Developing an approach to improve beta-phase properties in ferroelectric pvd-hfp thin films

Date

2020-05
Language
American English

Embargo Lift Date

Department

Committee Chair

Degree

M.S.

Degree Year

2020

Department

Physics

Grantor

Purdue University

Journal Title

Journal ISSN

Volume Title

Found At

Abstract

Improved fabrication of poly(vinylindenefluoride)-hexafluoropropylene (PVDF-HFP) thin films is of particular interest due to the high electric coercivity found in the beta-phase structure of the thin film. We show that it is possible to obtain high-quality, beta-phase dominant PVDF-HFP thin films using a direct approach to Langmuir-Blodgett deposition without the use of annealing or additives. To improve sample quality, an automated Langmuir-Blodgett thin film deposition system was developed; a custom dipping trough was fabricated, a sample dipping mechanism was designed and constructed, and the system was automated using custom LabVIEW software. Samples were fabricated in the form of ferroelectric capacitors on substrates of glass and silicon, and implement a unique step design with a bottom electrode of copper with an aluminum wetting layer and a top electrode of gold with an aluminum wetting layer. Samples were then characterized using a custom ferroelectric measurement program implemented in LabVIEW with a Keithley picoammeter/voltage supply to confirm electric coercivity properties. Further characterization using scanning electron microscopy and atomic force microscopy confirmed the improvement in thin film fabrication over previous methods.

Description

Indiana University-Purdue University Indianapolis (IUPUI)

item.page.description.tableofcontents

item.page.relation.haspart

Cite As

ISSN

Publisher

Series/Report

Sponsorship

Major

Extent

Identifier

Relation

Journal

Source

Alternative Title

Type

Thesis

Number

Volume

Conference Dates

Conference Host

Conference Location

Conference Name

Conference Panel

Conference Secretariat Location

Version

Full Text Available at

This item is under embargo {{howLong}}