Polarization Analysis Based on Realistic Lithium Ion Battery Electrode Microstructure Using Numerical Simulation

Date
2015-04-17
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

The performance of lithium ion battery (LIB) is limited by the inner polarization and it is important to understand the factors that affect the polarization. This study focuses on the polarization analysis based on realistic 3D electrode microstructures. A c++ software was developed to rebuild and mesh the microstructure of cathode and anode electrodes through Nano-CT and Micro-CT scanned images respectively. As a result, the LIB model was composed of electrolyte, cathode and anode active materials and current collectors. By employing 3D finite volume method (FVM), another c++ code was developed to simulate the discharge and charge processes by solving coupled model equations. The simulation revealed the distribution of physical and electrochemical variables such as concentration, voltage, current density, reaction rate, et al. In order to explore the correlation of local effects and electrode structural heterogeneity, the cathode electrode were divided equally into 8 sub-divisions, of which the porosity, tortuosity, specific surface area were calculated. We computed the polarizations in the sub-divisions due to different sub-processes, i.e., the activation of electrochemical reactions and charge transport of species. As shown in Fig. 1, the tortuosity is very irregular because of unevenly distributed cathode particle size and packing pattern with low porosity. There are no exact and direct relations among porosity, tortuosity and specific surface area. Fig. 2 shows that the polarizations are related to the porosity in sub-divisions. The knowledge from the study will help to figure out the mechanism of polarization and power loss in LIB, which could be useful to improve LIB design and manufacturing. Acknowledgments: This work was supported by US National Science Foundation under Grant No. 1335850. Fig. 1 Porosity and tortuosity in sub-divisions of a cathode electrode Fig. 2 Intercalation reaction polarization and ionic conduction polarization of sub-divisions at 120 sec during a 5 C charging process

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Bo Yan, Cheolwoong Lim, Zhibin Song, and Likun Zhu. 2015 April 17. Polarization Analysis Based on Realistic Lithium Ion Battery Electrode Microstructure Using Numerical Simulation. Poster session presented at IUPUI Research Day 2015, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}