Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration Via Distinct and Overlapping Mechanisms

Abstract

Osteoblast differentiation and migration are necessary for bone formation during bone remodeling. Mice lacking the proline-rich tyrosine kinase Pyk2 (Pyk2-KO) have increased bone mass, in part due to increased osteoblast proliferation. Megakaryocytes (MKs), the platelet-producing cells, also promote osteoblast proliferation in vitro and bone-formation in vivo via a pathway that involves Pyk2. In the current study, we examined the mechanism of action of Pyk2, and the role of MKs, on osteoblast differentiation and migration. We found that Pyk2-KO osteoblasts express elevated alkaline phosphatase (ALP), type I collagen and osteocalcin mRNA levels as well as increased ALP activity, and mineralization, confirming that Pyk2 negatively regulates osteoblast function. Since Pyk2 Y402 phosphorylation is important for its catalytic activity and for its protein-scaffolding functions, we expressed the phosphorylation-mutant (Pyk2(Y402F) ) and kinase-mutant (Pyk2(K457A) ) in Pyk2-KO osteoblasts. Both Pyk2(Y402F) and Pyk2(K457A) reduced ALP activity, whereas only kinase-inactive Pyk2(K457A) inhibited Pyk2-KO osteoblast migration. Consistent with a role for Pyk2 on ALP activity, co-culture of MKs with osteoblasts led to a decrease in the level of phosphorylated Pyk2 (pY402) as well as a decrease in ALP activity. Although, Pyk2-KO osteoblasts exhibited increased migration compared to wild-type osteoblasts, Pyk2 expression was not required necessary for the ability of MKs to stimulate osteoblast migration. Together, these data suggest that osteoblast differentiation and migration are inversely regulated by MKs via distinct Pyk2-dependent and independent signaling pathways. Novel drugs that distinguish between the kinase-dependent or protein-scaffolding functions of Pyk2 may provide therapeutic specificity for the control of bone-related diseases.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Eleniste, P. P., Patel, V., Posritong, S., Zero, O., Largura, H., Cheng, Y.-H., Himes, E. R., Hamilton, M., Baughman, J., Kacena, M. A. and Bruzzaniti, A. (2016), Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration Via Distinct and Overlapping Mechanisms. J. Cell. Biochem., 117: 1396–1406. doi:10.1002/jcb.25430
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Cellular Biochemistry
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}