TENSILE DEFORMATION BEHAVIOR AND MECHANICAL PROPERTY STUDY OF SIX FCC METALS

Date
2010-04-09
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Nanomaterials have enhanced mechanical properties in comparison to their respective bulk materials. To understand the effect of the size and shape on the mechanical properties of nanomaterials, we used molecular dynamics (MD) methods to simulate the deformation process of copper, gold, nickel, palladium, platinum, and silver nanowires of three cross-sectional shapes (quare, circular, and octagonal) and four diameters (varied from one to eight nanometers). In this work, the nanowires were subjected to a uniaxial tensile load in the [100] direction at a strain rate of 108 s-1 at a simulation temperature of 300 K. The embedded-atom method was employed to describe the many-body atomic interaction energy in metallic systems. The nanowires were stretched to failure and the corresponding stress-strain curves were produced. From these curves, mechanical properties including the elastic modulus, yield stress and strain, and ultimate strain were calculated. In addition to the MD approach, an energy method was applied to calculate the elastic modulus of each nanowire through exponential fitting of an energy function. Both methods used to calculate Young’s modulus qualitatively gave similar results indicating that as diameter decreases, Young’s modulus decreases. The atomic structures generated from MD simulations were examined in details to investigate the deformation and yield behavior of each nanowire. It was found that most nanowires yield and fail through partial dislocation nucleation and propagation leading to {111} slip. However, the octagonal platinum nanowire, whose diameter is 5 nm, was found to yield through reconstruction of the {011} surfaces into the more energetically favorable {111} surfaces.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Joseph Heidenreich and Guofeng Wang. (2010, April 9). TENSILE DEFORMATION BEHAVIOR AND MECHANICAL PROPERTY STUDY OF SIX FCC METALS. Poster session presented at IUPUI Research Day 2010, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}