical structures from the image is a challenging and iterative process that can be done by computerized approaches in a successful manner. Microaneurysms (MAs) detection is a crucial step in retinal image analysis algorithms. The goal of MAs detection is to find the progress and at last identification of diabetic retinopathy (DR) in the retinal images. The objective of this study is to apply three retinal vessel segmentation methods, Laplacian-of-Gaussian (LoG), Canny edge detector, and Matched filter to compare results of MAs detection using combination of unsupervised and supervised learning either in the normal images or in the presence of DR. The steps for the algorithm are as following: 1) Preprocessing and Enhancement, 2) vessel segmentation and masking, 3) MAs detection and Localization using combination of Matching based approach and Convolutional Neural Networks. To evaluate the accuracy of our proposed method, we compared the output of our method with the ground truth that collected by ophthalmologists. By using the LoG vessel segmentation, our algorithm found sensitivity of more than 85% in detection of MAs for 100 color images in a local retinal database and 40 images of a public dataset (DRIVE). For the Canny vessel segmentation, our automated algorithm found sensitivity of more than 80% in detection of MAs for all 140 images of two databases. And lastly, using Matched filter, our algorithm found sensitivity of more than 87% in detection of MAs in both local and DRIVE datasets.
  • Item
    Direct observation of the magnetic anisotropy of an Fe(II) spin crossover molecular thin film
    (IOPP, 2023-07) Dale, Ashley S.; Yazdani, Saeed; Ekanayaka, Thinlini K.; Mishra, Esha; Hu, Yuchen; Dowben, Peter A.; Freeland, John W.; Zhang, Jian; Cheng, Ruihua; Physics, School of Science
    In this work, we provide clear evidence of magnetic anisotropy in the local orbital moment of a molecular thin film based on the SCO complex [Fe(H2B(pz)2)2(bipy)] (pz = pyrazol−1−yl, bipy = 2,2'−bipyridine). Field dependent x-ray magnetic circular dichroism measurements indicate that the magnetic easy axis for the orbital moment is along the surface normal direction. Along with the presence of a critical field, our observation points to the existence of an anisotropic energy barrier in the high-spin state. The estimated nonzero coupling constant of ∼2.47 × 10−5 eV molecule−1 indicates that the observed magnetocrystalline anisotropy is mostly due to spin–orbit coupling. The spin- and orbital-component anisotropies are determined to be 30.9 and 5.04 meV molecule−1, respectively. Furthermore, the estimated g factor in the range of 2.2–2.45 is consistent with the expected values. This work has paved the way for an understanding of the spin-state-switching mechanism in the presence of magnetic perturbations.
  • Item
    Theoretical and experimental characterization of non-Markovian anti-parity-time systems
    (Springer, 2023-10-20) Wilkey, Andrew; Suelzer, Joseph; Joglekar, Yogesh N.; Vemuri, Gautam; Physics, School of Science
    Open systems with anti-parity-time (APT) or PT symmetry exhibit a rich phenomenology absent in their Hermitian counterparts. To date all model systems and their diverse realizations across classical and quantum platforms have been local in time, i.e., Markovian. Here we propose a non-Markovian system with anti-PT-symmetry where a single time-delay encodes the retention of memory, and experimentally demonstrate its consequences with two time-delay coupled semiconductor lasers. A transcendental characteristic equation with infinitely many eigenvalue pairs sets our model apart. We show that a sequence of amplifying-to-decaying dominant mode transitions is induced by the time delay in our minimal model. The signatures of these transitions quantitatively match results obtained from four, coupled, nonlinear rate equations for laser dynamics, and are experimentally observed as constant-width sideband oscillations in the laser intensity profiles. Our work introduces a paradigmatic non-Hermitian system with memory, paves the way for its realization in classical systems, and may apply to time-delayed feedback-control for quantum systems.
  • Item
    Six-electron organic redoxmers for aqueous redox flow batteries
    (Royal Society of Chemistry, 2022-12) Fang, Xiaoting; Cavazos, Andres T.; Li, Zhiguang; Li, Chenzhao; Xie, Jian; Wassall, Stephen R.; Zhang, Lu; Wei, Xiaoliang; Physics, School of Science
    We have developed a novel molecular design that enables six-electron redox activity in fused phenazine-based organic scaffolds. Combined electrochemical and spectroscopic tests successfully confirm the two-step 6e− redox mechanism. This work offers an opportunity for achieving energy-dense redox flow batteries, on condition that the solubility and stability issues are addressed.
  • Item
    Topological Quantum State Control through Exceptional-Point Proximity
    (APS, 2022-04-22) Abbasi, Maryam; Chen, Weijian; Naghiloo, Mahd; Joglekar, Yogesh N.; Murch, Kater W.; Physics, School of Science
    We study the quantum evolution of a non-Hermitian qubit realized as a submanifold of a dissipative superconducting transmon circuit. Real-time tuning of the system parameters to encircle an exceptional point results in nonreciprocal quantum state transfer. We further observe chiral geometric phases accumulated under state transport, verifying the quantum coherent nature of the evolution in the complex energy landscape and distinguishing between coherent and incoherent effects associated with exceptional point encircling. Our work demonstrates an entirely new method for control over quantum state vectors, highlighting new facets of quantum bath engineering enabled through dynamical non-Hermitian control.
  • Item
    The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials
    (MDPI, 2023-04-26) Yazdani, Saeed; Phillips, Jared; Ekanayaka, Thilini K.; Cheng, Ruihua; Dowben, Peter A.; Physics, School of Science
    Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule–substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.