
SOLID-STATE NMR SPECTROSCOPY APPLIED TO MODEL 

MEMBRANES: EFFECTS OF POLYUNSATURATED FATTY 

ACIDS 

by 

Jacob Jerald Kinnun 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

Department of Physics 

Indianapolis, Indiana 

August 2018 

  



ii 

 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Stephen R. Wassall, Chair 

Department of Physics 

Dr. Horia I. Petrache 

Department of Physics 

Dr. Yogesh N. Joglekar 

Department of Physics 

Dr. Kenneth P. Ritchie 

Department of Physics 

Dr. Fangqiang Zhu 

Department of Physics 

 

Approved by: 

Dr. Ricardo S. Decca 

Head of the Graduate Program
  



iii 

 

ACKNOWLEDGMENTS 

In completing this work, no one has made more sacrifices than my wife, Maria. I 

am indebted to her for her hard work and understanding which allowed me to pursue this 

research. Importantly, I must also acknowledge my father, Gerald, my mother, Geraldine, 

and my sister, Michelle, who supported me and encouraged me when times were uncertain. 

As a younger student of science, two mentors, John Satter and Dr. Michael F. Brown 

encouraged me to be fearless in the pursuit of discovery. Without them I would have not 

seen the possible extent of my future potential and would not have attempted to go this far. 

In this vein I must also acknowledge fellow students who have encouraged me and aided 

me in my work, specifically Dr. Avigdor Leftin, Andres Cavazos, and Dr. Xiaoling Leng. 

This work could not have been completed without the facility managers of Dr. Bruce D. 

Ray and Dr. Andrey V. Struts who have helped educate me on the techniques that make 

this work possible. I also recognize my current and former committee members, Dr. Horia 

I. Petrache, Dr. Steve Pressé, Dr. Yogesh N. Joglekar, Dr. Ken Ritchie, and Dr. Fangqiang 

Zhu, for their time and advice in my research and the preparation of this dissertation. 

Finally, I have been exceptionally fortunate to have found Dr. Stephen R. Wassall as an 

advisor. His expertise and direction has been invaluable in my development as a scientist. 



iv 

 

TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

ABSTRACT ................................................................................................................... xviii 

 BIOLOGICAL MEMBRANES ................................................................ 1 

1.1 General Membrane Properties and Structure ............................................................ 1 

1.2 Anatomy of a Lipid ................................................................................................... 4 

1.3 Lipid Dynamics and Phase Behavior ........................................................................ 6 

1.4 Phase Segregation ..................................................................................................... 7 

 SOLID-STATE NUCLEAR MAGNETIC RESONANCE .................... 14 

2.1 Introduction ............................................................................................................. 14 

2.2 Field Gradient Interactions ...................................................................................... 16 

2.3 Cartesian Basis ........................................................................................................ 17 

2.4 Spherical Basis ........................................................................................................ 19 

2.5 Static Line Shapes ................................................................................................... 21 

2.6 Motional Averaging ................................................................................................ 24 

2.7 Multi-component Spectra ........................................................................................ 28 

 2H NMR IMPLEMENTATION AND ANALYSIS ............................... 43 

3.1 Introduction ............................................................................................................. 43 

3.2 Pulse Sequences and the Solid Echo ....................................................................... 44 

3.3 FID Processing ........................................................................................................ 48 

3.4 Spectral Processing and dePakeing ......................................................................... 51 

3.5 Lineshape Analysis and Fitting ............................................................................... 53 

3.6 Concluding Remarks ............................................................................................... 54 

 THE EFFECT OF DHA ON RAFT DOMAINS .................................... 61 

4.1 Introduction ............................................................................................................. 61 

4.2 Materials and Methods ............................................................................................ 63 

4.3 POPC/PSM-d31 and POPC/PSM-d31/chol Results .................................................. 64 

4.4 PDPC/PSM-d31 and PDPC/PSM-d31/chol Results .................................................. 68 

4.5 DHA Increases Domain Size ................................................................................... 71 



v 

 

4.6 DHA Infiltrates Raft-like Domains ......................................................................... 75 

4.7 Conclusion ............................................................................................................... 78 

 CONCLUSIONS ..................................................................................... 86 

5.1 2H NMR Spectroscopy Data Processing and Analysis ........................................... 86 

5.2 The Effect of PUFA on Raft Domain Formation .................................................... 87 

5.3 NMR Software Development .................................................................................. 88 

5.4 Future Directions of PUFA and Raft Research ....................................................... 90 

APPENDIX A. SUPPLEMENTAL MATERIAL FOR LINESHAPE SIMULATION ... 92 

APPENDIX B. SUPPLEMENTAL MATERIAL FOR THE EFFECT OF DHA ON 

RAFT   DOMAINS ........................................................................................................ 97 

REFERENCES ............................................................................................................... 104 

VITA ............................................................................................................................... 114 

 

  



vi 

 

LIST OF TABLES 

Table 2.1: The coupling and angular momentum tensors in the spherical basis 

correspond to the Cartesian basis with the use of the Wigner rotation matrix 

elements. Here Ω is the solid angle as represented by the Euler angles, 𝛿𝜆 =

 𝑉𝑧𝑧
PAS  is the largest eigenvalue of the electric field gradient, and 𝜂𝜆 =

 (𝑉𝑦𝑦
PAS − 𝑉𝑥𝑥

PAS) 𝑉𝑧𝑧
PAS⁄  is the asymmetry parameter. ..................................... 33 

Table B.1: Average order parameters 𝑆𝐶𝐷  derived from 2H NMR spectra for 

POPC/PSM-d31 and POPC-d31/eSM in 1:1 mol mixtures and in 1:1:1 mol 

mixtures with chol, and for PDPC/PSM-d31 and PDPC-d31/eSM in 1:1 mol 

mixtures and 1:1:1 mol mixtures with chol at 37 ºC. The values for samples 

prepared with POPC-d31 and PDPC-d31 are taken from Williams et al. 

(Williams et al., 2012). aValues are comparable in magnitude to average 

order parameters published for POPC/PSM-d31 and POPC-d31/PSM (1:1 

mol) (Bunge et al., 2008). .............................................................................. 97 

Table B.2: Quadrupolar splitting at 30 °C of the terminal methyl peaks on PSM-d31 and 

PDPC-d31 and of the 3α site on chol-d1 in each domain for the 

PDPC/SM/chol (1:1:1) mixture. These values were measured from the 

depaked spectra plotted in Figure 4.4 and correspond to the frequency of 

the respective signals (indicated by arrows). They were used to estimate a 

lower bound for the lifetime (𝜏 > 1 2𝜋Δ𝜈⁄ ) within domains and for the size 

(𝑟 = √4𝐷𝜏 ) of the domains. The values for PDPC-d31 are taken from 

Williams et al. (Williams et al., 2012).. ......................................................... 98 

 

 

 

  



vii 

 

LIST OF FIGURES 

Figure 1.1: A depiction of lipid bilayers in the multi-lamellar vesicle arrangement 

(MLV) with water denoted by blue spheres. ................................................. 11 

Figure 1.2: Structural parameters for a liquid-crystalline lipid membrane. Locally in the 

MLV phase, the bilayers repeat in stacks in intervals of the lattice repeat 

spacing, 𝐷, which can be further divided into the water spacing, 𝐷𝑤, the 

lipid head group spacing, 𝐷ℎ, and the lipid chain spacing, 𝐷𝑐 . Given an 

average area per lipid, 〈𝐴〉, these divisions have corresponding volumes of 

𝑉𝑤, 𝑉ℎ, and 𝑉𝑐. ................................................................................................ 12 

Figure 1.3: Some common chemical groups in the composition of lipids. The polar 

nature of phosphocholine (PC), phosphoethanolamine (PE), and 

phosphoserine (PS) is ubiquitous for lipid head groups (top). This is 

satisfied by the hydroxide group for cholesterol and vitamin E (right). The 

polar head groups listed are linked to hydrocarbons by a backbone group 

(middle). Glycerol can link two lipid chains while the sphingosine group 

has room for one. In general lipid chains are of various lengths and various 

number of double bonds as shown with the palmitoyl, oleoyl, and 

docosahexaenoyl chains (bottom). ................................................................. 13 

Figure 2.1: In the presence of a strong magnetic field (B0) the axis of quantization is 

along the main magnetic field direction.  The nuclear spin angular 

momentum gives rise to a magnetic moment which interacts with the static 

external magnetic field (Zeeman effect).  Here the main magnetic field is 

defined to be along the z-direction. ................................................................ 34 

Figure 2.2: For a spin-one interaction with a magnetic field two transitions at Larmor 

frequencies of 𝜈0 can occur. The tensor interaction Hamiltonian, 𝐻̂𝜆, is a 

perturbation of the Zeeman Hamiltonian, 𝐻̂𝑍, as shown in the shift of the 

right-side energy levels. When the tensor interaction is present, the Larmor 

frequency is modulated differently in each spatial direction. The presence 

of this perturbation results in two inequivalent transitions, 𝜈𝜆
− and 𝜈𝜆

+. ........ 35 



viii 

 

Figure 2.3: Nuclei can interact with electromagnetic field gradients within their 

environment. Field gradients (𝑉𝑖𝑖) are curvatures of the potential energy as 

represented by the blue potential surface. Mathematically these are tensor 

interactions and can be represented by ellipsoids (shown in grey), where 

the longest part of the ellipsoid represents the largest eigenvalue of the 

interaction. This defines a principal axis system (PAS). This principle axis 

system is not necessarily aligned with the lab frame (LAB). Which leads 

to an orientational (and motional) dependence of the observed interaction. . 36 

Figure 2.4: With the Euler angles the unprimed axis system can be rotated to the final 

triple-primed axis system for a complete 3-dimensional rotation. (a) The 

first Euler angle, 𝛼, rotates the unprimed axis system about the z-axis to 

the prime coordinates. (b) Then, the second Euler angle, 𝛽 , rotates the 

primed axis system about the y'-axis to the double prime coordinates. (c) 

Finally the last Euler angle, 𝛾, rotates the double primed axis system about 

the z''-axis to the final triple primed axis system. (d) Notice that the x 

direction is rotated three times, the y twice, and the z once; this allows for 

each of the three axes to be rotated to a designated direction. ...................... 37 

Figure 2.5: The orientation of the main magnetic field with respect to the principal axis 

system yields different principal components of the spectrum.  If all of the 

nuclei are (a), (b), (c) aligned along one of the Cartesian components of the 

field gradient, then the frequency observed is given by the strength of the 

field gradient pointing in that direction, and the amplitude is given by the 

number of nuclei populating that state. (d) Orientations off of these axes 

can be handled in the irreducible representation with Euler angles 𝛼 and 𝛽, 

where the corresponding angles for the Cartesian coordinates are labeled 

in (a), (b), and (c). If all orientations are present, such as a powder, then the 

entirety of the frequency distribution is observed (called a powder pattern) 

as shown in Cartesian coordinates in (e) and the irreducible representation 

in (f). .............................................................................................................. 38 

 



ix 

 

Figure 2.6: To discuss motional averaging consider an axially symmetric tensor 

interaction (a top) which if all static orientations are present yields a 

powder pattern (a bottom). If fast planar motion is present (b top) the 

magnitude of the interaction is reduced by half (𝑆𝑃𝑀 = − 1 2⁄ ) and thus the 

observed frequency splitting is reduced by half (b bottom). For motional 

averaging about a tetrahedral angle (c top) the observed spectral is reduced 

by a third (c bottom). If both tetrahedral and planar motions are present (d 

top) the observed frequency splitting is reduced by a sixth (d bottom). ........ 39 

Figure 2.7: A first moment plot of PSM-d31 mixed with POPC (1:1 mol.) as a function 

of temperature reveals a phase transition at 9.9 °C. A represented spectrum 

(left inset) of PSM-d31 mixed with POPC at -10 °C is indicative of the solid 

ordered phase where the labeled hydrocarbon chains are relatively ordered. 

While a representative spectrum (right inset) of PSM-d31 mixed with POPC 

at 30 °C is indicative of the liquid crystalline phase where now the 

hydrocarbon chains are relatively disordered and many of the segments are 

undergoing distinct dynamics. ....................................................................... 40 

Figure 2.8: For a perdeuterated lipid chain, each segment, represented by the angle 𝛽𝑃𝐷
(𝑖)

, 

can potentially produce a distinct powder pattern (top left). Segment 

numbering (𝑖) begins at the carboxyl group and increases until it reaches 

the terminal methyl of a chain. This is shown for the palmitoyl chain of 

POPC-d31 in the upper right. These powder patterns superimpose to form 

the blue spectra of POPC-d31 at 37 °C as shown in the middle. To enhance 

the resolution of the spectrum a dePaking algorithm can be performed 

which deconvolutes the powder patterns to a collection of doublets as 

shown at the bottom. ...................................................................................... 41 

 

 

 

 

 



x 

 

Figure 2.9: DePaked spectra (top) are useful in determining order parameter profiles 

(bottom). The dePaked spectra shown on top is of POPC-d31 at 37 °C 

(black). To determine the frequency splittings for each doublet pair, Voight 

(Lorentzian convoluted with a Gaussian lineshape) lineshapes were fit to 

each distinct peak (grey dotted line) and formed a cumulative fit (grey solid 

line). The doublet with the maximum width is a composite of many 

segments. This was split according to area (2 deuterons per segment) and 

assumed a monotonic decrease in frequency splitting. With equation 2.55, 

the frequency splittings were used to determine the order parameter profile 

(bottom). ........................................................................................................ 42 

Figure 3.1: In pulse-Fourier transform NMR spectroscopy, pulse sequences are 

repeated, separated by a recycle delay time, to reduce the signal to noise of 

an accumulated signal. The goal of the recycle delay time is to allow the 

sample to return to its initial thermal equilibrium. In this state the lowest 

and thus most populous magnetic state (blue arrow) is aligned with the 

main magnetic field, 𝐁𝟎, as shown at the bottom left. For a single-pulse 

sequence, typically an oscillating electromagnetic magnetic pulse, 𝐁𝑷, is 

delivered via a coil to the sample (top middle) to nutate the spin state to the 

x-y plane (bottom middle), which is referred to as a 90° pulse. Following 

the pulse there is a dead time to allow the circuit to recover. While the 

magnetic spin state is in the x-y plane it will precess due to the main 

magnetic field (bottom right). This precessing spin state causes an 

oscillating magnetic field in the coil used to deliver a pulse. Thus this can 

be observed as an electric induction in that coil (top right), which is referred 

to as a free induction decay (FID). The signal of an FID can be weak so 

pulse sequences are often repeated to reduce decoherent noise by averaging 

subsequent FIDs. ............................................................................................ 55 

 

 

 



xi 

 

Figure 3.2: The solid echo pulse sequence begins with a 90° pulse. After this pulse 

(during the interpulse delay) the signal decays due to decoherence from 

orientationally-dependent, static interactions, and thermal relaxation 

towards equilibrium. Then another 90°  pulse is delivered but at a 90° 

phase-offset from the original pulse. In the figure, the first pulse is pointed 

along the x-axis while the second pulse is pointed along the y-axis (in the 

rotating frame) thus achieving the 90° phase-offset. The goal of this second 

pulse is to refocus the decoherence due to the orientational and static 

dependence but it cannot reverse thermal decay back to equilibrium. This 

results in an echo at a time equivalent to the interpulse delay after the 

second pulse. If the interpulse delay is chosen wisely, this echo appears 

after the dead time. This allows the observation of a significant portion of 

the signal which is often lost in single pulse experiments. As with single 

pulse experiments, this sequence can be repeated after a recycle delay time 

to improve signal to noise of the observed FID. ............................................ 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

Figure 3.3: EchoNMR processor opens FID files and displays them in the Original FID 

area, where the real signal is denoted in black and the imaginary is denoted 

in red. Here a sample spectrum of POPC/chol-d1 (1:1 mol.) at 37 °C in 

MLV form is shown. This sample was prepared as a 50 wt% aqueous 

dispersion in 50 mM Tris buffer (pH 7.5). The FID Processing section 

(upper left) allows the user to phase the FID by angle, specify the maximum, 

and specify the FID baseline. The result of which is shown in a Processed 

FID area. Simultaneously EchoNMR processor performs a fast Fourier 

transform to yield the spectrum (top right) and also a weighted fast Fourier 

transform to yield a dePaked spectrum (bottom right). The center of the 

spectra, the amount of data points to be displayed (by zero filling the FID 

before the Fourier transform), symmetrization (enabled here), and the 

spectral baseline can be specified in the Spectral Processing section (left). 

All of these values have automated procedures (upper bar) to aid the user 

in their determination. The smoothing and plotting section allows users to 

smooth the spectra via exponential or Gaussian apodization of the FID or 

post Fourier transform by convoluting the spectra with their Fourier 

representations. Here the user can change how the spectra is displayed and 

hide the imaginary parts. Finally, the Options and Moments section 

provides a few extra features and the ability to calculate moments of 

arbitrary order. ............................................................................................... 57 

 

 

 

 

 

 

 

 

 



xiii 

 

Figure 3.4: EchoNMR fitter is a program designed to simulate NMR lineshapes and fit 

them to spectra generated by EchoNMR processor. It has the capability of 

fitting asymmetric powder patterns, isotropic peaks, multiple peaks, and 

can account for distortion due to pulse widths and relaxation. It utilizes the 

Nelder–Mead algorithm, or can randomly search a parameter space, to 

minimize the sum of the squared difference between the recorded spectrum 

and the simulated spectrum. Here is a sample fit of a spectrum of 

POPC/chol-d1 (1:1 mol. from Figure 3.3) in 50 wt% aqueous dispersion in 

50 mM Tris buffer (pH 7.5) fitted with a powder pattern and isotropic 

lineshapes within the EchoNMR fitter. The original spectrum is denoted by 

the black solid line, while simulated powder patterns are represented by red 

and blue dotted lines (respectively), and their summation is indicated by a 

grey solid line. ............................................................................................... 58 

Figure 3.5: EchoNMR fitter is a program designed to simulate NMR lineshapes and fit 

them to spectra generated by EchoNMR processor. It has the capability of 

fitting asymmetric powder patterns, isotropic peaks, multiple peaks, and 

can account for distortion due to pulse widths and relaxation. It utilizes the 

Nelder–Mead algorithm, or can randomly search a parameter space, to 

minimize the sum of the squared difference between the recorded spectrum 

and the simulated spectrum. Here is a sample fit of a spectrum of 

POPC/chol-d1 (1:1 mol. from Figure 3.3) in 50 wt% aqueous dispersion in 

50 mM Tris buffer (pH 7.5) fitted with a powder pattern and isotropic 

lineshapes within the EchoNMR fitter. The original spectrum is denoted by 

the black solid line, while simulated powder patterns are represented by red 

and blue dotted lines (respectively), and their summation is indicated by a 

grey solid line. ............................................................................................... 59 

 

 

 

 

 



xiv 

 

Figure 3.6: As well as fitting 2H NMR spectra, EchoNMR fitter can fit other spectra 

which produce result in second-order Legendre polynomial dependent 

power patterns and isotropic lineshapes. Here is a sample 31P NMR 

spectrum fit with two (single-transition) powder patterns to determine 

amount of each observed component (Shaikh et al., 2002). The two 

components are POPE and SM in a POPE/SM (1:1) mixture in MLV form.

 ....................................................................................................................... 60 

Figure 4.1: 2H NMR spectra for 50 wt% aqueous dispersion in 50 mM Tris buffer (pH 

7.5) of POPC/PSM-d31 (1:1 mol) (left column) and POPC/PSM-d31/chol 

(1:1:1 mol) (right column). Spectra are symmetrized about the central 

frequency to enhance signal/noise. ................................................................ 81 

Figure 4.2: Variation of the first moment 𝑀1  as a function of temperature for 

POPC/PSM-d31/ (1:1 mol) () and POPC/PSM-d31/chol (1:1:1 mol)  () 

(top panel); and for PDPC/PSM-d31 (1:1 mol) () and PDPC/PSM-

d31/chol (1:1:1 mol) () (bottom panel). 𝑀1 is plotted logarithmically for 

clarity. The lines through the data are merely meant to guide the eye. They 

were fit with a sigmoid function modified by a slope. .................................. 82 

Figure 4.3: 2H NMR spectra for 50 wt% aqueous dispersion in 50 mM Tris buffer (pH 

7.5) of PDPC/PSM-d31 (1:1 mol) (left column) and PDPC/PSM-d31/chol 

(1:1:1 mol) (right column). Spectra are symmetrized about the central 

frequency to enhance signal/noise. Arrows included in the spectrum for 

PDPC/PSM-d31/chol at 37 °C illustrate the resolution of signals assigned 

to the methyl groups on PSM-d31 in SM-rich (outer splitting) and PC-rich 

(inner splitting) domains. Spectra are symmetrized about the central 

frequency to enhance signal/noise. ................................................................ 83 

 

 

 

 

 



xv 

 

Figure 4.4: 2H NMR spectra at 30 C for PDPC/PSM-d31/chol (upper left panel), 

PDPC-d31/eSM/chol (1:1:1 mol) (upper right panel) and PDPC/eSM/chol-

d1 (lower left panel) (1:1:1 mol). Depaked spectra, together with an 

expansion of the central region in each case (above), are shown. The arrows 

designate pairs of signals assigned to the terminal methyl group on PSM-

d31 and PDPC-d31 and to the 3α group on chol-d1 in more ordered SM-

rich/chol-rich (outer splitting) and more disordered PDPC-rich/chol-poor 

(inner splitting) domains. A Voigt lineshape (dashed lines) was fit to the 

peaks. The data for the samples containing PDPC-d31 are taken from 

Williams et al. (Williams et al., 2012). Spectra are symmetrized about the 

central frequency to enhance signal/noise. Pie charts depicting the 

composition of domains obtained from the fit of the peaks in the spectra 

are shown in the inset (lower right). The percentages are the amount of 

each lipid species in a domain with respect to the total amount of lipid in 

the mixed membrane. As shown, the majority of each lipid species resides 

within the more ordered (raft-like) domain. In total, 80% of the lipids reside 

within this domain. The reader is directed to Table B.3, Appendix B for the 

relative amount of each lipid in raft-like vs. non-raft domains. .................... 84 

Figure 4.5: A model depicting two possible scenarios for the arrangement of PDPC 

taken up into a SM-rich/chol-rich ordered domain. Top - PDPC molecules 

cluster together in small subdomains within the bigger raft-like, SM-

rich/chol-rich domain. Bottom - PDPC molecules accumulate at the edge 

of the raft-like domain, creating a gradient in concentration and thickness 

at the border with the thinner PDPC-rich/chol-poor region. ......................... 85 

Figure A.1: EchoNMR fitter is capable of simulating, and capable of fitting, 

asymmetric powder patterns. From table 2.1, the asymmetry parameter is 

derived in terms of the electric field gradients as 𝜂 =

√2 3⁄ (𝑉𝑦𝑦
PAS − 𝑉𝑥𝑥

PAS) 𝑉𝑧𝑧
PAS⁄ . Here is a sample simulation of an 

asymmetric powder pattern with an asymmetry parameter of 0.20. In 

axially-symmetric powder patterns this parameter is zero. ........................... 94 



xvi 

 

Figure A.2: A solid echo pulse sequence was performed on powder 

hexamethylbenzene-d18 with varying interpulse delays. The resulting 

spectra obtained after fast Fourier transform from the echo peak is shown 

on the left, with the interpulse delay given in the inset. For long interpulse 

delays the spectrum becomes distorted due to frequency-dependent 

relaxation, which diminishes the shoulders. The amplitude of the spectra, 

as a function of interpulse delay, decays as a Gaussian which is shown in 

the right-top (the amplitude has been normalized). The Gaussian relaxation 

(decay rate) depends on the square of the frequency (right bottom) which 

is referred to as a square law. Near the theoretical singularity, ~9 kHz, the 

uncertainty increases as the broadened peak affects neighboring amplitudes. 

This likewise happens for the edges of the spectrum. ................................... 95 

Figure A.3: EchoNMR fitter can fit lineshapes which are distorted due to pulse effects 

and relaxation effects. A sample spectrum of powder hexamethylbenzene-

d18 recorded using a solid echo pulse sequence with an interpulse delay of 

660 μs is shown here to illustrate diminished shoulders due to relaxation 

effects. ............................................................................................................ 96 

Figure B.1: Molecular structure of PDPC, POPC, PSM and chol. ................................... 99 

Figure B.2: A comparison of the variation of the first moment 𝑀1 as a function of 

temperature for POPC/PSM-d31 (1:1 mol) () and POPC-d31/eSM/chol 

(1:1:1 mol)  (●) (top panel); and for POPC/PSM-d31 (1:1 mol) (■) and 

POPC-d31/eSM/chol (1:1:1 mol) (▲) (bottom panel). 𝑀1  is plotted 

logarithmically for clarity. The data for the samples containing POPC-d31 

are taken from Williams et al. (Williams et al., 2012). ............................... 100 

 

 

 

 

 



xvii 

 

Figure B.3: A comparison of the variation of the first moment 𝑀1 as a function of 

temperature for PDPC/PSM-d31 (1:1 mol) () and PDPC-d31/eSM/chol 

(1:1:1 mol)  (●) (top panel); and for PDPC/PSM-d31 (1:1 mol) (■) and 

PDPC-d31/eSM/chol (1:1:1 mol) (▲) (bottom panel). 𝑀1  is plotted 

logarithmically for clarity. The data for the samples containing PDPC-d31 

are taken from Williams et al. (Williams et al., 2012). ............................... 101 

Figure B.4: 2H NMR spectra for 50 wt% aqueous dispersion in 50 mM Tris buffer (pH 

7.5) of POPC/eSM/chol-d1 (1:1:1 mol) (left column) and PDPC/eSM/chol-

d1 (1:1:1 mol) (right column). Spectra are symmetrized about the central 

frequency to enhance signal/noise. Arrows included in the spectra for 

PDPC/eSM/chol-d1 illustrate the resolution of signals assigned to the 3α 

group on chol-d1 in SM-rich (outer splitting) and PC-rich (inner splitting) 

domains. Spectra are symmetrized about the central frequency to enhance 

signal/noise. ................................................................................................. 102 

Figure B.5: 2H NMR spectra for 50 wt% aqueous dispersion in 50 mM Tris buffer (pH 

7.5) of POPC/eSM/chol-d1 (1:1:1 mol) (left column) and PDPC/eSM/chol-

d1 (1:1:1 mol) (right column). Spectra are symmetrized about the central 

frequency to enhance signal/noise. Arrows included in the spectra for 

PDPC/eSM/chol-d1 illustrate the resolution of signals assigned to the 3α 

group on chol-d1 in SM-rich (outer splitting) and PC-rich (inner splitting) 

domains. Spectra are symmetrized about the central frequency to enhance 

signal/noise. ................................................................................................. 103 

 

  



xviii 

 

ABSTRACT 

Author: Kinnun, Jacob Jerald. PhD 

Institution: Purdue University 

Degree Received: August 2018 

Title: Solid-State NMR Spectroscopy Applied to Model Membranes: Effects of 

Polyunsaturated Fatty Acids 
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Omega-3 polyunsaturated fatty acids (n-3 PUFAs) relieve the symptoms of a wide variety 

of chronic inflammatory disorders. Typically, they must be obtained in the diet from 

sources such as fish oils. Docosahexaenoic acid (DHA) is one of these n-3 PUFAs. As yet 

the structural mechanism responsible for the health benefits within the body is not 

completely understood. One model that has emerged from biochemical and imaging studies 

of cells suggests that n-3 PUFAs are taken up into phospholipids in the plasma membrane. 

Thus the focus here is on the plasma membrane as a site of potential structural modification 

by DHA. Within cellular membranes, the huge variety of molecules (called lipids) which 

constitute the membrane suggest inhomogeneous mixing, thus domain formation. One 

potential domain of interest is called the lipid raft, which is primarily composed of 

sphingomyelin (SM) and cholesterol (chol). Here the molecular organization of [2H31]-N-

palmitoylsphingomyelin (PSM-d31) mixed with 1-palmitoyl-2-

docosahexaenoylphosphatylcholine (PDPC) or 1-palmitoyl-2-oleoylphosphatidylcholine 

(POPC), as a monounsaturated control, and cholesterol (chol) (1:1:1 mol) in a model 

membrane was examined by solid state 2H NMR spectroscopy. 

 

Solid state 2H NMR spectroscopy extracts details of molecular orientation and anisotropy 

of molecular reorientation by analysis of the lineshape. This essentially non-invasive 

technique allows for a direct measurement of dynamics in bulk materials which has been 

extensively applied to biological materials. It is a niche area of NMR for which standard 

software often lack necessary features. Two software programs, “EchoNMR processor” 

and “EchoNMR simulator”, collectively known as “EchoNMR tools”, that were developed 

to quickly process and analyze one-dimensional solid-state NMR data, will be described 

along with some theoretical background of the techniques used. EchoNMR tools has been 
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designed with a focus on usability and the open-source mindset.  This is achieved in the in 

the MATLAB® programming environment which allows for the development of the 

graphical user interfaces and runs as an interpreter which allows the code to be open-source. 

The research described here on model membranes demonstrates the utility of the software. 

 

The NMR spectra for PSM-d31 in mixtures with PDPC or POPC with cholesterol were 

interpreted in terms of the presence of nano-sized SM-rich/chol-rich (raft-like) and PC-

rich/chol-poor (non-raft) domains that become larger when POPC was replaced by PDPC. 

An increase in the differential in order and/or thickness between the two types of domains 

is responsible. The observation of separate signals from PSM-d31, and correspondingly 

from [3α-2H1]cholesterol (chol-d1) and 1-[2H31]palmitoyl-2-

docosahexaenoylphosphatidylcholine (PDPC-d31), attributed to the raft-like and non-raft 

domains enabled the determination of the composition of the domains. Most of the SM 

(84%) and cholesterol (88%) was found in the raft-like domain. There was also a 

substantial amount of PDPC (70%) in the raft-like domain that appears to have minimal 

effect on the order of SM. PDPC molecules sequestering into small groups to minimize the 

contact of DHA chains with cholesterol is one possible explanation that would also have 

implications on raft continuity. These results refine the understanding of how DHA may 

modulate the structure of raft domains in membranes.
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 BIOLOGICAL MEMBRANES 

1.1 General Membrane Properties and Structure 

One central aspect of life is that it requires a barrier to isolate and distinguish itself from 

its environment. Single celled organisms to multi-cellular animals all contain 

semipermeable barriers, called cellular membranes, of approximately 3 nm in thickness 

(van Meer, Voelker, & Feigenson, 2008). These membranes are composed of a group of 

amphiphatic molecules called lipids, that form a bilayer when dispersed in water because 

they have a head group region which is polar and an acyl chain region which is non-polar 

(Alberts et al., 2002). In nature lipid bilayers provide a structure for membrane proteins to 

reside and help regulate the flow of molecules in and out of the cell (Alberts et al., 2002). 

Within cells, the Golgi apparatus and the endoplasmic reticulum are collections of these 

lipid bilayers which aid in protein folding and protein insertion to the membrane (Farquhar 

& Palade, 1981). That environment is not dissimilar from the multilamellar vesicle 

environment (MLV) depicted in Figure 1.1, which consists of concentric lipid bilayers 

separated by an aqueous layer. Interestingly it has been shown that membrane thickness 

and tension modulates the activation of proteins (Brown, 2012; Gullingsrud & Schulten, 

2004). With the many roles cellular membranes perform, it is difficult to overstate their 

importance in relation to biology. 

 

The ability of lipids to form membranes is due to hydrophilic and hydrophobic interactions 

with water. Water molecules, due to their polarity, are very cohesive which results in water 

having a high surface tension (Pallas & Harrison, 1990). This also results in water 

excluding any molecules with a lack of polarity. Lipids, for the most part, have polar head 

groups but non-polar tails. This results in an interface between the water and the head 

groups with the tails excluded away (Tanford, 1980). There are a multitude of 

configurations which will allow for the packing of the lipid tails away from the water but 

the most common is the bilayer phase. This can occur in single bilayers (unilamellar 

vesicles) or, as shown in Figure 1.1, stacks of bilayers (multilamellar vesicles). In 

physiological temperatures often the lipids can laterally diffuse along these bilayers 
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(Nicolson, 2014). Thus cellular membranes are referred to as smectic liquid crystals, as 

they are liquid in the lateral direction and form crystalline stacks in a local normal direction 

(de Gennes, 1974).   I use the term “local normal” as the soft nature of lipid bilayers results 

in the crystalline stacks becoming uncorrelated at long distances (Chaikin & Lubensky, 

1995). 

 

Before the early 1970’s there were many competing models for membrane structure. Many 

suggested it was proteins which composed the primary constituent. However, it was the 

fluid mosaic model, coined by S. H. Singer and G. L. Nicolson, that suggested, at bare-

minimum, cellular membranes were composed of lipids, with potentially embedded 

proteins, in the smectic liquid-crystalline phase (Nicolson, 2014). In modern times we have 

evidence of lateral inhomogeneity in terms of domain formation (Lingwood & Simons, 

2010) and potential biological relevance for other phases (Jouhet, 2013) which were not 

considered in the original fluid mosaic model. Despite this, the model establishes a 

framework to build upon and discuss liquid-crystalline aspects of the membrane. 

 

As liquid crystals are quantified by the analysis of order, they are often described in terms 

of an order parameter, 𝑆: 

𝑆 = 〈
3𝑐𝑜𝑠2𝜃 − 1

2
〉 (1.1) 

where 𝜃 is the angle between the liquid-crystalline molecular axis and the local normal 

which is time averaged (Chaikin & Lubensky, 1995). For isotropic motion, which occurs 

in liquids, this parameter is reduced to zero. If the molecules are motionless and aligned 

such that 𝜃 = 0, such as the case for many crystals, the order parameter is one. Thus the 

order parameter is particularly useful in parameterizing the liquid-crystalline properties of 

materials, such as lipid bilayers. 

 

As opposed to dynamics, with liquid-crystals the structural properties of lipids can be 

discussed in terms of a unit cell shown in Figure 1.2 (Kinnun, Mallikarjunaiah, Petrache, 

& Brown, 2015). Similar to attributing an average volume per molecule as one would do 

for a gas, we can attribute an average cross-sectional area per lipid, 〈𝐴〉, perpendicular to 
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the smectic phase normal. Then we can partition the interlamellar repeat spacing (𝐷) into 

three parts: the water spacing (𝐷𝑤) occupied by water, the length occupied by a lipid head 

group (𝐷ℎ), and the average length occupied by lipid chains (𝐷𝑐 ), which is called the 

hydrocarbon thickness.  The associated volume for each partition can be found by 

multiplying the area per lipid by the associated length. 

 

Interestingly for small environmental perturbations around physiological temperatures the 

chain group volume, 𝑉𝑐, is conserved (Petrache, Dodd, & Brown, 2000). This is due to the 

volume of the individual methylene groups and terminal methyl groups, that primarily 

compose lipid chain groups, being only slightly affected due to perturbations in the 

environment. This concept is particularly useful in making predictions on membrane 

structure if we have an idea of chain dynamics. Typically, the more ordered the chain is 

the less area it projects to the surface and the thicker in the membrane it is. This is 

exemplified in equation 1.2 with the help of equations 1.3 and 1.4 (Petrache et al., 2000). 

𝑉𝑐 = 𝐷𝑐〈𝐴〉 (1.2) 

Equivalently, the volume of a chain region is also proportional to the volume of the 

methylenes and terminal methyls for each chain of a lipid: 

𝑉𝑐 = (𝑛1𝑐 + 1)𝑉𝐶𝐻2
+ (𝑛2𝑐 + 1)𝑉𝐶𝐻2

(1.3) 

where 𝑛1𝑐 is the number of carbons of the first lipid chain and 𝑛2𝑐 is the number of carbons 

of the second lipid chain and 𝑉𝐶𝐻2
 is the methylene volume. Here there are two assumptions. 

First that the volume of a terminal methyl is twice that of a methylene (Petrache, Feller, & 

Nagle, 1997). The second assumption is that neither chain has double bonds, which is not 

frequently the case (van Meer et al., 2008). For the last ingredient, the methylene volume 

can be approximated as: 

𝑉𝐶𝐻2
≅ (26.5 Å3) + (0.0325  Å3 C⁄ )𝑇 (1.4) 

where 𝑇 is the temperature in Celsius. 

 

Despite the approximations, the combination of the preceding three equations remain 

useful. For example, it is common to have one saturated chain, and in this case you can 

consider a single chain volume by only considering half of equation 1.3. It is also possible 
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to modify equation 1.4 by taking away methylene groups and incorporating the volume of 

the unsaturated groups.  

 

It is important to note that the structure and dynamics of liquid-crystals can be intimately 

related. For example, it often suffices to describe the structure of a liquid-crystalline 

molecule, or part of, in terms of a average projected length: 〈𝐷〉 = 𝐷𝑚〈𝑐𝑜𝑠𝜃〉 where 〈𝐷〉 is 

the time-average projected length, 𝐷𝑚 is the maximum projected length of the molecule, 

and again 𝜃 is the angle between the liquid-crystalline molecular axis and the local normal. 

Often 〈𝑐𝑜𝑠𝜃〉 can be determined from the order parameter in equation 1.1 and a statistical 

model (Petrache et al., 2000; Petrache, Tu, & Nagle, 1999). In general as the order 

parameter approaches zero, as does 〈𝑐𝑜𝑠𝜃〉 . Thus as a lipid bilayer becomes more 

disordered, the thinner it becomes as the projected length reduces, limited by volumetric 

constraints. Regardless of the groups, the volumes do not vary greatly around physiological 

temperatures as shown by equation 1.4. Thus one can take 𝑉𝑐 to be approximately constant 

and make inferences on membrane area with equation 1.2 (Petrache et al., 2000). If a 

disordered lipid bilayer is thinner, then via equation 1.2, the area per molecule tends to 

increase. 

1.2 Anatomy of a Lipid 

In general lipids need at least two chemical groups where one has the property of being 

polar and the other apolar. Often these groups are linked together by a backbone (linker) 

such as glycerol. Glycerophospholipids, which have this linker and a head group based on 

a phosphate molecule, are the most common lipid found in nature (McKee & McKee, 2015). 

Although these lipids come with a wide variety of chain groups, two common chains are 

the saturated palmitoyl with 16 carbons (16:0) and mono-unsaturated oleoyl with 18 

carbons (18:0) as shown in Figure 1.3. Together with the head group of phosphocholine 

they form the lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, 16:0-18:1). 

POPC is one of the most common lipids found in nature and therefore makes a good 

reference point when studying other lipids (van Meer et al., 2008). 

 



5 

 

Another biologically important group of lipids are the sphingolipids based on the 

sphingosine back bone, again shown in Figure 1.3. They were discovered in the myelin 

sheath that cover some nerve cells but also found in most animal cell membranes (McKee 

& McKee, 2015). Interestingly, there is increasing evidence, some which I will show later, 

that show they can segregate from other lipids (Edidin, 2003) and form domains which are 

called rafts. 

 

Biology is complex as it need not be efficient but sufficient, therefore there are many other 

lipids which do not obey the structural motif I have outlined. Cholesterol and alpha-

tocopherol (vitamin E), also shown in Figure 1.3, are mostly apolar but have a polar 

hydroxide group, thus satisfying the amphiphilic nature of a lipid. Many other lipid-soluble 

vitamins and hormones have similar motifs with ring structures and hydroxide groups. 

Even though they obey a different motif they can be just as important as the phospholipids 

themselves. In fact, in some membranes, cholesterol can be one to one with the 

phospholipids in composition (Cooper, 2000). 

 

The last structural group of many lipids that I would like to point out are the hydrocarbon 

chains. They can be of different carbon lengths and double bond count (called unsaturation 

as it reduces the hydrogen content). The chain length and saturation plays an important role 

in the phase and structural role of the membrane. When referring to specific sites on the 

chain, the typical numbering scheme begins from the oxygen-containing carbonyl and 

increases down the chain to the methyl. Numbering schemes which start at the methyl are 

denoted by n or omega (ω). Chains of multiple double bonds, polyunsaturated fatty acids 

(PUFAs), are of particular importance and thus interest. For example a lack of dietary 

intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been associated with 

inflammatory diseases such as inflammatory bowel disorder, cardiovascular disease, 

rheumatoid arthritis, nonalcoholic fatty liver disease and other diseases such as obesity and 

Alzheimer’s disease (Calder, 2013; Patterson, Wall, Fitzgerald, Ross, & Stanton, 2012). 

These omega-3 fatty acids are characterized by having their last double bond 3 carbons 

away from the terminal (omega) methyl of the hydrocarbon chain. Humans cannot 

synthesize these fatty acids but must obtain them from the diet such as from fish oils where 
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docosahexaenoic acid is a major constituent (DHA, 22:6) (W. S. Harris et al., 2009; 

Kučerka et al., 2010; Lingwood & Simons, 2010; Shaikh, Brzustowicz, Gustafson, 

Stillwell, & Wassall, 2002; Soubias & Gawrisch, 2007; Yaqoob & Shaikh, 2010) as shown 

in Figure 1.3. Given that dietary intake of n-3 PUFAs alter the membrane composition of 

living animals (Abbott, Else, Atkins, & Hulbert, 2012), it has been suggested that the effect 

of n-3 PUFAs on health is, in part, membrane mediated  (Shaikh, Kinnun, Leng, Williams, 

& Wassall, 2015; Stillwell & Wassall, 2003; Wassall & Stillwell, 2008; Yaqoob & Shaikh, 

2010). Given that membrane composition is affected by dietary n-3 PUFAs, they have the 

potential to affect the structure of the lipid membrane which is under investigation here. 

