Murine Ultrasound-Guided Transabdominal Para-Aortic Injections of Self-Assembling Type I Collagen Oligomers

dc.contributor.authorYrineo, Alexa A.
dc.contributor.authorAdelsperger, Amelia R.
dc.contributor.authorDurkes, Abigail C.
dc.contributor.authorDistasi, Matthew R.
dc.contributor.authorVoytik-Harbin, Sherry L.
dc.contributor.authorMurphy, Michael P.
dc.contributor.authorGoergen, Craig J.
dc.contributor.departmentSurgery, School of Medicineen_US
dc.date.accessioned2018-08-09T18:06:12Z
dc.date.available2018-08-09T18:06:12Z
dc.date.issued2017-03-10
dc.description.abstractAbdominal aortic aneurysms (AAAs) represent a potentially life-threatening condition that predominantly affects the infrarenal aorta. Several preclinical murine models that mimic the human condition have been developed and are now widely used to investigate AAA pathogenesis. Cell- or pharmaceutical-based therapeutics designed to prevent AAA expansion are currently being evaluated with these animal models, but more minimally invasive strategies for delivery could improve their clinical translation. The purpose of this study was to investigate the use of self-assembling type I collagen oligomers as an injectable therapeutic delivery vehicle in mice. Here we show the success and reliability of a para-aortic, ultrasound-guided technique for injecting quickly-polymerizing collagen oligomer solutions into mice to form a collagen-fibril matrix at body temperature. A commonly used infrarenal mouse AAA model was used to determine the target location of these collagen injections. Ultrasound-guided, closed-abdominal injections supported consistent delivery of collagen to the area surrounding the infrarenal abdominal aorta halfway between the right renal artery and aortic trifurcation into the iliac and tail arteries. This minimally invasive approach yielded outcomes similar to open-abdominal injections into the same region. Histological analysis on tissue removed on day 14 post-operatively showed minimal in vivo degradation of the self-assembled fibrillar collagen and the majority of implants experienced minimal inflammation and cell invasion, further confirming this material's potential as a method for delivering therapeutics. Finally, we showed that the typical length and position of this infrarenal AAA model was statistically similar to the length and targeted location of the injected collagen, increasing its feasibility as a localized therapeutic delivery vehicle. Future preclinical and clinical studies are needed to determine if specific therapeutics incorporated into the self-assembling type I collagen matrix described here can be delivered near the aorta and locally limit AAA expansion.,en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationYrineo, A. A., Adelsperger, A. R., Durkes, A. C., Distasi, M. R., Voytik-Harbin, S. L., Murphy, M. P., & Goergen, C. J. (2017). Murine Ultrasound-Guided Transabdominal Para-Aortic Injections of Self-Assembling Type I Collagen Oligomers. Journal of Controlled Release : Official Journal of the Controlled Release Society, 249, 53–62. https://doi.org/10.1016/j.jconrel.2016.12.045en_US
dc.identifier.issn0168-3659en_US
dc.identifier.urihttps://hdl.handle.net/1805/17047
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.jconrel.2016.12.045en_US
dc.relation.journalJournal of controlled release : official journal of the Controlled Release Societyen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectAbdominal aortic aneurysmsen_US
dc.subjectpathogenesisen_US
dc.titleMurine Ultrasound-Guided Transabdominal Para-Aortic Injections of Self-Assembling Type I Collagen Oligomersen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms848581.pdf
Size:
854.91 KB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: