The Skeletal Phenotype Of The Kk/Ay Murine Model Of Type 2 Diabetes

Date
2022-08
Language
English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2022
Department
Biomedical Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Type-2-diabetes (T2D) is a progressive metabolic disease characterized by insulin resistance and β-cell dysfunction leading to persistent hyperglycemia. It is a multisystem disease that causes deterioration of multiple organ systems and obesity. Of interest, T2D affects the urinary system and is the leading cause of kidney disease. Both T2D and chronic kidney negatively impacts the skeletal system and increases fracture incidence in patients. Therefore, it is important to establish an animal model that captures the complex multiorgan effects that is common in T2D. In this study, we characterized the metabolic phenotype of the KK/Ay mouse model, a polygenic mutation model of T2D. We concluded that KK/Ay mice closely mimic T2D and are hyperglycemic, hyperinsulinemic and insulin resistant. KK/Ay mice have also had worsened kidney function as supported by elevated levels of blood urea nitrogen, phosphorous, creatinine, and calcium in plasma exhibiting the kidney’s inefficiency in clearing waste from the body. Even though we were able to confirm a metabolic phenotype for T2D and diabetic nephropathy, the skeletal effects of the disease were minimal and major differences in bone physiology were driven by sex differences. This study offered valuable insight into preliminary endpoints for the KK/Ay mouse mode that will decide the direction for future use of this model. We plan to use older mice in future studies to allow a longer time for skeletal effects to more prominently manifest.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}