1.3 Lipid Dynamics and Phase Behavior 

In their physiological form, cellular membranes are most often in their liquid-crystalline 

state, called the liquid disordered state (𝐿𝑑). In this state, the lipid chains undergo rapid 

isomerizations about C-C bonds and the lipids can diffuse. This allows liquid-crystalline 

structures to be more dynamical and flexible than normal solids. Typically, adjacent 

membranes attract each other due to van der Waals forces, however due to their soft nature 

the bilayers undergo fluctuations, called undulations, and can repulse each other in close 

ranges (Israelachvili & Wennerström, 1992). 

 

I described the lipid bilayer as a liquid crystal, but the lipids do not diffuse as a 2D liquid 

for all temperatures nor physiological conditions. If we cool lipids below normal 

physiological temperatures, they can enter the gel state, where the rapid isomerizations are 

greatly reduced, which is a smectic-C liquid crystal (Janiak, Small, & Shipley, 1979). 

Interestingly the diffusion of the lipids has stopped but the solute, which is typically mostly 

water, can still be in its liquid form. Thus the liquid-crystalline style of nomenclature is 

often used. More commonly, and here, this phase is referred to as a solid ordered (𝑆𝑜) phase. 

 

With cholesterol, lipid chain motion can be restricted but the lipids can still diffuse. Lipid 

chain motion is restricted due to the influence of cholesterol’s rigid sterol ring. Samples 

with cholesterol also are known to have very broad phase transitions, which implies that 

cholesterol reduces the interaction thus cooperativity between lipids (McKersie & 
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Thompson, 1979). This is not surprising as one can imagine cholesterol acting as a spacer 

between lipids, thus reducing their interaction. Since the lipids can diffuse but the chains 

are ordered in this phase, this is referred to as a liquid ordered phase (𝐿𝑜). 

1.4 Phase Segregation 

As mentioned, physiological membranes contain a large variety of lipids. Some lipids such 

as palmitoyl sphingomyelin (PSM) have a 𝑆𝑜 to 𝐿𝑑 phase transition (sometimes called a 

melting temperature) above the average core body temperature, while other lipids, such as 

POPC have this phase transition below. Thus in some mixed-lipid membranes phase 

segregation can occur, where some parts of the membrane are in one phase and the rest in 

another. The potential physiological importance of phase segregation is the subject of 

intensive research (Edidin, 2003). 

 

The prime candidate for phase segregation in physiological membranes are call raft 

domains, or just rafts for short (I. Levental, Grzybek, & Simons, 2010). These rafts are 

primarily composed of sphingomyelin and cholesterol (Stillwell, 2013; Wassall & Stillwell, 

2008) and can potentially be up to 1 micron in diameter but as of yet there is no consensus 

(Edidin, 2003). They tend to be quite ordered, in a 𝐿𝑜 phase, compared to the rest of the 

membrane which is in a 𝐿𝑑 phase (Shaikh, Kinnun, et al., 2015). As lipid volume tends to 

be preserved, ordered acyl chains produce thicker membranes; thus rafts tend to be thicker 

than the surrounding membrane. Studies show these rafts contain signaling proteins, thus 

modifications of their structure are of biological importance (I. Levental et al., 2010; 

Shaikh, 2012; Shaikh, Wassall, Brown, & R. Kosaraju, 2015; Simons & Toomre, 2000). 

 

In natural systems there are likely many causes for domain formation, where the 

importance of each is under debate (Almeida, Pokorny, & Hinderliter, 2005). Here I will 

discuss two causes which have received attention: domain thickness mismatch and 

cholesterol preference. Domain formation can be discussed terms of unfavorable 

interaction between domains. That is, there is an energy cost per length of contact between 

domains. This has the units of force and is given the name: line tension (𝜆). You can 

imagine the line tension as a lasso whose force pulls like lipids together (McConnell, 1991). 
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The most energetically favorable state has all of the domain-forming lipids in one circular 

domain which minimizes its contact with the surroundings. However, this is only one 

configuration of lipids and thus entropically improbable. Therefore, thermal fluctuations 

often oppose excessively large domains. Electrostatics and volumetric exclusion can also 

cause lipids to repel as well (Kuzmin, Akimov, Chizmadzhev, Zimmerberg, & Cohen, 

2005). However, I will focus on two potential causes of line tension thus domain formation 

as opposed to lipid repulsion. 

 

One of the most studied forms of line tension is due to thickness mismatch between 

domains. For the membrane to compensate between different thicknesses, where an 

ordered domain has a larger thickness of ℎ𝑜  and the disordered domain has a smaller 

thickness of ℎ𝑑, each monolayer leaflet undergoes strain at the domain boundaries. This is 

an energy cost which is proportional to the length of the boundary. Thus this generates a 

line tension as given by equation 1.5:  

𝜆 = (
𝛿2

ℎ0
2)

√𝐵𝑑𝐾𝑑𝐵𝑜𝐾𝑜

√𝐵𝑑𝐾𝑑 + √𝐵𝑜𝐾𝑜

− (
1

2
)

(𝐵𝑑𝐽𝑑 − 𝐵𝑜𝐽𝑜)2

√𝐵𝑑𝐾𝑑 + √𝐵𝑜𝐾𝑜

(1.5) 

where 𝛿 = ℎ𝑜 − ℎ𝑑 ,  ℎ0 = (ℎ𝑜 + ℎ𝑑) 2⁄ , 𝐵  is the elastic splay modulus, 𝐾  is the tilt 

modulus, and 𝐽 is the spontaneous curvature for each domain respectively (Kuzmin et al., 

2005). In general the stiffer each domain is (thus larger 𝐵 and 𝐾) the larger the line tension 

is thus larger domain formation. However spontaneous curvature has the opposite effect. 

Lipids that can form curved phases can relieve stresses at the domain boundaries thus 

reducing line tension. 

 

Concerning rafts and other natural membranes, cholesterol seems to be very important in 

domain formation (Engberg, Hautala, et al., 2016; Veatch & Keller, 2003b). Most 

compositions which reveal large-scale domains in lipid membranes contain cholesterol 

(Veatch & Keller, 2003b; Veatch, Polozov, Gawrisch, & Keller, 2004). What makes 

cholesterol interesting is that most of it is locked in a rigid ring structure (see Figure 1.3). 

Because of this, it is believed that cholesterol has unfavorable interactions with disordered 

lipids (Shaikh, Kinnun, et al., 2015). Remember that unfavorable interactions generate line 

tension. One reason for this unfavorable interaction is that it is entropically costly for a 
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disordered lipid to orderly pack around a rigid cholesterol molecule (Almeida et al., 2005). 

Therefore cholesterol is entropically driven towards more ordered lipids, such as 

sphingomyelin, where entropic costs of ordering is less (Wassall & Stillwell, 2008). Some 

authors have even argued that cholesterol preference may be the primary driving force in 

biological domain formation (Lin et al., 2016). 

 

The story of domain formation in natural membranes may be a synergistic one. Typically 

studies which look at hydrophobic mismatch increasing domain size also contain 

cholesterol (Heberle et al., 2013). Conversely, studies which look at cholesterol in forming 

domains also tend to find that increasing thickness mismatch between domains increases 

domain size (Veatch & Keller, 2003b). While segregated into a domain, the ordering effect 

of cholesterol should not be discounted as it increases domain thickness (Bunge, Müller, 

Stöckl, Herrmann, & Huster, 2008). This ordering effect could accentuate the thickness 

mismatch, therefore synergistically producing larger domains. 

 

The importance of cholesterol preference leads to a possible role of n-3 PUFAs in living 

organisms. These n-3 PUFAs have repeating =CH-CH2= segments within which the energy 

barrier to rotation about C-C bonds is extremely shallow (Feller, Gawrisch, & MacKerell, 

2001). Thus n-3 PUFAs are incredibly disordered and very dissimilar to raft-like domains 

(Wassall & Stillwell, 2008), which leads to a very low cholesterol preference. This idea is 

consistent with the experimental observation that n-3 PUFAs increase the size of raft 

domains (Georgieva et al., 2015; Soni et al., 2008; Williams et al., 2012).  

 

Interestingly a difference in head groups between n-3 PUFA containing phospholipids 

yield different domain forming properties. In general n-3 PUFAs with 

phosphoethanolamine (PE) head groups form smaller domains than with a phosphocholine 

(PC) head group (Shaikh, Kinnun, et al., 2015; Shaikh, LoCascio, Soni, Wassall, & 

Stillwell, 2009; Soni et al., 2008; Williams et al., 2012). This could be due to the smaller 

PE (in terms of area) head group producing thicker lipid chains (see equation 1.2) thus 

reducing the line tension with the raft domain (see equation 1.5). Further, it has been shown 

that DHA with a PC head group when added to model raft-like systems can enter raft 
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domains (Williams et al., 2012). The question of how it modifies the structure of these 

domains is of importance and will be addressed here using solid state 2H NMR 

spectroscopy. 
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Figure 1.1: A depiction of lipid bilayers in the multi-lamellar vesicle arrangement (MLV) 

with water denoted by blue spheres. 
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Figure 1.2: Structural parameters for a liquid-crystalline lipid membrane. Locally in the 

MLV phase, the bilayers repeat in stacks in intervals of the lattice repeat spacing, 𝐷, which 

can be further divided into the water spacing, 𝐷𝑤, the lipid head group spacing, 𝐷ℎ, and 

the lipid chain spacing, 𝐷𝑐 . Given an average area per lipid, 〈𝐴〉, these divisions have 

corresponding volumes of 𝑉𝑤, 𝑉ℎ, and 𝑉𝑐.  
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Figure 1.3: Some common chemical groups in the composition of lipids. The polar nature 

of phosphocholine (PC), phosphoethanolamine (PE), and phosphoserine (PS) is ubiquitous 

for lipid head groups (top). This is satisfied by the hydroxide group for cholesterol and 

vitamin E (right). The polar head groups listed are linked to hydrocarbons by a backbone 

group (middle). Glycerol can link two lipid chains while the sphingosine group has room 

for one. In general lipid chains are of various lengths and various number of double bonds 

as shown with the palmitoyl, oleoyl, and docosahexaenoyl chains (bottom). 
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 SOLID-STATE NUCLEAR MAGNETIC 

RESONANCE 

2.1 Introduction 

Solid-state nuclear magnetic resonance (NMR) has found wide application in many 

scientific fields where interactions in condensed matter must be considered. Such research 

areas range from determination of molecular structure and dynamics of crystals (Pake, 

1948)  and powders (Kinnun, Leftin, & Brown, 2013) as well as studying living systems 

(Pius, Morrow, & Booth, 2012). As this technique observes the nuclei of atoms it is 

relatively biologically non-invasive. This allows NMR to be particularly useful in studying 

biological membranes. The application of solid state 2H NMR spectroscopy to study the 

molecular organization in lipid bilayers was the focus of this research. Here the chief 

features of the theory will be summarized. 

 

Many nuclei have angular momentum which is called spin which can be manipulated using 

a magnetic field. Here, I will use NMR notation for the angular momentum operators 

(where an operator is denoted by a hat), which correspond to the traditional operators in 

this sense: 𝐼𝑍 = 𝐽𝑍/ℏ and 𝐼2 = 𝐽2/ℏ2, where ℏ = ℎ/2𝜋 and ℎ is Planck’s constant (Levitt, 

2008). An atom such as hydrogen, which has only one proton, has a total nuclear spin 

quantum number of 𝐼 = 1/2. If I consider the deuterium nucleus, which has one proton and 

one neutron, the total spin quantum number (𝐼 = 1/2 + 1/2) is 1.  Each of these angular 

momentum quantum numbers corresponds to a degeneracy of states described by the 

magnetic quantum number 𝑚. According to basic principles of quantum mechanics, the 

values of the projection quantum number,  𝑚, range from – 𝐼 to 𝐼 in integer steps. For 

example, nuclei with a spin 𝐼 of 1/2 have 𝑚 values of –1/2 and 1/2, and nuclei with spin of 

1 have three values of 𝑚 = –1, 0, and 1.  This degeneracy of states can be lifted when a 

static magnetic field (𝑩𝟎) is applied to the spin system resulting in (2𝐼 +1) non-degenerate 

states, as shown in Figure 2.1 for a spin-one nucleus.  This is the Zeeman effect. 
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The utility of NMR spectroscopy arises from the characteristic frequency of the quantized 

energy transitions between the nuclear spin states of the sample. I will use the Schrödinger 

equation to solve for the Zeeman energy eigenstates: 

𝐻̂𝑍|𝐼, 𝑚⟩ = 𝐸𝑚|𝐼, 𝑚⟩ (2.1) 

where the spin wave function is designated as |𝐼, 𝑚〉 . The Zeeman Hamiltonian is 

proportional to the spin angular momentum operator (Griffiths, 2005): 

𝐻̂𝑍 = −𝛾𝐵0𝐼𝑍 = 𝜔0𝐼𝑍 (2.2). 

Here 𝜔0 = 2𝜋𝜈0  is the Larmor frequency and is equal to −𝛾𝐵0 , where 𝛾  is the 

gyromagnetic ratio.  The gyromagnetic ratio is the nuclear magnetic moment divided by 

its angular momentum (𝛾 = |𝜇⃑|/|𝐽|).  In NMR it reveals how much angular momentum 

can be generated given an amount of magnetic field.  

 

To solve this eigenvalue problem, the angular momentum eigenvalue relations will be used 

(Griffiths, 2005), as shown in equations 2.3 and 2.4: 

𝐼𝑍|𝐼, 𝑚〉 = 𝑚|𝐼, 𝑚〉 (2.3) 

and 

𝐼2|𝐼, 𝑚〉 = 𝐼(𝐼 + 1)|𝐼, 𝑚〉 (2.4). 

The solution to the eigenvalue problem in equation 2.2, with substitution of equation 2.3: 

𝐸𝑚 = −𝛾ℏ𝐵0𝑚 = 𝑚ℏ𝜔0 (2.5) 

where 𝐸𝑚 are the Zeeman energy eigenvalues. 

 

Transitions between spin energy states (see Figure 2.2) are observed in NMR spectroscopy, 

and for this the radiofrequency of the electromagnetic radiation that is absorbed within the 

spin system must be determined. The Bohr frequency condition (Griffiths, 2005) equates 

the frequency of the transition to the energy gap between adjacent levels (for single 

quantum transitions): 

ℎ𝜈 = ∆𝐸 = 𝐸𝑚+1 − 𝐸𝑚 (2.6). 

By combining equations 2.5 and 2.6, the frequency for the transition corresponding to the 

Zeeman effect is found to be: 

𝜈0 =
𝜔0

2𝜋
= −

𝛾𝐵0

2𝜋
(2.7) 
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where 𝜈0  is Larmor frequency, which is observed directly in NMR spectroscopy. The 

Larmor frequency itself gives us information on nuclear precession while deviations from 

it gives us more information about molecular interactions in the sample. Interactions of the 

nucleus with field gradients result in such deviations and provide further information of 

the electromagnetic environment at the nucleus. This can be used to determine molecular 

structure and dynamics. 

2.2 Field Gradient Interactions 

Electric and magnetic field gradients are the result of spatially varying fields, which can be 

described as the curvature of a potential surface.  Dipolar nuclei may interact with a 

magnetic field gradient generated by another dipolar nucleus (dipolar coupling). While 

quadrupolar nuclei may interact with the electric field gradient due to the distribution of 

electrons around them (quadrupolar coupling). 

 

To account for the nuclear coupling to field gradients, a perturbing tensor interaction 

Hamiltonian (𝐻̂𝜆) is added to the Zeeman Hamiltonian (see Figure 2.2). 

𝐻̂ = 𝐻̂𝑍 + 𝐻̂𝜆 (2.8) 

Here 𝜆 designates whether the dipolar coupling (𝜆 = 𝐷) or quadrupolar coupling (𝜆 = 𝑄) 

is being considered. Note that 𝐻̂𝜆  is a perturbing term, so the main magnetic field 

interaction should be much greater than the field gradient interaction (high-field limit). In 

NMR spectroscopy this is typically achieved with superconducting magnets 

(electromagnets may be sufficient as well (Klein, 1990)).  Since field gradients can vary in 

three dimensions, they are represented as a field gradient tensor 𝑽 (as shown in Figure 2.3). 

In general, the coupling Hamiltonian can be written as the dot product of the angular 

momentum tensor (𝑻̂) with the field gradient tensor (𝑽) together with a coupling constant 

𝐶𝜆 (Spiess & Steigel, 1978). 

𝐻̂𝜆 = ℏ𝐶𝜆𝑻̂ ∙ 𝑽 (2.9) 

For a spin-one interaction, the dipolar coupling parameter is 𝐶𝐷 = −2𝛾𝐼𝛾𝑆ℏ , and the 

quadrupolar coupling parameter is 𝐶𝑄 = 𝑒𝑄/2ℏ. Here 𝛾𝐼 and 𝛾𝑆 are the two magnetogyric 

ratios for the coupling nuclei (we denote their spins as 𝐼  and 𝑆̂  respectively), 𝑄  is the 
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quadrupole moment, and e is the elementary charge. Such spin-one interactions may be 

two spin-one-half nuclei in dipolar coupling or a spin-one nucleus in quadrupolar coupling. 

The form of the angular momentum tensor and field gradient tensor varies, depending on 

whether the Cartesian or spherical basis is considered. Each has its benefits and I will 

discuss both. 

2.3 Cartesian Basis 

In the Cartesian basis, the elements of the angular momentum tensor are as follows: 

𝑇̂𝑗𝑘 =
3

2
(𝐼𝑗𝑆̂𝑘 + 𝐼𝑘𝑆̂𝑗) − 𝛿𝑗𝑘𝑰̂ ∙ 𝑺̂ (2.10) 

were the indices 𝑗 and 𝑘 are the Cartesian directions of x, y, and z (thus 𝑻̂ is a three-by-

three matrix) (Spiess & Steigel, 1978). In equation 2.10, the angular momentum operators 

of the interacting nuclei are respectively written as 𝐼 and 𝑆̂.  In the case of quadrupolar 

coupling, where coupling is due to electric field gradients, 𝐼 = 𝑆̂. 

 

The principal axis system (PAS) is defined as the coordinate system in which the field 

gradient tensor is diagonal. For deuterium bonded to carbon, the z-axis of this coordinate 

system is parallel to the carbon-deuterium bond vector. This is different from the laboratory 

frame (LAB), which is defined by the direction of the main magnetic field. To relate the 

principal axis system to the laboratory frame requires a similarity transform, however as 

shown later closure may be used in the spherical basis to simplify the transformation. The 

field gradient tensor in the principal axis system has the diagonal form, 

𝑽PAS = (

𝑉𝑥𝑥
PAS 0 0

0 𝑉𝑦𝑦
PAS 0

0 0 𝑉𝑧𝑧
PAS

) (2.11) 

Here the convention that |𝑉𝑧𝑧
PAS| ≥ |𝑉𝑦𝑦

PAS| ≥ |𝑉𝑥𝑥
PAS| is used (Abragam, 1961).  Note that 

the 𝑉𝑖𝑖
PAS  components of the tensor are not electric or magnetic potentials, but second 

derivatives of the potential (𝑉𝑖𝑗 = 𝜕2𝜙/𝜕𝑥𝑖𝜕𝑥𝑗  where 𝜙  is the potential). Thus they are 

components of the electric field gradient. 
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Since the field gradients are produced by charges and nuclei external to the observed 

nucleus, regardless of the reference frame, the Laplace equation holds: 

∑ 𝑉𝑖𝑖

𝑖

= 𝑉𝑥𝑥 + 𝑉𝑦𝑦 + 𝑉𝑧𝑧 = 0 (2.12). 

We observe the interaction in the laboratory frame, thus we only observe the field gradients 

as they appear in the laboratory frame as depicted in Figure 2.3. With equations 13, 14, and 

15, the Hamiltonian for the quadrupolar interaction in the laboratory frame is expressed 

below: 

𝐻̂𝜆 = ℏ𝐶𝜆[𝑉𝑥𝑥
LAB(3𝐼𝑥𝑆̂𝑥 − 𝑰̂ ∙ 𝑺̂) + 𝑉𝑦𝑦

LAB(3𝐼𝑦𝑆̂𝑦 − 𝑰̂ ∙ 𝑺̂) + 𝑉𝑧𝑧
LAB(3𝐼𝑧𝑆̂𝑧 − 𝑰̂ ∙ 𝑺̂)] (2.13). 

In order for this Hamiltonian to be a perturbation of the Zeeman effect (high magnetic field 

limit) it must commute with the Zeeman Hamiltonian (secular). This allows the application 

of the eigenvalue relations and the Laplace equation to equations 2.8, 2.2, and 2.13 to find 

the energy eigenvalues in the laboratory frame: 

𝐸𝑚 = −𝛾ℏ𝐵0𝑚 +
3

2
ℏ𝐶𝜆𝑉𝑧𝑧

LAB𝑚2 (2.14). 

The differences between the energy states give rise to the observable transition frequencies. 

In the case of a quadrupolar spin-1 interaction, there are two transitions as shown in 

equations 2.15 and 2.16 and in Figure 2.2. 

