Enhancement of the SESN2-SHP cascade by melatonin ameliorates hepatic gluconeogenesis by inhibiting the CRBN-BTG2-CREBH signaling pathway

Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Abstract

Melatonin is involved in the regulation of various biological functions. Here, we explored a novel molecular mechanism by which the melatonin-induced sestrin2 (SESN2)-small heterodimer partner (SHP) signaling pathway protects against fasting- and diabetes-mediated hepatic glucose metabolism. Various key gene expression analyses were performed and multiple metabolic changes were assessed in liver specimens and primary hepatocytes of mice and human participants. The expression of the hepatic cereblon (CRBN) and b-cell translocation gene 2 (BTG2) genes was significantly increased in fasting mice, diabetic mice, and patients with diabetes. Overexpression of Crbn and Btg2 increased hepatic gluconeogenesis by enhancing cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH), whereas this phenomenon was prominently ablated in Crbn null mice and Btg2-silenced mice. Interestingly, melatonin-induced SESN2 and SHP markedly reduced hepatic glucose metabolism in diabetic mice and primary hepatocytes, and this protective effect of melatonin was strikingly reversed by silencing Sesn2 and Shp. Finally, the melatonin-induced SESN2-SHP signaling pathway inhibited CRBN- and BTG2-mediated hepatic gluconeogenic gene transcription via the competition of BTG2 and the interaction of CREBH. Mitigation of the CRBN-BTG2-CREBH axis by the melatonin-SESN2-SHP signaling network may provide a novel therapeutic strategy to treat metabolic dysfunction due to diabetes.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
An S, Nedumaran B, Koh H, et al. Enhancement of the SESN2-SHP cascade by melatonin ameliorates hepatic gluconeogenesis by inhibiting the CRBN-BTG2-CREBH signaling pathway. Exp Mol Med. 2023;55(7):1556-1569. doi:10.1038/s12276-023-01040-x
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Experimental & Molecular Medicine
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}