Interligand communication in a metal mediated LL′CT system – a case study

Date
2021
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
RSC
Abstract

A series of oxo-Mo(IV) complexes, [MoO(Dt2−)(Dt0)] (where Dt2− = benzene-1,2-dithiol (bdt), toluene-3,4-dithiol (tdt), quinoxaline-2,3-dithiol (qdt), or 3,6-dichloro-benzene-1,2-dithiol (bdtCl2); Dt0 = N,N′-dimethylpiperazine-2,3-dithione (Me2Dt0) or N,N′-diisopropylpiperazine-2,3-dithione (iPr2Dt0)), possessing a fully oxidized and a fully reduced dithiolene ligand have been synthesized and characterized. The assigned oxidation states of coordinated dithiolene ligands are supported with spectral and crystallographic data. The molecular structure of [MoO(tdt)(iPr2Dt0)] (6) demonstrates a large ligand fold angle of 62.6° along the S⋯S vector of the Dt0 ligand. The electronic structure of this system is probed by density functional theory (DFT) calculations. The HOMO is largely localized on the Dt2− ligand while virtual orbitals are mostly Mo and Dt0 in character. Modeling the electronic spectrum of 6 with time dependent (TD) DFT calculations attributes the intense low energy transition at ∼18 000 cm−1 to a ligand-to-ligand charge transfer (LL′CT). The electron density difference map (EDDM) for the low energy transition depicts the electron rich Dt2− ligand donating charge density to the redox-active orbitals of the electron deficient Dt0 ligand. Electronic communication between dithiolene ligands is facilitated by a Mo-monooxo center and distortion about its primary coordination sphere.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Dille, S. A., Colston, K. J., Ratvasky, S. C., Pu, J., & Basu, P. (2021). Interligand communication in a metal mediated LL′CT system – a case study. RSC Advances, 11(39), 24381–24386. https://doi.org/10.1039/D1RA04716G
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
RSC Advances
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}