𝜈𝑄
+ =

(𝐸−1 − 𝐸0)

ℎ
(2.15) 

𝜈𝑄
− =

(𝐸0 − 𝐸+1)

ℎ
(2.16) 

After inserting the energy eigenvalues, the resulting transition frequencies for a spin-1 

interaction are as follows: 

𝜈𝑄
± = ±

3

4𝜋
𝐶𝜆𝑉𝑧𝑧

LAB (2.17) 

where the ± notation corresponds to the two transitions in equations 19 and 20.  These 

frequency transitions are what are observed in 2H NMR spectra (Kinnun et al., 2013) 

centered about the Larmor frequency. Remember that the field gradients observed are in 

the laboratory frame, and not in the principal axis system. If the principle axis system 

happens to be rotated to match the laboratory frame, only then the field gradient terms may 

be equivalent. The strength of the Cartesian basis is its simple correspondence between 

experimental observables to fundamental interactions.  However, it is not always simple to 
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relate the laboratory frame interactions to the principal axis system frame interactions. This 

task is simpler with a transformation to the spherical basis.  

2.4 Spherical Basis 

In the spherical basis, also known as the irreducible representation (Spiess & Steigel, 1978), 

the tensors can be rewritten with Table 2.1. With equation 2.8 and Table 2.1, the tensor 

interaction Hamiltonian is re-written as: 

𝐻̂𝜆 =
ℏ𝐶𝜆

2
[
𝑉0

(2)LAB

√6
(3𝐼𝑧𝑆̂𝑧 − 𝑰̂ ∙ 𝑺̂) +

1

2
(𝑉−2

(2)LAB
𝐼−𝑆̂− + 𝑉+2

(2)LAB
𝐼+𝑆̂+)] (2.18) 

where 

𝐼±|𝐼, 𝑚〉 =  √(𝐼 ∓ 𝑚)(𝐼 ± 𝑚 + 1)|𝐼, 𝑚〉 (2.19). 

Here 𝐼± and 𝑆̂± are the raising and lowering operators for the respective nuclei (where 𝑆̂± 

has the same corresponding relation as equation 23), and 𝑉𝑚
(2)

 are the irreducible 

components of the field gradient tensor. 

 

In the spherical coordinate system, the field gradient tensor in the principal axis system can 

be transformed to the laboratory frame using the Wigner rotation matrix elements 

𝐷𝑠𝑚
(2)(Ω𝑃𝐿) shown in Table 2.1 via the relation: 

𝑉𝑚
(2)LAB = ∑ 𝑉𝑠

(2)PAS

2

𝑠=−2

𝐷𝑠𝑚
(2)(Ω𝑃𝐿) (2.20) 

Here Ω𝑃𝐿 are the Euler angles (α, β, and γ) and PL indicates a transformation from the 

principal axis system to the laboratory frame.  These Euler angles represent rotations in 

three dimensions and allow the determination of the projection of the principal axis system 

to the laboratory frame (shown in Figure 2.4). 

 

The advantage of using Wigner rotation matrix elements is that they obey a property called 

closure as they are a part of the special orthogonal group in three dimensions, SO(3) 

(Brown, 1996). Just as two rotations of 45o can achieve a 90o rotation, with successive 

rotations via Wigner rotation matrix elements can rotate through different intermediate 
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frames. As an example, the rotation from the principal axis system (P) to the laboratory 

frame (L) can be separated with an intermediate frame (I) using the equation below: 

𝐷𝑠𝑚
(2)(Ω𝑃𝐿) = ∑ 𝐷𝑠𝑟

(2)(Ω𝑃𝐼)𝐷𝑟𝑚
(2)(Ω𝐼𝐿)

𝑟

(2.21). 

If needed, rotation could have been further expanded to include a sequence of intermediate 

frames.  The only condition that must be obeyed is that all of these frames must sequentially 

transform from the initial frame (PAS) to the final frame (designated LAB), thus closure.  

 

Due to the strong external magnetic field (B0) the corresponding 𝑉0
(2)LAB

 component of the 

field gradient tensor is the only one observed in the NMR experiment.  By using equation 

2.21, this component of the laboratory field gradient tensor can be decomposed in terms of 

the principal axis system field gradient tensor elements: 

𝑉0
(2)LAB = 𝑉−2

(2)PAS𝐷−20
(2) (Ω𝑃𝐿) + 𝑉0

(2)PAS𝐷00
(2)(Ω𝑃𝐿) + 𝑉+2

(2)PAS𝐷+20
(2) (Ω𝑃𝐿) (2.22). 

Taking into consideration that only the 𝑉0
(2)LAB

 component is observed in strong magnetic 

fields, the secular part (commutes with the Zeeman Hamiltonian) of the tensor interaction 

Hamiltonian (equation 2.18) can be written with help of table 2.1 as: 

𝐻̂𝜆 =
1

2
ℏ𝐶𝜆𝛿𝜆

PAS(3𝐼𝑧𝑆̂𝑧 − 𝑰̂ ∙ 𝑺̂) [𝐷00
(2)(Ω𝑃𝐿) −

𝜂𝜆
PAS

√6
(𝐷−20

(2) (Ω𝑃𝐿) + 𝐷20
(2)(Ω𝑃𝐿))] (2.23). 

Where 𝛿𝜆
PAS =  𝑉𝑧𝑧

PAS is the largest eigenvalue of the electric field gradient and 𝜂𝜆
PAS =

 (𝑉𝑦𝑦
PAS − 𝑉𝑥𝑥

PAS) 𝑉𝑧𝑧
PAS⁄  is the asymmetry parameter in the principal axis system. Assuming 

a spin-one quadrupolar nucleus such as deuterium, the frequency transitions (with 

equations 2.15 and 2.16) can be solved for: 

𝜈𝑄
± = ±

3𝐶𝜆𝛿𝜆
PAS

4𝜋
[𝐷00

(2)(Ω𝑃𝐿) −
𝜂𝜆

PAS

√6
(𝐷−20

(2) (Ω𝑃𝐿) + 𝐷+20
(2) (Ω𝑃𝐿))] (2.24). 

After substituting the Wigner rotation matrix elements from Table 2.1, equation 2.24 

becomes: 

𝜈𝑄
± = ±

3𝐶𝜆𝛿𝜆
PAS

4𝜋
[

1

2
(3cos2𝛽𝑃𝐿 − 1) −

𝜂𝜆
PAS

2
(cos(2𝛼𝑃𝐿)sin2(𝛽𝑃𝐿))] (2.25) 

which gives a frequency splitting, Δ𝜈𝑄 = 𝜈𝑄
+ − 𝜈𝑄

−, of: 

Δ𝜈𝑄 =
3𝐶𝜆𝛿𝜆

PAS

2𝜋
[

1

2
(3cos2𝛽𝑃𝐿 − 1) −

𝜂𝜆
PAS

2
(cos(2𝛼𝑃𝐿)sin2(𝛽𝑃𝐿))] (2.26). 
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By using spherical coordinates in the irreducible representation, the observed transitions in 

the laboratory frame can be directly related to the field gradients in the principal axis 

system. This will be important when discussing orientational dependence of NMR spectra 

and motional averaging. 

2.5 Static Line Shapes 

The orientation of the external magnetic field in respect to the sample gives the direction 

of quantization of the quadrupolar nucleus. To illustrate how this orientation is observed 

in an NMR line shape, consider a single homogeneous crystal of perfectly aligned 

molecules (and thus the interaction is aligned as well). If the magnetic field is parallel to 

the z-direction of the principal axis system, then the z-direction field gradient component, 

𝑉𝑧𝑧
PAS, is observed (𝑉𝑧𝑧

LAB = 𝑉𝑧𝑧
PAS) as directly shown in Figure 2.5a. Likewise for the x- and 

y-orientations where the 𝑉𝑥𝑥
PAS  or 𝑉𝑦𝑦

PAS  components of the electric field gradient 

respectively (𝑉𝑧𝑧
LAB = 𝑉𝑥𝑥

PAS or 𝑉𝑦𝑦
PAS) would be observed (see Figure 2.5b,c). This allows 

NMR spectroscopy to detect molecular-scale interactions by rotating the material we are 

interested in within the magnetic field.  Remember for deuterium bonded to carbon, the 

largest field gradient in the principal axis system (𝑉𝑧𝑧
PAS) is along the carbon-deuterium 

bond. 

 

The NMR line shape of a randomly-oriented powder has contributions from all orientations, 

as shown in Figure 2.5e and f. The frequency splitting of a powder spectrum is given by 

the components of the electric field gradient, while the amplitude is given by the density 

of states for each orientation. First note that from the equation 16 (the Laplace equation), 

the sum of 𝑉𝑥𝑥
PAS and 𝑉𝑦𝑦

PAS components of the electric field gradient must be of opposite 

sign of 𝑉𝑧𝑧
PAS: 

𝑉𝑧𝑧 = −(𝑉𝑥𝑥 + 𝑉𝑦𝑦) (2.27). 

A general rule of thumb is the stronger the interaction, the less number of orientations that 

correspond to it, and thus the weaker the signal, which will be more obvious in the spherical 

basis (see Figure 2.6e and f). So the 𝑉𝑧𝑧
PAS component of the spectrum will have the greatest 

deviation from the Larmor frequency, and also will be the smallest in amplitude. The next 



22 

 

largest frequency component will be the 𝑉𝑦𝑦
PAS field gradient component, and it will be 

slightly greater amplitude. The smallest frequency component, but the largest amplitude, 

will be the 𝑉𝑥𝑥
PAS component. Finally recall from equations 2.17 and 2.25, that spin-one 

nuclei have two transitions of opposite sign, and thus will show two branches of the 

spectrum superimposed. Importantly, with powders all components of the field gradient 

are simultaneously observed.  See Figure 2.5e for the complete line shape. 

 

The spherical basis has an advantage in determining frequency components off the 

principal axes without difficult similarity transforms.  When the principal axis system is 

parallel with the main magnetic field, 𝛽𝑃𝐿 = 0o, the 𝑉𝑧𝑧
PAS component of the field gradient 

is observed.  Furthermore, when the principal axis system is perpendicular to the main 

magnetic field, 𝛽𝑃𝐿  = 90o, either the 𝑉𝑥𝑥
PAS component of the field gradient is observed 

when 𝛼𝑃𝐿 = 0o, or the 𝑉𝑦𝑦
PAS component when 𝛼𝑃𝐿 = 90o.  If the principal axis system is 

rotated by arbitrary angles, then we can simply insert the angles into equation 29 to find 

the resulting frequency components. 

 

To simplify our lineshape calculations of randomly oriented powders, axial symmetry 

about the z-axis in the principal axis system will be assumed.  This situation applies 

approximately to the C-2H bond vector and is attained by molecules undergoing fast axial 

rotation, which is often the case for lipids in the liquid disordered phase.  The case of an 

axially symmetric field gradients requires: 

𝑉𝑥𝑥
PAS = 𝑉𝑦𝑦

PAS (2.28) 

which from Table 2.1 implies 

𝜂𝜆
PAS = 0 (2.29). 

With use of equations 31, 32 and Table 2.1, I obtain the property: 

𝑉𝑧𝑧
𝑃𝐴𝑆 = −2𝑉𝑥𝑥

𝑃𝐴𝑆 = −2𝑉𝑦𝑦
𝑃𝐴𝑆 = 𝛿𝜆 (2.30). 

Given equations 2.25 and 2.29 with Table 2.1, spin-one frequency transitions simplify to: 

𝜈𝑄
± =

Δ±

2
(3cos2𝛽𝑃𝐿 − 1) (2.31) 

where 
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Δ± = ± (
3

8𝜋
) 𝐶𝑄𝛿𝑄

PAS (2.32). 

 

To generate a lineshape, the angular distribution of a power must be mapped to a frequency 

distribution.  In a randomly-oriented powder, the density over all Euler angles is constant. 

Given a lineshape function 𝑓(𝜈), the area under the curve between two frequencies, 𝜈𝑎 and 

𝜈𝑏, is proportional to the density summed over the corresponding angles, 𝛽𝑎 and 𝛼𝑎 to 𝛽𝑏 

and 𝛼𝑏. Note that the range of frequencies observed for these transitions given any 𝛼 and 

𝛽 is limited by equation 2.25. Furthermore, since the density of states is constant in respect 

to the Euler angles due to random distribution of orientations; summation can be pulled out 

and designated as 𝐶 (with other conversion factors included).  Putting this into an integral 

form gives (Häberlen, 1976): 

∫ 𝑓(𝜈)𝑑𝜈
𝜈𝑏

𝜈𝑎

= 𝐶 ∫ ∫ sin𝛽𝑑𝛽
𝛽𝑏

𝛽𝑎

𝑑𝛼
𝛼𝑏

𝛼𝑎

(2.33). 

Due to axial symmetry, the integral over the 𝛼 angle is a constant, and may be simply 

absorbed into 𝐶. By using equation 2.31, sin𝛽 in terms of 𝜈 can be determined by taking a 

derivative with respect to the angle, which the result in integral form is: 

∫ sin𝛽𝑑𝛽
𝛽𝑏

𝛽𝑎

= ∫
1

√3Δ+

𝑑𝜈

√2𝜈𝑄
+

Δ+ + 1

𝜈𝑏

𝜈𝑎

(2.34).
 

Note that this integral is applicable to both transitions, despite only the positive transition 

being shown. This is due to the fact that the negative sign in the negative transition is 

cancelled. The limits of 𝜈𝑎 to 𝜈𝑎 are determined by the limits of equation 2.31 and will be 

further elaborated upon. Because of this 𝜈 = 𝜈𝑄
+ effectively. Inserting equation 2.34 into 

2.33, given the 𝛼 dependence is absorbed into 𝐶, yields: 

∫ 𝑓(𝜈)𝑑𝜈
𝜈𝑏

𝜈𝑎

= 𝐶 ∫
1

√3Δ+

𝑑𝜈

√2𝜈𝑄
+

Δ+ + 1

𝜈𝑏

𝜈𝑎

(2.35)
 

where recognizing 𝜈 = 𝜈𝑄
+, this implies 

𝑓(𝜈) =
1

√3Δ+

𝑑𝜈

√2𝜈𝑄
+

Δ+ + 1

(2.36)
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and given equation 2.31, this can be written in terms of the angle 𝛽 to be 

𝑓(𝛽) =
𝐶

3Δ+

1

|cos𝛽|
(2.37). 

This determines the lineshape for all orientations, 𝛽, as shown in Figure 2.6a.  Looking at 

the perpendicular components of the spectrum, where 𝛽 = 90° and 𝜈𝑄
± = −Δ±/2, which 

is the lower limit (𝜈𝑎) for 𝜈𝑄
+ and the upper limit (𝜈𝑏) for 𝜈𝑄

−, the line shape becomes a 

singularity.  This can be understood by imagining the Earth.  The equator can theoretically 

correspond to infinitely many places; thus the number of states becomes infinite.  Now at 

the North Pole, there is only one spot where we could achieve this positioning, and there 

is only one state.  This corresponds to the Euler angle of 𝛽 = 0°  with 𝜈𝑄
± = Δ±  and 

according to equations 2.36 and 2.37 this should be the weakest part of the signal amplitude 

given that it is the upper frequency limit (𝜈𝑏) for 𝜈𝑄
+ and the lower limit (𝜈𝑎) for 𝜈𝑄

−. 

Practically samples have a finite number of nuclei thus there is not infinitely many states 

at the equator. 

2.6 Motional Averaging 

2H NMR spectroscopy can be sensitive to the structure and orientation of molecules, but 

the motions of molecules result in motionally averaged field gradients (if occurring near or 

faster than the static coupling constant). Understanding of these dynamics is of great 

importance within condensed matter physics and biophysics, especially in the case of 

biological membranes which have a static and dynamic properties. 

 

To distinguish between rotations of the entire sample, and motions within the molecular 

system, the molecular frame is introduced. The field gradients in this frame are labeled as 

𝑉𝑥𝑥
MOL , 𝑉𝑦𝑦

MOL , and 𝑉𝑦𝑦
MOL . In between the principal axis and the molecular frame, fast 

motions occur which results in motional averaging; while between the molecular frame 

and the laboratory frame molecular orientations result in powder patterns. In general, 

motional averaging can reduce the magnitude of 𝜈𝑄
±, the fraction of which defines an order 

parameter, 𝑆. For axially symmetric tensor interactions (𝑉𝑥𝑥 = 𝑉𝑦𝑦), as shown in Figure 

2.6a, the order parameter in the Cartesian basis is defined as: 
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𝑆𝑃𝑀 ≡
〈𝑉𝑧𝑧

𝑀𝑂𝐿〉

𝑉𝑧𝑧
𝑃𝐴𝑆

(2.38). 

where 〈𝑉𝑧𝑧
𝑀𝑂𝐿〉 is the observed residual field gradient which is reduced due to molecular 

motion. This is compared to the static field gradient interaction of 𝑉𝑧𝑧
𝑃𝐴𝑆. In the most general 

cases, for static powders the maximum value of the order parameter is 1, unless all of the 

molecules are fixed to a particular orientation such as in a crystal. 

 

As an initial example, consider a case of a molecule randomly tumbling in all directions 

(isotropic) such as the behavior of liquids. Effectively all of the electric field components 

are motionally averaged, which requires: 

〈𝑉𝑥𝑥
𝑀𝑂𝐿〉 = 〈𝑉𝑦𝑦

𝑀𝑂𝐿〉 = 〈𝑉𝑧𝑧
𝑀𝑂𝐿〉 (2.39). 

Here the angular brackets 〈 〉 indicate averaging over time.  Remember from the Laplace 

equation (equation 2.12) requires that the x- and y-components must be opposite in sign to 

the z-component, yet equation 2.39 requires all components to be the same.  There is only 

one solution that satisfies these conditions: 

〈𝑉𝑥𝑥
𝑀𝑂𝐿〉 = 〈𝑉𝑦𝑦

𝑀𝑂𝐿〉 = 〈𝑉𝑧𝑧
𝑀𝑂𝐿〉 = 0 (2.40) 

which yields an order parameter of: 

𝑆𝑃𝑀 = 0 (2.41). 

Thus none of the field gradients contribute to the NMR spectrum.  This allows typical 

liquids NMR spectroscopy to see small shifts in main magnetic field (B0) without being 

obfuscated by field gradient contributions. 

 

Next consider the case of motional averaging in the x-z plane of the principal axis system. 

Because of the axial symmetry condition this is also equivalent to motional averaging in 

the y-z plane of the field gradient tensor. Examples of this type of motion are molecules 

that are isomerizing about a bond axis or about a ring. In this case, the observed z-

component of the interaction is averaged with the x-component in the principal axis system. 

Since the x- and z-components are being averaged, the largest non-averaged component is 

the y-component of the principal axis system. By the standard convention, the largest 

component is defined as the z-component, so equation 2.12 yields: 

〈𝑉𝑧𝑧
𝑀𝑂𝐿〉 = 𝑉𝑥𝑥

𝑃𝐴𝑆 = −
1

2
𝑉𝑧𝑧

𝑃𝐴𝑆 (2.42) 
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where according to equation 2.38, the order parameter is: 

𝑆𝑃𝑀 = −
1

2
(2.43). 

Here the planar motion results in the observed frequency splitting being reduced by half as 

shown in Figure 2.6b. 

 

What happens if the motion occurs at some arbitrary angle, or if there are a combination of 

motions? In the Cartesian basis this is a difficult task, however in the spherical basis this 

task is greatly simplified. Using the assumption of axial symmetry and equation 2.22, the 

following equation can be obtained: 

𝑉0
(2)LAB = 𝑉0

(2)PAS𝐷00
(2)(Ω𝑃𝐿) (2.44). 

As in the Cartesian basis, it is useful to distinguish the orientation in the laboratory frame 

of the material and the molecular motions in the material. The property of closure (see 

equation 2.21) and the introduction of the molecular frame as an intermediate frame, 

expands equation 2.44 into: 

𝑉0
(2)LAB = 𝑉0

(2)PAS𝐷00
(2)(Ω𝑃𝑀)𝐷00

(2)(Ω𝑀𝐿) (2.45). 

Here the Euler angles labeled PM are the orientation of the principal axis with respect to 

the molecular orientation, and likewise the Euler angles labeled ML are the orientation of 

the molecules with respect to the laboratory frame. If there are fast motions in the system, 

then the field gradient tensor is averaged. Now in solids, it is typically the case that the 

orientations of the molecules are fixed; however, there may be motion within the molecules 

themselves (between the principal axis and the molecular axis). This results in an averaged 

form of equation 2.45: 

〈𝑉0
(2)LAB〉 = 𝑉0

(2)PAS〈𝐷00
(2)(Ω𝑃𝑀)〉𝐷00

(2)(Ω𝑀𝐿) (2.46). 

In this formalism, molecular motions that average the field gradient tensor and molecular 

orientations which can result in partially-averaged powder lineshapes can be distingiushed. 

In terms of only the motionally averaged part, the order parameter is defined in the 

irreducible representation as: 

𝑆𝑃𝑀 ≡ 〈𝐷00
(2)(Ω𝑃𝑀)〉 =

1

2
〈3cos2(𝛽𝑃𝑀) − 1〉 (2.47). 

