Geometric Characteristics of Lithium Ion Battery Electrodes with Different Packing Densities

Date
2015-04-17
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

The microstructure of electrodes plays a critical role in determining the performance of lithium ion batteries (LIBs), because the microstructure can affect the transport and electrochemical processes within electrodes (1-3). Increasing the volume fraction of active materials in the electrode will increase the energy density. However, the electrodes’ structural properties could also be changed significantly and the critical physical and electrochemical processes in LIBs will be affected. Therefore, the performance of a LIB can be optimized for a specific operating condition by designing electrode microstructures. For instance, Hellweg suggested a spatially varying porous electrode model to improve lithium ion transport in electrolyte phase at high charge/discharge rates (4). He showed that the power density of the graded porosity electrode was higher than a homogeneous porosity electrode without energy loss. In this study, we investigate the realistic geometric characteristics of electrode microstructures under different packing densities and the effect of packing density on the performance of LIBs. Moreover, a spatially varying porous electrode will be studied to increase the electrode energy density without losing rate capability. To investigate geometric characteristics of porous microstructures, cathode electrodes were fabricated from a 94:3:3 (weight %) mixture of LiCoO2 (average particle radius = 5 μm), PVDF, and super-P carbon black. To change the packing density, initial thickness of the electrodes was set in a range of 40 ~ 80 μm. Then all electrodes were pressed down to 40 μm by using a rolling press machine. A synchrotron X-ray nano-computed tomography instrument (nano-CT) at the Advanced Phothon Source of Argonne National Lab was employed to obtain morphological data of the electrodes, with a spatial resolution of 60 nm. The morphology data sets were quantitatively analyzed to characterize their geometric properties. Fig. 1 shows the porosity (ε), specific surface area (As, μm-1), tortuosity (τ), and pore size distribution of 4 different electrode microstructures. The pore size distribution of the un-pressed electrode (ε =0.56, black color) demonstrates nonuniformly dispersed active material. The highest packing density electrode (ε =0.36, red color) shows the highest tortuosity. The charge/discharge experiments were also conducted for these 4 different electrodes. The geometric properties and cell testing results will be analyzed and reported. Acknowledgments: This work was supported by US National Science Foundation under Grant No. 1335850. Fig. 1 Geometric characteristics (porosity ε, specific surface area As, tortuosity τ, pore size distribution) of xray generated porous electrode microstructure with different packing densities.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Cheolwoong Lim, Wen Chao Lee, Yan Bo, Zhibin Song, Vincent De Andrade, Francesco De Carlo, Youngsik Kim, and Likun Zhu. 2015 April 17. Geometric Characteristics of Lithium Ion Battery Electrodes with Different Packing Densities. Poster session presented at IUPUI Research Day 2015, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}