Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock

Abstract

Hematopoietic stem cells (HSCs) reside in hypoxic niches within bone marrow and cord blood. Yet, essentially all HSC studies have been performed with cells isolated and processed in non-physiologic ambient air. By collecting and manipulating bone marrow and cord blood in native conditions of hypoxia, we demonstrate that brief exposure to ambient oxygen decreases recovery of long-term repopulating HSCs and increases progenitor cells, a phenomenon we term extraphysiologic oxygen shock/stress (EPHOSS). Thus, true numbers of HSCs in the bone marrow and cord blood are routinely underestimated. We linked ROS production and induction of the mitochondrial permeability transition pore (MPTP) via cyclophilin D and p53 as mechanisms of EPHOSS. The MPTP inhibitor cyclosporin A protects mouse bone marrow and human cord blood HSCs from EPHOSS during collection in air, resulting in increased recovery of transplantable HSCs. Mitigating EPHOSS during cell collection and processing by pharmacological means may be clinically advantageous for transplantation.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Mantel, C. R., O’Leary, H. A., Chitteti, B. R., Huang, X., Cooper, S., Hangoc, G., … Broxmeyer, H. E. (2015). Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell, 161(7), 1553–1565. http://doi.org/10.1016/j.cell.2015.04.054
ISSN
1097-4172
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Cell
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}