For deuterium labeled molecules, the corresponding order parameter is typically defined 

as 𝑆𝐶𝐷 ≡ 1

2
〈3cos2(𝛽) − 1〉, where it is assumed that deuterium is bonded to a carbon atom. 
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Here the frame of reference is typically not stated but it is assumed that the order parameter 

is representative of motional averaging and not a specific orientation of a powder 

distribution (although average orientations due diminish reported order parameters). 

 

In condensed matter and in biophysics, the tetrahedral configuration of atoms is quite 

common.  In this configuration, four atoms are located around a central atom angled at 

109.5o from each other. It is often the case where one of the four atoms is immobilized and 

the other atoms can rotate about that bond—this is called free rotation. In this case, the 

angle between the rotating atoms and the axis of rotation (the molecular axis) is the 

tetrahedral angle (𝛽𝑃𝑀  = 109.5o). Thus the angular distribution is a sharp Dirac delta 

function at 𝛽𝑃𝑀 = 109.5o. With this angle insterted into equation 2.47, the order parameter 

is obtained: 

𝑆𝑃𝑀 = 〈𝐷00
(2)(𝛽𝑃𝑀 = 109.5°)〉 =

1

2
[3cos2(109.5°) − 1] = −

1

3
(2.48). 

The order parameter reveals that the frequency splitting is reduced by one-third as shown 

in Figure 2.6c. Importantly, this demonstrates how different molecular motions yield 

different motional averaging of tensors, and thus they can be distinguished in NMR 

measurements of condensed matter. 

 

Interestingly additional independent motion results in an additional multiplicative order 

parameter. Introducing an intermediate frame, 𝐼, closure from equation 2.24 can be used to 

break up the Wigner rotation matrix element in equation 2.47 into two: 

𝑆𝑃𝑀 ≡ 〈𝐷00
(2)(Ω𝑃𝑀)〉 = 〈𝐷00

(2)(Ω𝑃𝐼)〉〈𝐷00
(2)(Ω𝐼𝑀)〉 = 𝑆𝑃𝐼𝑆𝐼𝑀 (2.49) 

where 𝑆𝑃𝐼 = 〈𝐷00
(2)(Ω𝑃𝐼)〉 and 𝑆𝐼𝑀 = 〈𝐷00

(2)(Ω𝐼𝑀)〉. For example, if there is a methyl group 

undergoing rotation, from equation 2.48 the order parameter is 𝑆𝑃𝐼 = − 1 3⁄ . But if this 

rotating group was also rotating in a plane, from equation 47, the order parameter is  𝑆𝐼𝑀 =

− 1 2⁄ . This yields an observed order parameter of 𝑆𝑃𝑀 = (− 1 3⁄ )(− 1 2⁄ ) = 1 6⁄  as 

shown in Figure 2.6d. Similar combinations of motions are seen in simple molecules 

(Kinnun et al., 2013) and in more-complex molecules such as lipids (Kinnun et al., 2015). 
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2.7 Multi-component Spectra 

Deuterium has a quadrupolar nucleus, thus it can be a useful probe of molecular motion. It 

is typically a replacement for hydrogen and can be used to label multiple sites on a single 

molecule. Since it is chemically similar to hydrogen, only more massive, it does not perturb 

the molecular properties much when compared to non-deuterated analogs. This makes 

using deuterium as a probe for dynamics especially useful for organic thus biological 

systems. When multiple sites are labeled, a superposition of powder lineshapes are 

observed. This can produce a complicated spectrum, however there are techniques which 

simplify the process of analyzing multicomponent spectra. 

 

According to the Laplace equation (equation 2.12) motional averaging reduces the 

frequency splitting. If there are multiple superimposed spectra, the average width of the 

spectrum is proportional to the average order of the system. The average width of a 

spectrum can be characterized in terms of moments: 

𝑀𝑛 ≡
∫ |𝜔|𝑛𝑓(𝜔)𝑑𝜔

∞

−∞

∫ 𝑓(𝜔)𝑑𝜔
∞

−∞

(2.50) 

where 𝜔 = 2𝜋𝜈  and 𝑓(𝜔)  is the total lineshape amplitude akin to equation 2.37 but 

potentially for multiple superimposed spectra. For the systems studied here, the first 

moment (𝑀1) will be the most relevant, however higher moments can be used to determine 

other molecular properties (J. H. Davis, 1983). In particular, lipid dynamics are indicative 

of lipid phases. Since lipid dynamics can modulate motional averaging of spectra, the first 

moment can be sensitive to phase transitions of the lipid membrane. Figure 2.7 shows the 

first moment plot of [2H31]-N-palmitoylsphingomyelin (PSM-d31), an analog of 

palmitoylsphingomyelin perdeuterated along the amide linked palmitoyl chain, mixed with 

1-palmitoyl-2-oleoylphosphatidylcholine (POPC), in a one-to-one mole ratio, as a function 

of temperature. At low temperature PSM-d31 is in the solid ordered (gel) state, where its 

labeled chain segments do not undergo many isomerizations. This results in a broad 

lineshape with some asymmetry shown in the left inset spectrum of Figure 2.7 which was 

recorded at -10 °C. At around 10 °C a phase transition into the liquid disordered phase 

occurs as indicated by the inflection point of the first moment plot. The sample spectrum 

shown in the right inset of Figure 2.7 recorded at 30 °C is narrower with well-defined peaks. 
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This is indicative of the liquid disordered phase as the chain isomerizations result in a 

reduced frequency splitting and distinct motions between many of the labeled segments. 

 

Given that the order parameter (equation 2.47) is related to the axially-symmetric lineshape 

(equation 2.36) via equations 2.31 and 2.47 with Table 2.1, the first moment (equation 2.50) 

is related to the ensemble-average order parameter (J. H. Davis, 1983): 

𝑀1 =
𝜋

√3
𝜒𝑄|𝑆𝐶𝐷|̅̅ ̅̅ ̅̅ ̅ (2.51) 

where |𝑆𝐶𝐷|̅̅ ̅̅ ̅̅ ̅  is the ensemble-average order parameter and the quadrupolar coupling 

constant is 𝜒𝑄 = 𝐶𝜆𝛿𝜆
PAS 𝜋⁄ = 168 kHz for deuterium bonded to carbon (Burnett & Muller, 

1971). Here the average order parameter is weighed by the number of deuterons which 

contribute to each axially-symmetric powder pattern. As this is only valid for axially-

symmetric powder patterns, it is primarily applicable to liquid disordered phases where 

isomerizations about C-C bonds result in reorientation of the labeled chain segments that 

is fast enough to produce such motional averaging. 

 

In the liquid disordered phase, many of the methylene segments, and the terminal methyl 

segment, are undergoing distinct dynamics. This often allows for the determination of 

distinct order parameters along the acyl chain. The magnitude of the maximum theoretical 

value expected for the order parameter is 𝑆𝐶𝐷 = 0.5. This situation corresponds to a rigid 

chain in all-trans conformation lined up and rapidly reorienting about the membrane 

normal, 𝐧𝟎. In the upper left of Figure 2.8 these fast motions are represented by the angle 

𝛽𝑃𝐷
(𝑖)

, which denotes the instantaneous angle the principal axis of the carbon-deuterium bond 

makes with the director of the local membrane normal 𝐧𝟎 , and (𝑖) refers to a specific 

segment of the hydrocarbon chain. Numbering begins at the carboxyl group and increases 

until it reaches the terminal methyl of a chain. The top right of Figure 2.8 shows the 

numbering for the sn-1 palmitoyl chain of POPC. If the membranes are in a multilamellar 

vesicle arrangement, the various angles, 𝜃, the director of the membranes, 𝐧𝟎, makes with 

the external magnetic field, 𝐁, result in each segment producing a powder pattern. To 

simplify the calculation of the order parameter, the frequency splitting in equation 2.26 for 

axial symmetry, with the definition of the order parameter (equation 2.47) and closure 
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(equation 2.24), can be written in terms of the quadrupolar coupling constant ( 𝜒𝑄 =

168 kHz) as: 

∆𝜈𝑄(𝜃) =
3

2
𝜒𝑄|𝑆𝐶𝐷|𝑃2(𝑐𝑜𝑠𝜃) (2.52) 

where 𝑆𝐶𝐷 is the order parameter associated with fast motions as represented by the angle 

𝛽𝑃𝐷 and 𝜃 corresponds to a particular powder orientation with respect to the main magnetic 

field. 

 

An example of the motion of individual chain segments producing a superposition of 

distinct powder patterns is shown for [2H31]-1-palmitoyl-2-oleoylphosphatidylcholine 

(POPC-d31), an analog of POPC perdeuterated along the palmitoyl chain, in the middle of 

Figure 2.8 (the blue spectrum). The spectrum consists of a narrow signal with peaks at ±1 

kHz, due to the disordered terminal methyl groups, and is superposed upon a broader 

superposition of signals, due to progressively more ordered methylene groups. A plateau 

region of methylene groups that are motionally similar in the upper portion of the chain is 

responsible for the sharp edges at ±12 kHz. Remember that each of these peaks should 

have a corresponding shoulder, denoting the edge of the powder pattern, at twice that 

frequency where the methyl shoulders can be seen at ±2 kHz. Due to the superposition of 

the remaining methylene segments, their shoulders are less distinct. 

 

Due to the overlapping powder patterns it can be difficult to determine the areas under each 

peak and precise locations. As the peak areas are proportional to the number of deuterons 

represented, they are useful in determining which segment, phase, and domain they belong 

to. Intensive simulations can be done to fit these powder patterns; however, it is more 

efficient to deconvolute the powder pattern from the spectra. This technique is known 

under the term “dePaking” as the original lineshape is often called the Pake powder pattern 

(Pake, 1948). This effectively produces a spectrum as if each local membrane normal was 

oriented at 𝜃 = 0° with the main magnetic field. Typically, dePaking algorithms operate 

in the frequency domain following Fourier transformation and are computationally 

intensive (Sternin, Bloom, & MacKay, 1983). The speed of this process has been greatly 
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improved by a weighted fast Fourier transform algorithm that operates in the time domain 

as given by equation 2.53 (McCabe & Wassall, 1997): 

𝐹0(−2𝜔) = √96𝜋𝜔
FFT(𝑔(𝑡)√𝑡)

[1 − 𝑖]
(2.53) 

here 𝐹0 is the dePaked lineshape, FFT is the fast Fourier transform process, and 𝑔(𝑡) is the 

original powder-pattern lineshape in the time domain (obtainable by inverse Fourier 

transform if needed).  

 

An example of a dePaked lineshape produced by this algorithm is shown for POPC-d31 in 

the bottom of Figure 2.8. Notice that the produced dePaked lineshape has twice the width 

of the angular frequency of the original spectrum. This means that the peaks it produces 

are primarily the result of the sharp perpendicular parts of the powder lineshape, hence the 

origin of the arrows between the powder lineshape and the dePaked lineshape of Figure 

2.8. As equation 2.53 is technically an asymptotic approximation it can produce artifacts 

of low intensity at twice the frequency of any peak (McCabe & Wassall, 1997). These 

artifacts are visibly present in the dePaked spectrum at the bottom of Figure 2.8 at ±4 kHz, 

due to the methyl powder pattern. Weighted Fourier transforms, such as equation 2.53, are 

related to derivatives and fractional derivatives thus they are particularly sensitive to 

changes in slope. This is why the sharp perpendicular parts of the powder pattern are 

enhanced. But this also results in the edges of the powder pattern shoulders producing 

artifacts. 

 

As the dePaking algorithm only deconvolves the powder lineshape that scales as 𝑃2(𝑐𝑜𝑠𝜃), 

what remains is Gaussian or Lorentzian line broadened peaks (the convolution of both is a 

Voigtian lineshape). These peaks can be fit to determine the splitting of doublets and, thus, 

order parameters as shown in the top of Figure 2.9. Since the spectrum is representative of 

a zero-degree orientation, equation 2.52 simplifies to: 

∆𝜈𝑄(𝜃 = 0°) =
3

2
𝜒𝑄|𝑆𝐶𝐷|𝑃2(𝑐𝑜𝑠(0)) =

3

2
𝜒𝑄|𝑆𝐶𝐷| (2.54) 

or 

|𝑆𝐶𝐷| =
2∆𝜈𝑄(𝜃 = 0°)

3𝜒𝑄

(2.55) 
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where ∆𝜈𝑄(𝜃 = 0°) is the frequency splitting between a doublet in the dePaked spectrum 

in the bottom of Figure 2.8 or the top of Figure 2.9. This allows for the determination of an 

order parameter profile, where the order parameter is plotted with respect to the segment 

position. The assumption made here is that the order parameters for lipid chains 

monotonically decrease from the carboxyl segment near the headgroup (at the polar water 

interface) to the terminal methyl end (Lafleur, Fine, Sternin, Cullis, & Bloom, 1989). For 

this reason, the plateau region (the large pair of peaks at the maximum frequency splitting) 

is often sliced according to area under the curve and assigned decreasing frequency 

splittings (based on weighted average) to determine the order parameters of the segments 

in this composite peak. There are some slight exceptions to this assumption (Seelig & 

Waespe-Sarcevic, 1978; Yasuda, Tsuchikawa, Murata, & Matsumori, 2015), however the 

majority of the labeled segments obey this motif. The order parameter profile constructed 

in this motif for POPC-d31 is shown at the bottom of Figure 2.9. It reproduces the general 

shape of the profile obtained using selectively labeled POPC (Seelig & Waespe-Sarcevic, 

1978), consisting of a plateau region of slowly varying order in the upper portion of the 

chain followed by a progressive reduction in order towards the terminal methyl. The is 

characteristic of phospholipid bilayers in the liquid crystalline state (Seelig, 1977; Shaikh, 

Kinnun, et al., 2015). 
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Table 2.1: The coupling and angular momentum tensors in the spherical basis correspond 

to the Cartesian basis with the use of the Wigner rotation matrix elements. Here Ω is the 

solid angle as represented by the Euler angles, 𝛿𝜆 =  𝑉𝑧𝑧
PAS is the largest eigenvalue of the 

electric field gradient, and 𝜂𝜆 =  (𝑉𝑦𝑦
PAS − 𝑉𝑥𝑥

PAS) 𝑉𝑧𝑧
PAS⁄  is the asymmetry parameter. 

Coupling Tensor Angular Momentum Tensor Wigner Rotation Matrix 

𝑉0
(2)PAS = √

3

2
 𝑉𝑧𝑧

PAS = √
3

2
 𝛿𝜆 𝑇̂0

(2)LAB =
1

√6
 (3𝐼𝑧𝑆̂𝑧 − 𝑰̂ ∙ 𝑺̂) 𝐷00

(2)(Ω) =
1

2
(3cos2𝛽 − 1) 

𝑉±1
(2)PAS = 0 𝑇̂±1

(2)LAB = ∓
1

2
 (𝐼𝑧𝑆̂± + 𝐼±𝑆̂𝑧) 𝐷±10

(2) (Ω) = ∓𝑒∓𝑖𝛼√
3

2
sin𝛽cos𝛽 

𝑉±2
(2)PAS = −

1

2
(𝑉𝑦𝑦

PAS − 𝑉𝑥𝑥
PAS)

= −
1

2
𝛿𝜆𝜂𝜆 

𝑇̂±2
(2)LAB =

1

2
 𝐼±𝑆̂± 𝐷±20

(2) (Ω) = 𝑒∓2𝑖𝛼√
3

8
sin2𝛽 
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Figure 2.1: In the presence of a strong magnetic field (B0) the axis of quantization is along 

the main magnetic field direction.  The nuclear spin angular momentum gives rise to a 

magnetic moment which interacts with the static external magnetic field (Zeeman effect).  

Here the main magnetic field is defined to be along the z-direction. 
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Figure 2.2: For a spin-one interaction with a magnetic field two transitions at Larmor 

frequencies of 𝜈0 can occur. The tensor interaction Hamiltonian, 𝐻̂𝜆, is a perturbation of 

the Zeeman Hamiltonian, 𝐻̂𝑍, as shown in the shift of the right-side energy levels. When 

the tensor interaction is present, the Larmor frequency is modulated differently in each 

spatial direction. The presence of this perturbation results in two inequivalent transitions, 

𝜈𝜆
− and 𝜈𝜆

+. 
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Figure 2.3: Nuclei can interact with electromagnetic field gradients within their 

environment. Field gradients (𝑉𝑖𝑖) are curvatures of the potential energy as represented by 

the blue potential surface. Mathematically these are tensor interactions and can be 

represented by ellipsoids (shown in grey), where the longest part of the ellipsoid represents 

the largest eigenvalue of the interaction. This defines a principal axis system (PAS). This 

principle axis system is not necessarily aligned with the lab frame (LAB). Which leads to 

an orientational (and motional) dependence of the observed interaction. 
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Figure 2.4: With the Euler angles the unprimed axis system can be rotated to the final triple-

primed axis system for a complete 3-dimensional rotation. (a) The first Euler angle, 𝛼, 

rotates the unprimed axis system about the z-axis to the prime coordinates. (b) Then, the 

second Euler angle, 𝛽, rotates the primed axis system about the y'-axis to the double prime 

coordinates. (c) Finally the last Euler angle, 𝛾, rotates the double primed axis system about 

the z''-axis to the final triple primed axis system. (d) Notice that the x direction is rotated 

three times, the y twice, and the z once; this allows for each of the three axes to be rotated 

to a designated direction. 
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Figure 2.5: The orientation of the main magnetic field with respect to the principal axis 

system yields different principal components of the spectrum.  If all of the nuclei are (a), 

(b), (c) aligned along one of the Cartesian components of the field gradient, then the 

frequency observed is given by the strength of the field gradient pointing in that direction, 

and the amplitude is given by the number of nuclei populating that state. (d) Orientations 

off of these axes can be handled in the irreducible representation with Euler angles 𝛼 and 

𝛽, where the corresponding angles for the Cartesian coordinates are labeled in (a), (b), and 

(c). If all orientations are present, such as a powder, then the entirety of the frequency 

distribution is observed (called a powder pattern) as shown in Cartesian coordinates in (e) 

and the irreducible representation in (f). 
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Figure 2.6: To discuss motional averaging consider an axially symmetric tensor interaction (a top) which if all static orientations are 

present yields a powder pattern (a bottom). If fast planar motion is present (b top) the magnitude of the interaction is reduced by half 

(𝑆𝑃𝑀 = − 1 2⁄ ) and thus the observed frequency splitting is reduced by half (b bottom). For motional averaging about a tetrahedral angle 

(c top) the observed spectral is reduced by a third (c bottom). If both tetrahedral and planar motions are present (d top) the observed 

frequency splitting is reduced by a sixth (d bottom).
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Figure 2.7: A first moment plot of PSM-d31 mixed with POPC (1:1 mol.) as a function of 

temperature reveals a phase transition at 9.9 °C. A represented spectrum (left inset) of 

PSM-d31 mixed with POPC at -10 °C is indicative of the solid ordered phase where the 

labeled hydrocarbon chains are relatively ordered. While a representative spectrum (right 

inset) of PSM-d31 mixed with POPC at 30 °C is indicative of the liquid crystalline phase 

where now the hydrocarbon chains are relatively disordered and many of the segments are 

undergoing distinct dynamics. 
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Figure 2.8: For a perdeuterated lipid chain, each segment, represented by the angle 𝛽𝑃𝐷
(𝑖)

, 

can potentially produce a distinct powder pattern (top left). Segment numbering (𝑖) begins 

at the carboxyl group and increases until it reaches the terminal methyl of a chain. This is 

shown for the palmitoyl chain of POPC-d31 in the upper right. These powder patterns 

superimpose to form the blue spectra of POPC-d31 at 37 °C as shown in the middle. To 

enhance the resolution of the spectrum a dePaking algorithm can be performed which 

deconvolutes the powder patterns to a collection of doublets as shown at the bottom. 
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Figure 2.9: DePaked spectra (top) are useful in determining order parameter profiles 

(bottom). The dePaked spectra shown on top is of POPC-d31 at 37 °C (black). To determine 

the frequency splittings for each doublet pair, Voight (Lorentzian convoluted with a 

Gaussian lineshape) lineshapes were fit to each distinct peak (grey dotted line) and formed 

a cumulative fit (grey solid line). The doublet with the maximum width is a composite of 

many segments. This was split according to area (2 deuterons per segment) and assumed a 

monotonic decrease in frequency splitting. With equation 2.55, the frequency splittings 

were used to determine the order parameter profile (bottom). 
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 2H NMR IMPLEMENTATION AND ANALYSIS 

3.1 Introduction 

In solution state NMR spectroscopy, molecular motion that is fast and isotropic completely 

averages anisotropic magnetic and electric interactions. A sharp high-resolution spectrum, 

revealing residual magnetic interactions, results. In solid state NMR, by contrast, molecular 

motion is slow and/or anisotropic so that motional narrowing is incomplete. There are two 

general approaches, broadline NMR and magic angle spinning (MAS) NMR, in this regime. 

