Microbe-Dependent Exacerbated Alveolar Bone Destruction in Heterozygous Cherubism Mice

Date
2020-02-24
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Society for Bone and Mineral Research
Abstract

Cherubism (OMIM#118400) is a craniofacial disorder characterized by destructive jaw expansion. Gain‐of‐function mutations in SH3‐domain binding protein 2 (SH3BP2) are responsible for this rare disorder. We have previously shown that homozygous knock‐in (KI) mice (Sh3bp2 KI/KI) recapitulate human cherubism by developing inflammatory lesions in the jaw. However, it remains unknown why heterozygous KI mice (Sh3bp2 KI/+) do not recapitulate the excessive jawbone destruction in human cherubism, even though all mutations are heterozygous in humans. We hypothesized that Sh3bp2 KI/+ mice need to be challenged for developing exacerbated jawbone destruction and that bacterial stimulation in the oral cavity may be involved in the mechanism. In this study, we applied a ligature‐induced periodontitis model to Sh3bp2 KI/+ mice to induce inflammatory alveolar bone destruction. Ligature placement induced alveolar bone resorption with gingival inflammation. Quantification of alveolar bone volume revealed that Sh3bp2 KI/+ mice developed more severe bone loss (male: 43.0% ± 10.6%, female: 42.6% ± 10.4%) compared with Sh3bp2 +/+ mice (male: 25.8% ± 4.0%, female: 30.9% ± 6.5%). Measurement of bone loss by the cement‐enamel junction–alveolar bone crest distance showed no difference between Sh3bp2 KI/+ and Sh3bp2 +/+ mice. The number of osteoclasts on the alveolar bone surface was higher in male Sh3bp2 KI/+ mice, but not in females, compared with Sh3bp2 +/+ mice. In contrast, inflammatory cytokine levels in gingiva were comparable between Sh3bp2 KI/+ and Sh3bp2 +/+ mice with ligatures. Genetic deletion of the spleen tyrosine kinase in myeloid cells and antibiotic treatment suppressed alveolar bone loss in Sh3bp2 KI/+ mice, suggesting that increased osteoclast differentiation and function mediated by SYK and accumulation of oral bacteria are responsible for the increased alveolar bone loss in Sh3bp2 KI/+ mice with ligature‐induced periodontitis. High amounts of oral bacterial load caused by insufficient oral hygiene could be a trigger for the initiation of jawbone destruction in human cherubism.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Kittaka, M., Yoshimoto, T., Schlosser, C., Kajiya, M., Kurihara, H., Reichenberger, E. J., & Ueki, Y. (2020). Microbe-Dependent Exacerbated Alveolar Bone Destruction in Heterozygous Cherubism Mice. JBMR Plus, 4(6), e10352. https://doi.org/10.1002/jbm4.10352
ISSN
2473-4039
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
JBMR Plus
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}