TRANSCRIPTION FACTOR REQUIREMENTS FOR THE DEVELOPMENT AND ANTI-VIRAL FUNCTION OF IL-17-SECRETING CD8 T CELLS

Date
2012-03-19
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2011
Department
Department of Microbiology and Immunology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Inflammatory immune responses are regulated by T cell subsets that secrete specific panels of cytokines. While CD8+ T cells that secrete IFN- and cytotoxic molecules (Tc1 cells) are known to mediate antiviral immunity, IL-17-secreting CD8+ T (Tc17) cells have only recently been described and the development and function of these cells has not been clearly examined. Using in vitro T cell cultures and mice deficient in transcription factors regulating lineage development, we defined Tc17 development and function. Similar to IL-17 secretion from CD4 T cells, IL-17 secretion from Tc17 cells is dependent on the transcription factor Stat3 and inhibited by Stat1. Expression of transcription factors important for Tc1 function, T-bet and Eomesodermin (Eomes), is reduced in Tc17 cells and consistent with this, Tc17 cells are non-cytotoxic in vitro. However, Tc17 cells are unstable and switch to cytotoxic IFN- producing cells when exposed to a Tc1 inducing cytokine, IL-12. Overexpression of the lineage promoting transcription factors T-bet and Eomes is unable to induce a Tc1 phenotype in Tc17 cells and Stat3 is also unable to switch Tc1 cells into Tc17 cells, suggesting additional signals are involved in CD8 T cell lineage commitment. In vivo, Tc17 cells are induced by vaccinia virus, dependant on Stat3, and are capable of mediating antiviral immunity. Tc17 cells acquire an IFN--secreting phenotype after encounter with virus in vivo, however, viral clearance by Tc17 cells is independent of IFN-. Instead, viral clearance is correlated with a gain in T-bet expression and cytotoxic function in Tc17 cells which have encountered virus. The development of anti-viral activity independent of IFN-, suggests that Tc17 cells may mediate anti-viral immunity through novel mechanisms that depend on the ability of Tc17 cells to acquire other phenotypes.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}