By rapidly spinning a sample about an axis at the magic angle (𝜃 = 54.74°) relative to the 

magnetic field, MAS spectroscopy eliminates magnetic interactions that scale as 𝑃2(𝑐𝑜𝑠𝜃) 

(Levitt, 2008). The methods of solution state NMR spectroscopy can then be applied and 

under certain spinning conditions specific magnetic interactions can be observed (Griffin, 

1998). Broadline NMR spectroscopy extracts details of molecular orientation and 

anisotropy of molecular reorientation by analysis of the lineshape. This technique allows 

for a direct measurements of dynamics in bulk materials which has been extensively 

applied to biological materials (Brown, Lope-Piedrafita, Martinez, & Petrache, 2006) and 

non-biological materials (Schmidt-Rohr, 1996). It is a niche area of NMR for which 

standard software often lack necessary features. 

 

Two software programs, “EchoNMR processor” and “EchoNMR simulator”, collectively 

known as “EchoNMR tools”, developed to quickly process and analyze one-dimensional 

solid-state NMR data, will be described along with some theoretical background of the 

techniques used. EchoNMR tools is developed in the MATLAB® (Mathworks) 

programming environment which runs as an interpreter language that allows the software 

demonstrated here not only to be open-source but also easily modified. Both packages 

utilize a graphical user interface (GUI) without the need for command-line steps which 

allows for a reduced learning-curve for novices. Advanced features such as automated 

routines and corrections due to pulse sequence-related distortions are included. 
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In EchoNMR processor, all processing is done in batch. In this method the original 

recorded signal is always preserved. Once a processing parameter is changed, the original 

signal is reprocessed in batch to yield a processed signal, standard spectrum, and a dePaked 

spectrum. This is in contrast to the iterative approach, where the original signal is not 

preserved and each processing step is done sequentially. The iterative approach is less 

processing intensive, but modern computers are capable of all steps of processing within a 

fraction of a second. One of the drawbacks of the iterative approach is the difficulty in 

going back in steps. Batch processing avoids all of this. Also EchoNMR processor 

simultaneously shows the spectrum, achievable due to batch processing, which can aid in 

finding the appropriate processing parameters. 

3.2 Pulse Sequences and the Solid Echo 

Most modern NMR spectroscopy techniques rely on super conducting magnets to generate 

the large main magnetic field. The spectra here were recorded with samples placed within 

a 7.05 T superconducting magnet (Oxford Instruments, Osney Mead, UK) which yields a 

2H Larmor resonance frequency of 46.0 MHz. To accompany the magnet, and obtain 

spectra for labeled membrane samples, a homebuilt NMR spectrometer was utilized 

(Williams et al., 2012). The spectrometer is equipped with an in-house assembled 

programmable pulse generator, a dual-channel digital oscilloscope (R1200 M; Rapid 

Systems, Seattle, WA) to acquire signals in quadrature and a temperature controller (1600 

Series; Love Controls, Michigan City, IN) that regulates temperature to ±0.5°C. 

The aforementioned console uses a pulse sequence at the Larmor frequency which 

generates an observable signal in the time domain, called the free induction decay (FID). 

To obtain a spectrum a Fourier transform is then performed. This pulse-Fourier transform 

technique resulted in a Nobel prize for Richard Ernst in 1991 (Shampo, Kyle, & Steensma, 

2012). 

 

To understand the effect of pulses, consider a nucleus in its initial state within the main 

magnetic field. Since the lowest energy state is aligned with the main magnetic field, there 

will be a slight excess of nuclear spins in this state, as shown in Figure 3.1 (bottom left). 

This slight excess is what is observed in NMR spectroscopy. For simplicity, the main 
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magnetic field will be pointing along the +𝑧̂ axis, thus the nuclei aligned in this direction 

are labeled as |+𝑧⟩. This state has the property of: 

⟨+𝑧|𝐼𝑍|+𝑧⟩ = 𝑚𝑚𝑎𝑥 (3.1) 

where 𝑚𝑚𝑎𝑥 is the maximum magnetic quantum number (1/2 for spin-half and 1 for spin-

one nuclei). Solving the time-dependent Schrödinger equation with the Zeeman 

Hamiltonian gives the time-evolution of the state: 

|+𝑧(𝑡)⟩ = 𝑒−𝑖𝜔0𝐼𝑍𝑡|+𝑧(0)⟩ (3.2). 

Notice that the time-dependent wave function has a phase factor that depends on the 

Larmor frequency and time. With this phase factor, it is typically said that this state is 

precessing at the Larmor frequency. 

 

The effect of an oscillating pulse on the orientation of the spins is easier to understand with 

a transform to the rotating frame, which modifies the initial state, |+𝑧(𝑡)⟩: 

|+𝑧(𝑡)̃⟩ = 𝑒𝑖𝜔0𝐼𝑍𝑡|+𝑧(𝑡)⟩ = |+𝑧(0)⟩ (3.3) 

where |+𝑧(𝑡)̃⟩ is the state in the rotating frame. Notice that the explicit time-dependence 

is canceled out and the state appears static in the rotating frame. 

 

If an additional field is applied along the x-axis it can be used to rotate (nutate in the lab 

frame) the spin state into the x-y plane (bottom middle of Figure 3.1). From the time-

dependent Schrödinger equation with the transverse magnetic field: 

|+𝑦(𝑡)̃ ⟩ = 𝑒−𝑖𝜔𝑃𝐼𝑋𝑡𝑃|+𝑧(𝑡)̃⟩ (3.4) 

where 𝜔𝑃 = −𝛾𝐵𝑃, 𝐵𝑃 is the magnetic field due to the transverse pulse, and 𝜔𝑃𝑡𝑃 = 𝜋 2⁄ . 

To achieve this in a laboratory frame, a coil is used to deliver a pulse (top middle of Figure 

3.1) oscillating at the Larmor frequency, 𝜔0 , for a pulse length equivalent to 𝑡𝑃 =

𝜋 (2𝛾𝐵𝑃)⁄ . Typical pulse lengths for solid-state experiments vary between 2 and 5 μs, 

where the pulse is supplied by a coil supported by a probe which is inserted into the bore 

of the superconducting magnet. In the rotating frame, an oscillating pulse appears as a static 

magnetic field. According to equation 3.4, the resulting state is rotated to the y axis with 

the state label of |+𝑦(𝑡)̃ ⟩. This can be verified by finding the expectation value, 〈𝐼𝑌〉, of 

this state: 
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〈𝐼𝑌〉 = ⟨+𝑦(𝑡)̃ |𝐼𝑌|+𝑦(𝑡)̃ ⟩ = ⟨+𝑧(𝑡)̃|𝑒𝑖𝜔𝑃𝐼𝑋𝑡𝑃𝐼𝑌𝑒−𝑖𝜔𝑃𝐼𝑋𝑡𝑃|+𝑧(𝑡)̃⟩ (3.5). 

Taylor expanding the exponentials it can be shown that: 

𝑒𝑖𝜔𝑃𝐼𝑋𝑡𝑃𝐼𝑌𝑒−𝑖𝜔𝑃𝐼𝑋𝑡𝑃 = 𝐼𝑌𝑐𝑜𝑠(𝜔𝑃𝑡𝑃) + 𝐼𝑍𝑠𝑖𝑛(𝜔𝑃𝑡𝑃) (3.6) 

and given 𝜔𝑃𝑡𝑃 = 𝜋 2⁄ , this results in equation 3.5 becoming: 

〈𝐼𝑌〉 = ⟨+𝑧(𝑡)̃|𝐼𝑍|+𝑧(𝑡)̃⟩ = 𝑚𝑚𝑎𝑥 (3.7). 

Following the pulse, the state is projected along the transverse plane. With equations 3.2 

and 3.3, now in respect to the +𝑦 state, this state can be transformed back to the laboratory 

frame: 

|+𝑦(𝑡)⟩ = 𝑒−𝑖𝜔0𝐼𝑍𝑡|+𝑦(𝑡)̃ ⟩ = 𝑒−𝑖𝜔0𝐼𝑍𝑡|+𝑦(0)⟩ (3.8). 

The phase factor, 𝑒−𝑖𝜔0𝐼𝑍𝑡, indicates that this state is precessing in the 𝑥-𝑦 plane (bottom 

right of Figure 3.1), which can be shown by finding the 〈𝐼𝑋〉 and 〈𝐼𝑌〉 expectation values. 

Importantly this precession is a precession of a magnetic moment (due to the summation 

of the spins). If this magnetic moment is surrounded by a coil, it creates an oscillating 

magnetic field within the coil. Due to Lenz’s law, this results in an observable current, or 

a free induction (top right of Figure 3.1). This is a near field effect as opposed to the 

coherent emission of radiation from the sample (Hoult, 2009). Typically, the same coil 

used to pulse the sample is also used to observe the oscillating magnetic moment. Due to 

thermal fluctuations the spin state will eventually align back to the |+𝑧(𝑡)⟩ state and the 

induction will decay away. Thus, this observed signal is called the free induction decay 

(FID). 

 

At this point it is important to point out that in the most general case spin systems do not 

exhibit a single resonance at 𝜔0, but a distribution of resonances due to interactions (some 

of which produce the theoretical powder patterns). To observe all of these resonances in 

the FID, the entirety of the frequency distribution needs to be excited by the pulse. In the 

time-domain, a pulse is simply a sinusoidal wave at the Larmor frequency multiplied by a 

box function. The length of this box function is equivalent to 𝑡𝑃 = 𝜋 (2𝜔𝑃)⁄  for a 𝜋 2⁄  

pulse. In the frequency space this pulse is a Dirac delta function at the Larmor frequency 

convoluted with a sinc function (2 𝑠𝑖𝑛(𝜔𝑡𝑃 2⁄ ) (𝜔𝑡𝑃)⁄ ). In the frequency space, the sinc 

function crosses zero at ±𝜔 = ± 𝜋 𝑡𝑃⁄ . To avoid the distortion that this zero crossing 
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causes, the magnetic field of the pulse, 𝐵𝑃, must be particularly strong. This is especially 

the case if the orientation-dependence of the interactions are not averaged out such as in 

the solid state. Because of this solid state NMR spectroscopy tends to use solenoid coils to 

deliver more power to the sample as opposed to saddle coils which are common in solution 

state NMR spectroscopy. 

 

The distribution of resonances, due to environmental interactions and orientations, result 

in a large decoherence. Thus the FID can decay quite quickly below the noise level and can 

be difficult to observe. In the rotating frame at the center Larmor frequency, there are 

resonances moving faster and slower than the now static Larmor frequency. With a well-

placed 180° pulse about the direction of the Larmor frequency (which is 90° offset from 

the first pulse) the slow and fast resonances swap places and reconverge (Hahn, 1950). 

This results in an echo in the FID, which from its maximum can be Fourier-transformed to 

obtain the full spectrum. In practice for static interactions such as the orientational 

dependence that produces powder patterns, a second 90° pulse (again 90° offset from the 

first pulse) suffices (Mansfield, 1965) as shown in Figure 3.2. This is commonly referred 

to as a solid echo experiment (Levitt, 2008). 

 

In general, the pulsing coil and observing coil are one and the same. As the pulse can be 

quite powerful, it can take some time to die down (a phenomenon called ringing) before 

the signal can be observed. This region is referred to as the dead time as depicted in Figures 

3.1 and 3.2. As the FID observed in solid-state NMR spectroscopy decays quickly, much 

of the signal can be lost within the dead time. But if a solid echo pulse sequence is utilized, 

the echo can occur after the dead time. This can restore a large amount (but not all) of the 

FID within the observable time domain. Dynamic interactions, such as thermal fluctuations, 

which result in the sample returning back to equilibrium, cannot be reversed. This will 

reduce the magnitude of the echo and can even distort the resulting lineshape if the 

interpulse delay is too large. 
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3.3 FID Processing 

EchoNMR processor can open files in various formats, including our home-built and 

commercial spectrometer formats, with the goal of processing FID produced in echo pulse 

sequences (see Figure 3.2 for a representative sequence). In general, the recorded FID is 

needed and EchoNMR processor can automatically open associated parameter files. The 

FID should be recorded in quadrature, which is the signal from the precessing 

magnetization (the real channel) and its 90° phase offset (the imaginary channel) are both 

recorded as shown in the original FID area of Figure 3.3. 

 

Due to the tuning of the probe, the initial point of the precession may not be completely in 

the real channel. Thus the EchoNMR processor allows the user to manually set the “zeroth-

order” phase of the spectrum. This mixes the real and imaginary channels according to an 

imaginary exponential. For symmetric spectra about the Larmor frequency, such as that 

produced by 2H NMR spectroscopy, ideally the imaginary channel should be flat. This is 

due to an equal amount of resonances precessing positively and negatively. EchoNMR 

processor can automatically correct for this by finding the phase such that the slope of the 

imaginary channel is minimized according to MATLAB’s® Nelder-Mead simplex 

algorithm which is activated by the “Auto Phas” button on the top of Figure 3.3. An 

example of a phased FID is shown in the processed FID of Figure 3.3, where the red 

imaginary is minimized. Typically, the phasing process is done first in processing the FID. 

 

The phasing of the FID can also be done through observing the spectral lineshape and, due 

to the batch processing utilized here, the spectra is simultaneously shown with the FID. As 

2H NMR spectroscopy typically produces symmetrical powder patterns, the spectra should 

appear symmetrical with an approximate equal area on each side. In the imaginary channel 

the spectral area should be equal but of opposite sign, as the resonances are either faster 

than (positive) or slower than (negative) the Larmor frequency. A trick that can be done is 

to symmetrize the spectrum (which is an option in the Spectral Processing options of Figure 

3.3), where the right side of the spectrum (about zero) is added to the left side of the 

spectrum. For a properly phased FID, the corresponding imaginary spectrum should cancel 

itself out under symmetrization for theoretically symmetric spectra. 
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The baseline for a FID should be at zero. There should not be what is referred to as a DC 

offset. When one is present it is removed by a technique called phase cycling which adds 

sequential 90° phases to each pulse in the pulse sequence with each repetition (Levitt, 2008). 

For the solid echo experiment special consideration of phases must be done to maintain a 

90° phase offset between the first two pulses. This alternates the real and imaginary parts 

of the signal through both quadrature channels with positive and negative amplitudes. After 

digitization, the computer will appropriately swap the real and imaginary channels and/or 

flip the sign of the incoming amplitude before adding it to the previously recorded FID. 

This helps reduce imbalances, especially the baseline, between each channel. However, on 

our homebuilt system if the pulse sequence is running too fast it can become out of sync 

with the computer. Thus phase cycling is sometimes turned off for samples which require 

significant signal averaging, and thus a baseline can appear. For this reason, a user can 

specify a baseline for each channel in the signal processing panel of Figure 3.3. EchoNMR 

processor can automatically find this baseline and subtract it out by taking a percentage 

(defined by the user) of the end of the FID and finding the average value for both the real 

and imaginary channels which is activated by the “Auto Base” button on the top of Figure 

3.3. If there is a baseline in the FID, and not corrected for, it will appear as a sharp peak at 

the zero frequency of the spectrum. 

 

Although, data acquisition can be set to automatically begin at the expected echo begin 

point or “echo maximum”, it is not always the case and may be prudent to begin recording 

before the echo to avoid uncertainties. Thus the user can specify the data point at which 

the echo should occur. As the echo can appear between digitized data points the user may 

enter a fraction of a data point where EchoNMR processor will interpolate to this point (via 

cubic spline) and shift the FID accordingly. The processed FID area of Figure 3.3 shows 

the FID cropped to the echo maximum point. An interpolation-factor option exists which 

will increase the number of data points in the FID to aid the user in finding the echo 

maximum. EchoNMR processor can automatically find the echo maximum by fitting a 

cubic polynomial to the data points near the largest data point which is activated by the 

“Auto Max” button on the top of Figure 3.3. 
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Further, EchoNMR processor allows the user to retain the pre-echo data by symmetrizing 

it with the remaining FID. This can potentially enhance signals that have decayed due to 

relaxation. However, since the pre-echo data is often a small-number of data points, it is 

subject to truncation distortion (which appears as a convoluted sinc lineshape in the 

frequency domain). Since the shape of the echo in the FID is dependent on phasing, the 

echo finding procedure should be done after phasing. 

 

The determination of the location of the echo maximum is important as it affects the 

phasing of the spectra in Fourier space. The process of adjusting the first point of a Fourier 

transform is equivalent to a “first-order” phase correction which is a frequency-dependent 

phase shift in the frequency space: 𝑒𝑖𝜔Δ𝑡. Here 𝜔 is the angular frequency and Δ𝑡 is the 

time offset from the echo maximum.  As the spectra is shown simultaneously with the FID, 

a point chosen outside the echo maximum will result in oscillations in the spectrum due to 

the complex exponential mixing the imaginary with the real spectra. The further away from 

the echo maximum, the larger the time offset, Δ𝑡, is, and the worse the oscillations appear. 

This has the potential of greatly affecting moment values obtained, thus it is quite important 

to determine the echo maximum accurately. Two culprits affecting this are high frequency 

noise and interference. In the options panel in the lower left of Figure 3.3, the spectral range 

option will filter out frequency components outside a defined range before fitting with the 

automated maximum finding function. This can improve the maximum found and thus the 

overall phasing of the spectrum. 

 

Since the pulses used can be quite powerful and are many times stronger than the signal 

observed, the circuit can remain oscillating partway into the FID in a phenomenon called 

ringing (Levitt, 2008). Thus the beginning part of the observed FID can interfere with the 

automatic phasing, automatic maximum finding, and FID symmetrization processes. Thus 

in the “Options and Moments” panel of Figure 3.3, there is a FID crop option which tells 

the program to ignore a defined number of beginning points of the FID. 
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3.4 Spectral Processing and dePakeing 

As with the FID, after each processing parameter is applied, the spectrum is updated 

instantaneously. This is useful for manual adjustment as phasing and maximum finding has 

a clear effect on the spectrum as mentioned in the previous section. Although most of the 

major parts of signal processing is directly applied to the FID, further spectral processing 

can be done to aid in data interpretation and analysis. 

 

EchoNMR processor also allows the user to adjust the appearance of the spectrum. Noise 

in the spectrum can be reduced by Lorentzian and/or Gaussian line broadening. This can 

be done in one of two ways. By either multiplying an exponential or Gaussian decay to the 

processed FID or convoluting the spectrum with the corresponding Lorentzian or Gaussian 

line-shape. The convolution method can be activated by enabling the “Post Smoothing” 

option in the “Spectrum Processing” panel of Figure 3.3. It should be noted that line-

broadening also distorts the non-noise parts of the signal as well, so it should be used 

conservatively. Since the lineshape in 2H NMR spectroscopy is theoretically symmetrical, 

the signal to noise can be improved via the aforementioned symmetrization option. This 

technique requires that the spectrum is centered about its Larmor frequency to avoid the 

doubling of peaks. As the imaginary spectrum should be minimal under symmetrization, 

this can be utilized not only for phasing but also for finding the spectral center (in the center 

option of the spectral processing panel of Figure 3.3). Also EchoNMR processor can 

automatically determine this center by finding the frequency at which the spectral area is 

equal in positive and negative frequencies (via a first signed-moment) which is activated 

by the “Auto Cent” button on the top of Figure 3.3. 

 

The user can increase the number of data points in the spectrum with the “size” option in 

the spectrum processing panel of Figure 3.3. This is done by “zero-filling” the FID, which 

adds data points of zero value to the end of the processed FID (which is a sinc interpolation 

in the frequency domain). The ability to reduce the noise in a spectrum and increase the 

number of data points allows for the identification and also fitting of NMR peaks. This is 

important for the determination of structural parameters such as the order parameter. 
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To analyze anisotropic line shapes, EchoNMR processor also applies the rapid dePaking 

algorithm developed by McCabe and Wassall (McCabe & Wassall, 1997) which utilizes a 

weighted-FFT method. As a reminder, this technique enhances the edges of anisotropic 

line shapes which is useful in identifying and analyzing signals in spectra with multiple 

line shapes. Since it is based on a weighted-FFT it can be done rapidly and updated with 

the original spectrum. As the FFT is weighed, an exponential doesn’t transform into a 

Lorentzian and the Gaussian is not preserved after the transform. Thus the apodization of 

the FID and convolution of the dePaked spectrum produce slightly different outcomes. 

Finally, this technique requires the lineshape to be centered at its Larmor frequency, which 

can be done with the aforementioned techniques. 

 

EchoNMR processor will automatically determine moments of the spectrum in the 

“Options and Moments” panel of Figure 3.3. The first moment is always determined; 

however, the user can specify a moment of another order. If the spectrum has a baseline, 

this will skew any moments calculated. Therefore, EchoNMR processor has a baseline 

correction option in the “Spectrum Processing” panel of Figure 3.3, which will find the 

average value of a range of data points specified by the user and subtract it from the 

spectrum. As the amplitude used in the moment calculation is weighed by frequency, high 

frequency noise and interference can be a major problem. Therefore, EchoNMR processor 

will ignore data points outside of the range specified in the spectral range fields of the 

“Options and Moments” panel of Figure 3.3. 

