Biomolecular Imaging and Biophysics Program (formerly Medical Biophysics) Theses and Dissertations

Permanent URI for this collection

For more on the Department of Medical Biophysics and Biomolecular Imaging Graduate Studies Programs visit


Recent Submissions

Now showing 1 - 4 of 4
  • Item
    Hydrodynamic delivery for the study, treatment and prevention of acute kidney injury
    (2014-07-07) Corridon, Peter R.; Atkinson, Simon; Basile, David P.; Bacallao, Robert L.; Dunn, Kenneth William; Gattone II, Vincent H.
    Advancements in human genomics have simultaneously enhanced our basic understanding of the human body and ability to combat debilitating diseases. Historically, research has shown that there have been many hindrances to realizing this medicinal revolution. One hindrance, with particular regard to the kidney, has been our inability to effectively and routinely delivery genes to various loci, without inducing significant injury. However, we have recently developed a method using hydrodynamic fluid delivery that has shown substantial promise in addressing aforesaid issues. We optimized our approach and designed a method that utilizes retrograde renal vein injections to facilitate widespread and persistent plasmid and adenoviral based transgene expression in rat kidneys. Exogenous gene expression extended throughout the cortex and medulla, lasting over 1 month within comparable expression profiles, in various renal cell types without considerably impacting normal organ function. As a proof of its utility we by attempted to prevent ischemic acute kidney injury (AKI), which is a leading cause of morbidity and mortality across among global populations, by altering the mitochondrial proteome. Specifically, our hydrodynamic delivery process facilitated an upregulated expression of mitochondrial enzymes that have been suggested to provide mediation from renal ischemic injury. Remarkably, this protein upregulation significantly enhanced mitochondrial membrane potential activity, comparable to that observed from ischemic preconditioning, and provided protection against moderate ischemia-reperfusion injury, based on serum creatinine and histology analyses. Strikingly, we also determined that hydrodynamic delivery of isotonic fluid alone, given as long as 24 hours after AKI is induced, is similarly capable of blunting the extent of injury. Altogether, these results indicate the development of novel and exciting platform for the future study and management of renal injury.
  • Item
    In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging
    (2014-02-25) Freeman, Kim Renee; Rubart-von der Lohe, Michael; Atkinson, Simon; Hurley, Thomas D., 1961-; Gattone II, Vincent H.
    The sympathetic nervous system strongly modulates the contractile and electrical function of the heart. The anatomical underpinnings that enable a spatially and temporally coordinated dissemination of sympathetic signals within the cardiac tissue are only incompletely characterized. In this work we took the first step of unraveling the in situ 3D microarchitecture of the cardiac sympathetic nervous system. Using a combination of two-photon excitation fluorescence microscopy and computer-assisted image analyses, we reconstructed the sympathetic network in a portion of the left ventricular epicardium from adult transgenic mice expressing a fluorescent reporter protein in all peripheral sympathetic neurons. The reconstruction revealed several organizational principles of the local sympathetic tree that synergize to enable a coordinated and efficient signal transfer to the target tissue. First, synaptic boutons are aligned with high density along much of axon-cell contacts. Second, axon segments are oriented parallel to the main, i.e., longitudinal, axes of their apposed cardiomyocytes, optimizing the frequency of transmitter release sites per axon/per cardiomyocyte. Third, the local network was partitioned into branched and/or looped sub-trees which extended both radially and tangentially through the image volume. Fourth, sub-trees arrange to not much overlap, giving rise to multiple annexed innervation domains of variable complexity and configuration. The sympathetic network in the epicardial border zone of a chronic myocardial infarction was observed to undergo substantive remodeling, which included almost complete loss of fibers at depths >10 µm from the surface, spatially heterogeneous gain of axons, irregularly shaped synaptic boutons, and formation of axonal plexuses composed of nested loops of variable length. In conclusion, we provide, to the best of our knowledge, the first in situ 3D reconstruction of the local cardiac sympathetic network in normal and injured mammalian myocardium. Mapping the sympathetic network connectivity will aid in elucidating its role in sympathetic signal transmisson and processing.
  • Item
    The Effects of Refractive Index Mismatch on Multiphoton Fluorescence Excitation Microscopy of Biological Tissue
    (2010-08-31T18:42:10Z) Young, Pamela Anne; Rubart, Michael; Decca, Ricardo S.; Bacallao, Robert L.; Dunn, Kenneth William
    Introduction: Multiphoton fluorescence excitation microscopy (MPM) is an invaluable tool for studying processes in tissue in live animals by enabling biologists to view tissues up to hundreds of microns in depth. Unfortunately, imaging depth in MPM is limited to less than a millimeter in tissue due to spherical aberration, light scattering, and light absorption. Spherical aberration is caused by refractive index mismatch between the objective immersion medium and sample. Refractive index heterogeneities within the sample cause light scattering. We investigate the effects of refractive index mismatch on imaging depth in MPM. Methods: The effects of spherical aberration on signal attenuation and resolution degradation with depth are characterized with minimal light absorption and scattering using sub-resolution microspheres mounted in test sample of agarose with varied refractive index. The effects of light scattering on signal attenuation and resolution degradation with depth are characterized using sub-resolution microspheres in kidney tissue samples mounted in optical clearing media to alter the refractive index heterogeneities within the tissue. Results: The studies demonstrate that signal levels and axial resolution both rapidly decline with depth into refractive index mismatched samples. Interestingly, studies of optical clearing with a water immersion objective show that reducing scattering increases reach even when it increases refractive index mismatch degrading axial resolution. Scattering, in the absence of spherical aberration, does not degrade axial resolution. The largest improvements in imaging depth are obtained when both scattering and refractive index mismatch are reduced. Conclusions: Spherical aberration, caused by refractive index mismatch between the immersion media and sample, and scattering, caused by refractive index heterogeneity within the sample, both cause signal to rapidly attenuate with depth in MPM. Scattering, however, seems to be the predominant cause of signal attenuation with depth in kidney tissue. Kenneth W. Dunn, Ph.D., Chair
  • Item
    Investigation of the separation dependent fluorescence resonant energy transfer between CdSe/ZnS quantum dots by near-field scanning optical microscopy
    (2010-02-02T17:37:27Z) Wang, Pu; Naumann, Christof A.; Dunn, Kenneth William; Decca, Ricardo S.; Atkinson, Susan J.
    A Near-field Scanning Optical Microscope (NSOM) is used to study the resonant energy transfer between different size CdSe/ZnS quantum dots (QDs). The NSOM system is used to bring the small QDs which are 6 nm in diameter close to 8 nm diameter QDs which are embed with PMMA on a cover glass. The PMMA is used to prevent the 8 nm QDs from aggregation, which allows us to locate one dot on the cover slide and have the potential to get the interaction of two individual dots. A systematic methodology is used to localize a single QD on the cover glass and align the small and large QDs. Since the ground energy state of the small QDs match the excitation energy level of the large QDs. When the small dots get excited, part of the energy transfers to the large QDs. As the separation between small and large QDs is changed in near-field range (20-50nm), the transition probability is observed, indicating that the FRET level changes as a function of separation between small and large QDs. Possible future improvements are also discussed.