 

Finally, EchoNMR processor has two options in the “Smoothing and Plotting” panel of 

Figure 3.3 to change the plotting style and hide parts of the plot. The plotting style allows 

the user to change if the data points are displayed individually, connected by lines, or other 

variants. This can help in analysis of the spectrum or even aid in maximum finding of the 

FID. For the most part, the real part of the spectrum is what is analyzed. For this reason, 

after processing, it might be useful to hide the imaginary (red in Figure 3.3) parts of the 

plot thus there is a “Hide Imaginary” option. If the user wants more control over the display 

of the plot, there is an “Edit Plot” button near the top of Figure 3.3. This allows the user to 

use MATLAB’s in-built plot editing features. 
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3.5 Lineshape Analysis and Fitting 

After obtaining a spectrum, its lineshape can be analyzed by fitting against a simulated 

spectrum. EchoNMR fitter (see Figure 3.4) uses the Nelder–Mead algorithm (supplied by 

the MATLAB® programming environment) to fit data to a chosen lineshape by 

minimizing the sum of the squared-difference between the chosen lineshape and the data. 

As the Nelder–Mead algorithm can yield local minima instead of global minima, 

EchoNMR Fitter has a parameter-randomization process to attempt to escape local minima. 

This process is iterative and the user can observe the resulting sum of the squared-

difference as the process proceeds, which can be limited or canceled by the user. Further 

the user can manually adjust each fitting parameter. This allows the user to control the 

fitting process to obtain an optimal fit. 

 

Primarily, EchoNMR fitter allows users to fit anisotropic line shape patterns including the 

asymmetric variety (see Figure A.1 in Appendix A) which is simulated using an elliptical 

integral (Häberlen, 1976). This feature allows it to be particularly useful in solid-state NMR 

spectroscopy in fitting powder patterns. Users may also choose to fit isotropic line shapes 

as well. Each line shape may be broadened by a combination of Lorentzian or Gaussian 

line shapes. A large-number of line shapes can be specified at the expense of processing 

time. An example of multiple powder pattern fit, with an isotropic lineshape, is shown in 

Figure 3.5. 

 

EchoNMR fitter has utility beyond 2H NMR spectroscopy as other nuclei can produce 

similar lineshapes. It can also be applied to spectra of other nuclei, such as 31P. The 31P 

spectrum shown in Figure 3.6 is an example of separating two components due to POPE 

and SM in a POPE/SM (1:1 mol.) mixutre (Shaikh et al., 2002). Typical solution-state 

NMR spectroscopy produces multiple isotropic lineshapes. As EchoNMR fitter can handle 

multiple lineshapes, including isotropic lineshapes (see Figure 3.5), it is capable of 

analyzing some solution NMR spectroscopy data (particularly one-dimensional data). 

 

The software can correct spectral distortion due to finite pulse widths. This “pulse 

correction” is done in the manner as described by Bloom et al. (Bloom, Davis, & Valic, 
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1980). This distortion occurs as the width of the pulse is inversely proportional to the 

frequency space it can excite. Therefore, long pulses can produce distortion near the edges 

of spectra. Users can adjust for long pulses, off-center pules, the pulse angle, and the 

number of pulses. If necessary users may allow these parameters to be fit by the program 

if there are uncertainties. 

 

As well as correcting for the distortion due to pulse sequences, EchoNMR fitter can correct 

for relaxation during the pulse sequence (see section Appendix A). Since relaxation can be 

orientationally dependent, and thus appears frequency dependent (Domenici, 2009; 

Morrison & Bloom, 1993, 1994; Separovic & Cornell, 2000), signals far away from the 

center-frequency of the spectrum can appear to have lower amplitudes in the frequency 

domain. Importantly, as frequency-dependent decay processes distort the observed 

lineshape, they alter the value of the first moment, 𝑀1, if calculated from the observed 

spectrum. When the observed first moment is heavily dependent on the interpulse delay, it 

is described as tau-dependent (Wassall, Thewalt, Wong, Gorrissen, & Cushley, 1986). To 

remedy this, the solid echo pulse sequence can be repeated for various values of 𝜏. A 𝑀1 

vs 𝜏 plot can then be generated which allows the extrapolation of 𝑀1 back to 𝜏 = 0. This 

extrapolation is error prone but provides a better range of estimates of a distortion-free 𝑀1. 

Alternatively, EchoNMR fitter uses a frequency-dependent relaxation model (see 

Appendix A) to distort the simulated lineshape which allows it to better-fit the experimental 

spectrum. This can correct for distortion due to relaxation and provide a better estimate of 

the average order parameter thus 𝑀1 for simple lineshapes. 

3.6 Concluding Remarks 

Both EchoNMR processor and fitter, collectively referred to as EchoNMR tools, have been 

designed with a focus on user usability and the open-source mindset.  This is achieved in 

the in the MATLAB® (Mathworks) programming environment which allows for the 

development of the graphical user interfaces and runs as an interpreter which allows the 

code to be open-source. The research described in chapter 4 provides an example of a study 

that demonstrates the utility of the software. 
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Figure 3.1: In pulse-Fourier transform NMR spectroscopy, pulse sequences are repeated, 

separated by a recycle delay time, to reduce the signal to noise of an accumulated signal. 

The goal of the recycle delay time is to allow the sample to return to its initial thermal 

equilibrium. In this state the lowest and thus most populous magnetic state (blue arrow) is 

aligned with the main magnetic field, 𝐁𝟎, as shown at the bottom left. For a single-pulse 

sequence, typically an oscillating electromagnetic magnetic pulse, 𝐁𝑷, is delivered via a 

coil to the sample (top middle) to nutate the spin state to the x-y plane (bottom middle), 

which is referred to as a 90° pulse. Following the pulse there is a dead time to allow the 

circuit to recover. While the magnetic spin state is in the x-y plane it will precess due to the 

main magnetic field (bottom right). This precessing spin state causes an oscillating 

magnetic field in the coil used to deliver a pulse. Thus this can be observed as an electric 

induction in that coil (top right), which is referred to as a free induction decay (FID). The 

signal of an FID can be weak so pulse sequences are often repeated to reduce decoherent 

noise by averaging subsequent FIDs. 
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Figure 3.2: The solid echo pulse sequence begins with a 90° pulse. After this pulse (during 

the interpulse delay) the signal decays due to decoherence from orientationally-dependent, 

static interactions, and thermal relaxation towards equilibrium. Then another 90° pulse is 

delivered but at a 90° phase-offset from the original pulse. In the figure, the first pulse is 

pointed along the x-axis while the second pulse is pointed along the y-axis (in the rotating 

frame) thus achieving the 90° phase-offset. The goal of this second pulse is to refocus the 

decoherence due to the orientational and static dependence but it cannot reverse thermal 

decay back to equilibrium. This results in an echo at a time equivalent to the interpulse 

delay after the second pulse. If the interpulse delay is chosen wisely, this echo appears after 

the dead time. This allows the observation of a significant portion of the signal which is 

often lost in single pulse experiments. As with single pulse experiments, this sequence can 

be repeated after a recycle delay time to improve signal to noise of the observed FID. 
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Figure 3.3: EchoNMR processor opens FID files and displays them in the Original FID 

area, where the real signal is denoted in black and the imaginary is denoted in red. Here a 

sample spectrum of POPC/chol-d1 (1:1 mol.) at 37 °C in MLV form is shown. This sample 

was prepared as a 50 wt% aqueous dispersion in 50 mM Tris buffer (pH 7.5). The FID 

Processing section (upper left) allows the user to phase the FID by angle, specify the 

maximum, and specify the FID baseline. The result of which is shown in a Processed FID 

area. Simultaneously EchoNMR processor performs a fast Fourier transform to yield the 

spectrum (top right) and also a weighted fast Fourier transform to yield a dePaked spectrum 

(bottom right). The center of the spectra, the amount of data points to be displayed (by zero 

filling the FID before the Fourier transform), symmetrization (enabled here), and the 

spectral baseline can be specified in the Spectral Processing section (left). All of these 

values have automated procedures (upper bar) to aid the user in their determination. The 

smoothing and plotting section allows users to smooth the spectra via exponential or 

Gaussian apodization of the FID or post Fourier transform by convoluting the spectra with 

their Fourier representations. Here the user can change how the spectra is displayed and 

hide the imaginary parts. Finally, the Options and Moments section provides a few extra 

features and the ability to calculate moments of arbitrary order. 
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Figure 3.4: EchoNMR fitter is a program designed to simulate NMR lineshapes and fit 

them to spectra generated by EchoNMR processor. It has the capability of fitting 

asymmetric powder patterns, isotropic peaks, multiple peaks, and can account for distortion 

due to pulse widths and relaxation. It utilizes the Nelder–Mead algorithm, or can randomly 

search a parameter space, to minimize the sum of the squared difference between the 

recorded spectrum and the simulated spectrum. Here is a sample fit of a spectrum of 

POPC/chol-d1 (1:1 mol. from Figure 3.3) in 50 wt% aqueous dispersion in 50 mM Tris 

buffer (pH 7.5) fitted with a powder pattern and isotropic lineshapes within the EchoNMR 

fitter. The original spectrum is denoted by the black solid line, while simulated powder 

patterns are represented by red and blue dotted lines (respectively), and their summation is 

indicated by a grey solid line. 
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Figure 3.5: EchoNMR fitter is a program designed to simulate NMR lineshapes and fit 

them to spectra generated by EchoNMR processor. It has the capability of fitting 

asymmetric powder patterns, isotropic peaks, multiple peaks, and can account for distortion 

due to pulse widths and relaxation. It utilizes the Nelder–Mead algorithm, or can randomly 

search a parameter space, to minimize the sum of the squared difference between the 

recorded spectrum and the simulated spectrum. Here is a sample fit of a spectrum of 

POPC/chol-d1 (1:1 mol. from Figure 3.3) in 50 wt% aqueous dispersion in 50 mM Tris 

buffer (pH 7.5) fitted with a powder pattern and isotropic lineshapes within the EchoNMR 

fitter. The original spectrum is denoted by the black solid line, while simulated powder 

patterns are represented by red and blue dotted lines (respectively), and their summation is 

indicated by a grey solid line. 

  

-60 -40 -20 0 20 40 60 80

Frequency / kHz

 Data

 First Component

 Second Component

 Isotropic Component

 Cumulative Fit



60 

 

 

 

Figure 3.6: As well as fitting 2H NMR spectra, EchoNMR fitter can fit other spectra which 

produce result in second-order Legendre polynomial dependent power patterns and 

isotropic lineshapes. Here is a sample 31P NMR spectrum fit with two (single-transition) 

powder patterns to determine amount of each observed component (Shaikh et al., 2002). 

The two components are POPE and SM in a POPE/SM (1:1) mixture in MLV form. 
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 THE EFFECT OF DHA ON RAFT DOMAINS 

4.1 Introduction 

This work is reprinted and modified from J. J. Kinnun, R. Bittman, S. R. Shaikh and S. R. 

Wassall (2018). DHA Modifies the Size and Composition of Raft-like Domains: A Solid 

State 2H NMR Study. Biophys. J., 114(2), 380–391 Copyright (2017), with permission 

from Elsevier. 

 

Omega-3 polyunsaturated fatty acids (n-3 PUFA) constitute an influential class of fatty 

acids that are characterized by having the last double bond located three carbons from the 

terminal methyl group (Mozaffarian & Wu, 2011). Their dietary intake in fish oils confers 

a wide range of health benefits that includes the alleviation of inflammation in diseases 

such as inflammatory bowel disorder, cardiovascular disease, rheumatoid arthritis, 

nonalcoholic fatty liver disease, obesity and Alzheimer’s disease (Calder, 2013; 

Mozaffarian & Wu, 2011; Simopoulos, 2002). Despite extensive research, the molecular 

mechanism remains unclear. We have proposed (Shaikh, Kinnun, et al., 2015), as have 

others (Calder, 2012; Ma et al., 2004) , that modification of molecular organization in 

plasma membranes following the incorporation of n-3 PUFA into phospholipids may be, 

in part, responsible. An emerging model has n-3 PUFA remodeling the architecture of 

membrane domains, often called lipid rafts, enriched in sphingolipids and cholesterol (chol) 

that compartmentalize signaling proteins (Shaikh, 2012; Shaikh, Wassall, et al., 2015). 

 

There is now general agreement that the lateral distribution of lipids and proteins in 

membranes is not random (Stillwell, 2015). Driven by differential affinity between the 

diverse collection of lipids that comprise biological membranes, patches or domains of 

specific lipid composition exist providing the environment necessary for the function of 

resident proteins (I. Levental et al., 2010). Lipid rafts, especially, have received attention 

(Lingwood & Simons, 2010). They are tightly packed regions of sphingolipids and 

cholesterol (chol). The origin of their stability is the structural compatibility of the largely 

linear configuration adopted by the predominantly saturated chains of sphingolipids and 
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the planar façade of the tetracyclic ring of chol, together with hydrogen bonding of the 

hydroxyl group on the sterol to the amide group in the sphingosine backbone of 

sphingolipids. Polyunsaturated phospholipids have physical properties that in most 

respects are the antithesis of sphingolipids (Stillwell & Wassall, 2003). The shallow energy 

barrier to rotation around the single bonds in the repeating =CH-CH2-CH= unit in a PUFA 

chain allows rapid isomerization through a variety of conformations (Feller et al., 2001). 

These fluctuations in structure push the rigid steroid moiety of chol away and, to avoid 

close proximity, polyunsaturated phospholipids segregate into highly disordered domains 

depleted in chol that are the complete opposite of a lipid raft (Wassall & Stillwell, 2008). 

This scenario was substantiated in a series of studies on lipid bilayers composed of 

polyunsaturated 1-palmitoyl-2-docosahexaenoylphosphatidylethanolamine (PDPE) 

combined with raft-forming chol and sphingomyelin (SM) (Shaikh et al., 2004; Shaikh et 

al., 2009; Soni et al., 2008). The consensus of results from solid state 2H NMR, detergent 

extraction and DSC was that the mixed membrane separates into PDPE-rich/chol-poor and 

SM-rich/chol-rich domains that are nanoscale in size. That the degree of segregation 

depends upon phospholipid head group became apparent in subsequent work that 

substituted 1-palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC) for PDPE in the 

mixture of lipids (Williams et al., 2012). Although PDPC-rich/chol poor domains were 

formed, an analysis of 2H NMR spectra obtained with an analog of PDPC perdeuterated in 

the sn-1 chain (PDPC-d31) indicated that a substantial amount of the polyunsaturated 

phospholipid infiltrated SM-rich/chol-rich raft-like domains. This finding made with a 

protein-free model system correlates with the uptake of n-3 PUFA into detergent-resistant 

membranes (DRM) seen in vitro and in vivo, which was central to the formulation of the 

hypothesis that n-3 PUFA target lipid rafts (Yaqoob & Shaikh, 2010). 

 

 In the experiments described here, solid state 2H NMR spectroscopy is applied to compare 

the molecular organization of [2H31]-N-palmitoylsphingomyelin (PSM-d31) in model 

membranes prepared from PDPC/PSM-d31 (1:1 mol) and 1-palmitoyl-2-

oleoylphosphatidycholine (POPC)/PSM-d31 (1:1 mol) in the absence and presence of chol 

(1:1:1 mol) (the molecular structure of each lipid is shown in Figure B.1, Appendix B). 

The 1:1:1 mol mixture represents the canonical raft mixture employed in studies of model 
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membranes (Veatch & Keller, 2003a) and allows direct comparison with our previous work 

(Shaikh, Kinnun, et al., 2015; Williams et al., 2012). PDPC is representative of a 

phospholipid where n-3 PUFA consumed in the diet incorporates (Lands, M. Inoue, 

Sugiura, & Okuyama, 1982). It has a saturated fatty acid, palmitic acid, at the sn-1 position 

and docosahexaenoic acid (DHA, 22:6) with 22 carbons and 6 double bonds (Feller et al., 

2001; I. Levental et al., 2010; Shaikh, 2012; Shaikh, Kinnun, et al., 2015; Soni et al., 2008; 

Yaqoob & Shaikh, 2010), which is one of major bioactive components in fish oils, at the 

sn-2 position. POPC with oleic acid (OA, 18:1) at the sn-2 position (Stillwell, 2015) 

serves as a monounsaturated control. While earlier work established that PDPC 

incorporates into domains enriched in SM and chol, what happened to molecular 

organization within the raft-like domain remained to be determined. By observing PSM-

d31, an analog of SM with perdeuterated palmitic acid for its amide-linked side chain, one 

of the raft-forming molecules was directly probed in the current research. Complementary 

experiments looking at [3α-2H1]cholesterol (chol-d1), an analog of chol with deuterium 

substituted at the 3α position, were also performed. 

4.2 Materials and Methods 

Avanti Polar Lipids (Alabaster, AL) was the source for POPC, PDPC and egg SM (eSM 

with N-acyl fatty acid composition (in mol%) 16:0 (86%), 18:0 (6%), 22:0 (3%), 24:1 (3%) 

and unknown (2%) assayed by the supplier). PSM-d31 was synthesized as previously 

described (Bittman & Verbicky, 2000). Chol and chol-d1 were purchased from Sigma 

Chemical (St. Louis, MO) and Cambridge Isotope Laboratories (Andover, MA), 

respectively. Butylated hydroxyl toluene (BHT) was obtained from Fisher Science 

Education (Hanover Park, IL), while Cambridge Isotope Laboratories was the supplier for 

deuterium depleted water. 

 

Multilamellar dispersions of 50 wt% PDPC/PSM-d31 (1:1 mol), PDPC/PSM-d31/chol 

(1:1:1 mol), POPC/PSM-d31 (1:1 mol), POPC/PSM-d31/chol (1:1:1 mol), PDPC/eSM/chol-

d1 (1:1:1 mol) and POPC/eSM/chol-d1 (1:1:1 mol) were prepared in 50 mM Tris (pH 7.5). 

The procedure, which included precautions to minimize oxidation, was outlined in our 

earlier publications (Williams et al., 2012). Briefly, lipid mixtures comprised of ~30-50 mg 
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total lipid were first codissolved in chloroform. BHT was also added in 1:250 mol ratio 

with respect to lipid to serve as an antioxidant for samples containing PDPC. The organic 

solvent was evaporated using a stream of argon (samples containing PDPC) or nitrogen 

(samples containing POPC) gas and the samples were then put under vacuum overnight to 

remove remaining chloroform. An equal weight of 50 mM degassed Tris buffer solution 

relative to dried lipid was added, the samples were vortex-mixed and 2 mL extra deuterium 

depleted water was added to enable the measurement of pH that was adjusted to 7.5. Three 

lyophilizations of the samples were subsequently performed in the presence of excess (2 

mL) deuterium depleted water to reduce the amount of 2HHO from its naturally abundant 

level. Samples were finally rehydrated to 50 wt%, followed by 3 cycles of freezing and 

thawing to ensure a uniform mixture. In all instances, hydration was performed above 

45 °C, which exceeds the temperature of the gel-to-liquid-crystalline phase transition for 

all the lipids (Koynova & Caffrey, 1998; Shaikh et al., 2009). The resultant samples were 

transferred to a 5 mm NMR tube, which was sealed with a cap and Teflon tape. 

 

Solid state 2H NMR experiments were performed at 46.0 MHz on a homebuilt NMR 

spectrometer with a 7.05 T superconducting magnet (Oxford Instruments, Osney Mead, 

UK) (Williams et al., 2012). The spectrometer is equipped with an in-house assembled 

programmable pulse generator, a dual-channel digital oscilloscope (R1200 M; Rapid 

Systems, Seattle, WA) to acquire signals in quadrature and a temperature controller (1600 

Series; Love Controls, Michigan City, IN) that regulates temperature to ±0.5°C. A phase-

alternated quadrupolar echo sequence (90°x-τ-90°y-aquire-delay) was implemented to 

eliminate spectral distortion due to the receiver recovery time (J.H. Davis, Jeffrey, Bloom, 

Valic, & Higgs, 1976). The parameters used were 90° pulse width = 3.7 μs; separation 

between pulses τ = 50 μs; delay between pulse sequences = 1.0 s; sweep width = ±100 or 

±250 kHz; and number of scans = 2,000-100,000 depending on signal intensity. 

4.3 POPC/PSM-d31 and POPC/PSM-d31/chol Results 

Solid-state 2H NMR spectra were acquired for PSM-d31 in mixtures with POPC (1:1 mol) 

and POPC and chol (1:1:1 mol), as well as for chol-d1 in mixtures with with POPC and 

eSM (1:1:1 mol). The experiments were run from high to low temperature between a 
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maximum of 45 °C and a minimum of -25 °C, which encompasses the gel-to-liquid-

crystalline phase transition for each individual lipid. PSM-d31 serves as a deuterium labeled 

substitute for eSM. As the major constituent (86 mol%), PSM dominates the physical 

properties of the natural lipid. The gel to liquid crystalline transition for eSM at 39 °C 

(width-at-half height ~1-2 °C) compares with 41 °C (width-at-half height ~1 °C) for pure 

PSM (28,29). Thus, the results obtained with PSM-d31 and chol-d1 here, and with POPC-

d31 in mixtures with eSM and chol in earlier work by Williams et al. (Williams et al., 2012), 

provide information on closely similar systems. 

 

Examples of the spectra recorded for POPC/PSM-d31 (1:1 mol) are shown in Figure 4.1 

(left column). The spectrum obtained at -10 °C is characteristic of the gel phase (J. H. Davis, 

1983). It is broad and relatively featureless with shoulders at around ±63 kHz and a central 

pair of peaks separated by ~15 kHz. This shape reflects the slow rotational diffusion 

undergone by the rigid, all-trans palmitic acid chains on PSM-d31 in the mixed membrane 

with POPC. The same overall spectral shape remains upon raising the temperature to 2 °C, 

although intensity is reduced at the edges as the chains move more freely. By 23 °C the 

spectrum is narrowed by fast axial rotation to one that is a signature for the lamellar liquid 

crystalline phase (J. H. Davis, 1983). Isomerization occurs about C-C bonds in the PSM-

d31 chains that are melted in the mixture with POPC. The spectrum consists of a narrow 

signal with peaks at ±2 kHz due to the disordered terminal methyl groups superposed upon 

a broader superposition of signals due to progressively more ordered methylene groups. A 

plateau region of methylene groups that are motionally equivalent in the upper portion of 

the chain is responsible for the sharp edges at ±18 kHz. The further narrowing and 

sharpening of peaks that take place at higher temperature as the chains become increasingly 

more mobile are illustrated by the spectra collected at 30 and 37 °C. 

 

The spectra for POPC/PSM-d31/chol (1:1:1 mol) displayed in Figure 4.1 (right column) 

demonstrate that the sterol affects the molecular organization of the sphingolipid in the 

mixture with POPC. As in the absence of chol, the spectrum at -10 °C is gel-like in form. 

There is a reduction in the intensity of the outermost shoulders, nevertheless, that is 

symptomatic of the disruption of chain packing that chol produces in the gel state. At 0 °C 
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the impact of the sterol is even more apparent. A spectral component that is ±30 kHz in 

width, indicating the onset of axial rotation for methylene groups, has begun to emerge. 

The intensity of this component, within which peaks also appear, grows with increasing 

temperature until by 20 °C the spectrum has become entirely liquid crystalline-like in form. 

The constraint on motion of the PSM-d31 chains imposed by the rigid steroid in the liquid 

crystalline state, however, is discernible in the much greater width of the spectrum. An 

increase in order of >50% due to chol is indicated by the sharp edges at ±30 kHz that 

characterize the spectral shape. This trend continues as the temperature is raised to 30 and 

37 °C. Despite a reduction in width and greater resolution of peaks, inspection of the 

spectra collected at the higher temperatures implies a similar differential in order between 

with and without sterol persists. 

 

Figure 4.1 presents spectra that are representative of the data obtained over the entire range 

of temperature studied. To elaborate the trends seen, the first moment 𝑀1 was calculated 

for all of the spectra that were collected using equation 2.50 and was then plotted against 

temperature in Figure 4.2 (upper panel). Moments slowly decreasing with temperature 

designate that PSM-d31 adopts gel higher (> 13 °C) temperature, respectively, in the 1:1 

mol mixture with POPC when chol is absent. A drop in the value of 𝑀1 between these 

temperature regimes occurs with a midpoint at 10 °C. The drop is ascribed to the motional 

narrowing of the spectrum that accompanies the melting of the perdeuterated N-acyl chain 

on PSM-d31. It is appreciably depressed in temperature compared to the gel to liquid 

crystalline transition for pure PSM-d31 (38 °C) (Bunge et al., 2008). In the presence of chol, 

by contrast, there is no longer a discontinuity in the variation of the moments with 

temperature. The magnitude of 𝑀1 for PSM-d31 mixed with POPC and chol in 1:1:1 mol 

ratio gradually reduces from a value indicating gel phase to one associated with a liquid 

crystalline state that is substantially ordered by the sterol. 

 

The spectra for PSM-d31 in POPC/PSM-d31 bilayers and in POPC/PSM-d31/chol bilayers 

are interpreted in terms of heterogeneous mixing of lipids. According to the model, there 

is incomplete de-mixing of lipids so that SM-rich and PC-rich domains form (Shaikh, 

Kinnun, et al., 2015; Williams et al., 2012). This view is corroborated by the marked 
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disparity in molecular organization revealed by the first moments measured here for PSM-

d31 in POPC/SM-d31 and the values we published for POPC-d31 in bilayers of POPC-

d31/eSM prepared in the same molar ratio (Figure B.2, Appendix B) (Williams et al., 2012). 

The first moment may be equated via equation 2.51 to an average order parameter 𝑆𝐶̅𝐷 at 

temperatures (≥20 °C) where the spectra establish both PSM-d31 and POPC-d31 are liquid 

crystalline in their respective mixtures. Consistent with the formation of SM-rich (more 

ordered) and PC-rich (less ordered) domains, the value of 𝑆𝐶̅𝐷  evaluated at 37 °C is 

substantially higher for PSM-d31 (𝑆𝐶̅𝐷 = 0.203) than POPC-d31 (𝑆𝐶̅𝐷 = 0.137) (Table B.1, 

Appendix B). A significant distinction between the moments determined in the current 

work for PSM-d31 and previously for POPC-d31, likewise, exists following the addition of 

chol to POPC/PSM-d31 and POPC-d31/eSM in 1:1:1 molar amount (Figure B.2, Appendix 

B) (Williams et al., 2012). Indicative of segregation into domains, once again the average 

order parameter evaluated at 37 °C for PSM-d31 (𝑆𝐶̅𝐷 = 0.288) is correspondingly much 

greater than for POPC-d31 (𝑆𝐶̅𝐷 = 0.231) (Table B.1, Appendix B). It should be borne in 

mind that a differential in order between lipids does not necessarily mean they are in 

separate domains. Lipids with chains that possess substantially different intrinsic order can 

exhibit different order parameters when homogeneously mixed (Hsueh, Giles, Kitson, & 

Thewalt, 2002). The difference in average order parameter ( ∆𝑆𝐶̅𝐷 ~ 0.06 ) measured 

between lipids in mixed bilayers in the current study, however, is too big to be entirely 

explained by this effect. 

 

A fundamental tenet of our spectral analysis is that the domains formed in POPC/PSM-d31 

and POPC/PSM-d31/chol mixed membranes are nanoscale (<10’s nm) in dimension. The 

small size explains why only a single spectral component, rather than separate signals from 

SM-rich and PC-rich domains, is discernible in the spectra observed in the current work at 

higher temperature that are liquid crystalline in form (Fig. 4.1, left and right column). 

Lateral diffusion of PSM-d31 in-and-out of domains is sufficiently fast to produce a 

spectrum that is a population weighted average for the two environments (Bloom & 

Thewalt, 1994). The same interpretation was applied to the 2H NMR spectra for POPC-d31 

that were observed under equivalent conditions in our prior study of POPC-d31/eSM and 

POPC-d31/eSM/chol (Williams et al., 2012). Single component spectra have also been 
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reported for deuterated analogs of lipids in POPC/SM/chol bilayers by other groups and 

attributed to fast exchange between domains (Aussenac, Tavares, & Dufourc, 2003; Bartels, 

Lankalapalli, Bittman, Beyer, & Brown, 2008; Bunge et al., 2008; Engberg, Yasuda, et al., 

2016). That coexisting domains form in bilayers containing SM, unsaturated PC and chol 

has been confirmed by a variety of approaches, and the consensus is that they are 

nanoscopic in POPC/SM/chol bilayers (Pathak & London, 2015; Petruzielo, Heberle, 

Drazba, Katsaras, & Feigenson, 2013). Direct evidence, in particular, was obtained using 

techniques sensitive on a shorter length scale/faster timescale (such as Förster resonance 

energy transfer (FRET) and small angle neutron scattering (SANS)) than 2H NMR 

spectroscopy. 

4.4 PDPC/PSM-d31 and PDPC/PSM-d31/chol Results 

Solid-state 2H NMR spectra were acquired for PSM-d31 in mixtures with PDPC (1:1 mol), 

PDPC and chol (1:1:1 mol), as well as for chol-d1 in mixtures with PDPC and eSM (1:1:1 

mol). Similar to the POPC mixtures, the experiments were run from high to low 

temperature between a maximum of 45 °C and a minimum of -25 °C, which encompasses 

the gel-to-liquid-crystalline phase transition for each individual lipid.  

 

Examples of the spectra recorded for PDPC/PSM-d31 (1:1 mol) are shown in Figure 3 (left 

column). At -10 °C the spectrum for PDPC/PSM-d31 is broad with shoulders near ±63 kHz 

signifying gel phase. The presence of rapidly reorienting PSM-d31, unlike in the mixture 

with POPC at the same temperature (Figure 4.1, left column), is apparent in the central 

portion of the spectrum where there is a narrow pair of peaks separated by ~3 kHz 

superposed upon a spectral component with edges at ±17 kHz. Peaks begin to become 

visible in this central portion of the spectrum, presumably reflecting a gradient of mobility 

in the bottom part of the PSM-d31 chains, and there is a reduction in the relative intensity 

of the broad component on raising the temperature to 0 °C. By 20 °C the broad component 

has disappeared and more peaks are resolved. The spectrum, with sharp edges at ±15 kHz 

due to the plateau region of approximately uniform order parameter in the top half of the 

chains, has the definitive shape associated with the liquid crystalline state. A slight 

narrowing and better resolution of peaks is possessed by the spectra at 30 and 37 °C that 
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retain the same overall shape. Reflecting the influence of the polyunsaturated phospholipid 

on the sphingolipid, greater disorder and a shorter plateau region are indicated by the 

smaller width and lower intensity of the edges seen for PSM-d31 in the mixed membrane 

with PDPC than POPC (Figuure 4.1, left column). This trait was observed in spectra 

comparing PDPC-d31 and POPC-d31, originally in single component bilayers and 

subsequently in mixtures with eSM (Salmon, Dodd, Williams, Beach, & Brown, 1987; 

Williams et al., 2012). 

 

A gel-like state following the introduction of cholesterol is indicated by the broad spectrum 

shown for PDPC/PSM-d31/chol (1:1:1 mol) at -10 °C in Figure 4.3 (right column). That the 

packing of PSM-d31 chains is disrupted by the sterol is evident, like in PSM-d31/POPC/chol 

at the same temperature (Fig. 1, right column), from the small intensity in the wings of the 

spectrum at around ±60 kHz. A little higher in temperature, a spectral component with 

shoulders at ±30 kHz appears riding on the wider background of the spectrum at 0 °C. It is 

attributed to methylene groups on PSM-d31 chains rotating in extended conformation, 

revealing coexistence of liquid ordered (lo) and gel phases. Then by 20 °C, spectral 

intensity due to PSM-d31 in the gel phase has disappeared. The spectral component ascribed 

to rotating PSM-d31 chains has become narrower with edges that are better defined. Peaks 

within this component have begun to show up, with a resolution that the spectra at 30 and 

37 °C illustrate improves with increasing temperature. An almost doubling in the width of 

the spectra relative to PDPC/PSM-d31 (Figure 4.3, left column) reflects the expected 

ordering effect of cholesterol on lipid chains in the liquid crystalline state. The increase is 

somewhat greater than seen in the POPC/PSM-d31/chol. What is more notable with respect 

to the POPC-containing system is the appearance of two separate signals (indicated by 

arrows) for the methyl groups in the center of the spectra for PDPC/PSM-d31/chol at the 

higher temperatures (Figure 4.3, right column). These peaks are ascribed PSM-d31 residing 

in more-ordered (outer pair of peaks) and less-ordered domains (inner pair of peaks) in the 

PDPC-containing system. 
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The variation with temperature of all of the spectra acquired with the PDPC/PSM-d31 and 

PDPC/PSM-d31/chol samples is summarized in the plot of first moment against 

temperature in Figure 4.2 (lower panel). As in the mixture with POPC (Figure 4.2, upper 

panel), gel ( 𝑀1 > 11 × 104  s-1) and liquid crystalline ( 𝑀1 < 6 × 104  s-1) phase are 

indicated for PSM-d31 mixed with PDPC by moments that decrease slowly with 

temperature at low (< 5 °C) and high (> 12 °C) temperature, respectively. The midpoint of 

the abrupt drop in value of the first moment between the two phases occurs at 8 °C, slightly 

lower than in POPC/PSM-d31 (10 °C) and much lower again than in single component 

PSM-d31 bilayers (38 °C) (Bunge et al., 2008). Following the addition of chol, like with 

POPC/PSM-d31/chol (Figure 4.2, upper panel), the dependence upon temperature of the 

moments for PDPC/PSM-d31/chol does not exhibit a discontinuity over the temperature 

range studied (Figure 4.2, lower panel). There is a gradual reduction with increasing 

temperature in the magnitude of 𝑀1 for PSM-d31 mixed with PDPC and chol in 1:1:1 mol 

ratio from a value representative of gel phase to one signifying a liquid crystalline state 

that the sterol has ordered appreciably. 

 

We attribute the spectra for PDPC/PSM-d31 and PDPC/PSM-d31/chol to a superposition of 

signals from PSM-d31 partitioned between coexisting SM-rich and PC-rich domains. 

Similar to what we found in the samples containing POPC, this assessment is supported by 

comparing the first moments reported here with the very different values measured for 

PDPC-d31 in our earlier study of PDPC-d31/eSM and PDPC-d31/eSM/chol (Figure B.3, 

Appendix B) (Williams et al., 2012). Average order parameters calculated from the 

moments obtained at 37 °C illustrate the difference in molecular organization between SM 

and PC (Table B.1, Appendix B). The average order parameter for PSM-d31 (𝑆𝐶̅𝐷 = 0.155) 

in PDPC/PSM-d31 is >25% higher than for PDPC-d31 (𝑆𝐶̅𝐷 = 0.122) in PDPC-d31/eSM, 

while the average order parameter for PSM-d31 (𝑆𝐶̅𝐷 = 0.253) in PDPC/PSM-d31/chol is 

>30% higher than for PDPC-d31 (𝑆𝐶̅𝐷 = 0.192) in PDPC-d31/eSM/chol. Both in the absence 

and presence of chol, the values reflect the greater order expected for SM-rich relative to 

PC-rich domains. 
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The domains must be small (<10’s nm) in PDPC/PSM-d31 since, just as we saw in 

POPC/PSM-d31 (Fig. 1, left column), separate signals from PSM-d31 in SM-rich and PC-

rich domains possessing differing degrees of chain order are not resolved in the liquid 

crystalline-like spectra recorded at higher temperature (Figure 4.3, left column). Lateral 

diffusion produces fast exchange between the domains, collapsing the spectrum to a 

population-weighted average of the spectra for the individual domains. The same 

explanation was similarly invoked to interpret the spectra obtained with the equivalent 

sample where the labeled analog was switched from PSM-d31 to PDPC-d31 in PDPC-

d31/eSM (Williams et al., 2012). Inspection of the spectra for PDPC/PSM-d31/chol reveals 

that the situation changes upon the introduction of chol (Figure 4.3, right column). Two 

spectral components due to PSM-d31 in ordered SM-rich and less ordered PC-rich domains 

are resolved at higher temperature, as is clearly reflected in the splitting into two signals of 

the signal assigned to the methyl groups in the center of the spectra. The domains are 

enlarged in size (> 10’s nm) in the PUFA-containing membrane when chol is present, so 

that the exchange of PSM-d31 between domains is slow and a superposition of spectra from 

the two environments is the outcome. An increased domain size was analogously deduced 

from the 2H NMR spectra that we observed for PDPC-d31 in the corresponding PDPC-

d31/eSM/chol system (Williams et al., 2012). Consistent with the larger domains we see in 

PDPC- vs. POPC-containing mixtures with SM and chol, imaging microscopy and 

computer simulations show that replacing DHA- for OA-containing PC promotes the 

formation of larger domains in mixed membranes of analogous composition (Georgieva et 

al., 2015; Konyakhina & Feigenson, 2016; K. R. Levental et al., 2016). 

4.5 DHA Increases Domain Size 

The lipid raft concept continues to evolve as an underlying principle in the structure and 

functioning of cellular membranes, especially for signal transduction (I. Levental & Veatch, 

2016; Lingwood & Simons, 2010). The potential role that n-3 PUFA may play in 

remodeling the architecture of lipid rafts is addressed in the current study. Nutritionally, n-

3 PUFA are associated with reducing the symptoms of a multitude of diseases (Calder, 

2013, 2015; Mozaffarian & Wu, 2011; Simopoulos, 2002). The uptake of n-3 PUFA into 

phospholipids in the plasma membrane that then modulate the stability of lipid rafts and 
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thereby the activity of signaling proteins has been suggested to be a contributing factor 

(Calder, 2015; Lindblom & Orädd, 2009; Ma et al., 2004; Shaikh, 2012; Shaikh, Kinnun, 

et al., 2015; Shaikh, Wassall, et al., 2015; Yaqoob & Shaikh, 2010).  

 

To study how PDPC affects the structure of raft-like domains solid-state 2H NMR 

spectroscopy was utilized. 2H labeled analogs of the lipid-raft molecules SM (PSM-d31) 

and chol (chol-d1) were observed in model membranes prepared from mixtures with PDPC 

and, as a monounsaturated reference, POPC. An increase in the size of domains in the 

presence of PDPC is revealed by the spectra. These results are further interpreted in terms 

of heterogeneity in the lateral distribution of DHA-containing PC molecules within raft-

like domains. 

 

The observation of two components attributed to methyl groups in the spectra of 

PDPC/PSM-d31/chol (Figure 4.3, right column), while only one component appears in the 

spectra of POPC/PSM-d31/chol (Figure 4.1, right column), indicates that substituting DHA 

for OA increases domain size. In the OA-containing membrane, diffusion mediated 

exchange between SM-rich (more ordered) and PC-rich (less ordered) domains at a rate 

faster than the difference in intrinsic quadrupolar splitting for PSM-d31 in the domains 

produces a time-averaged spectrum (Mannock, McIntosh, Jiang, Covey, & McElhaney, 

2003). Exchange between the domains that are larger in the DHA-containing membrane is 

slow compared to the difference in splitting for PSM-d31 within them, so that separate 

signals are observed. This assessment is consistent with earlier work comparing PDPC-

d31/eSM/chol and POPC-d31/eSM/chol mixtures (1:1:1 mol) where two spectral 

components due to methyl groups were resolved for PDPC-d31 but just one for POPC-d31 

(Williams et al., 2012). Further support is given by spectra for the PDPC/eSM/chol-d1 and 

POPC/eSM/chol-d1 mixtures (1:1:1 mol) (Figure B.4, Appendix B).  There is a 

superposition of powder patterns from chol-d1 in two domains in the presence of PDPC, 

clearly discernible in two pairs of peaks - an outer pair from chol-d1 (split by ∆𝜈𝑟 ~ 48 kHz) 

in the ordered SM-rich domain and an inner pair from chol-d1 (split by ∆𝜐𝑟 ~ 40 kHz) in 

the disordered PC-rich domain (Figure B.4, Appendix B). By contrast, the spectrum is 

collapsed to a single powder pattern in the mixture with POPC (Figure B.4, left column). 
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An estimation of the size of domains in PDPC/PSM-d31/chol was made from the splittings 

measured for the methyl groups on PSM-d31 in the spectra at 30 °C (Table B.2, Appendix 

B). The difference in splitting (∆𝜈) between the domains provides a lower limit for the 

lifetime of PSM-d31 in a domain (𝜏 > (2𝜋∆𝜐)−1), from which a domain size 𝑟  > 30 nm 

was calculated (𝑟 = √4𝐷𝜏) assuming a typical value for the lateral diffusion coefficient 

(𝐷 ≈ 5 × 10−12 m2s-1) taken from the literature (Lindblom & Orädd, 2009). A lower limit 

to domain size in the same ballpark was similarly estimated on the basis of the difference 

in splitting between domains measured when PDPC-d31 (𝑟 > 50 nm) and when chol-d1 

(𝑟 > 20 nm) were the labeled analogs in the mixed membrane (Table B.2, Supplemental 

Information). This order of magnitude for the size of domains, in comparison, represents 

an upper limit in the equivalent mixtures containing POPC instead of PDPC. Taking the 

quadrupolar splitting measured for the methyl group here on PSM-d31 (Δ𝜐𝑟 = 6.7 kHz) in 

POPC/PSM-d31/chol and previously on POPC-d31 (Δ𝜐𝑟 = 5.1 kHz) in POPC-d31/eSM/chol 

(Williams et al., 2012) as representative of the SM-rich and PC-rich domains, respectively, 

an upper limit for the lifetime (𝜏 < (2𝜋∆𝜐)−1) in a domain and corresponding domain size 

𝑟 < 45 nm were evaluated. 

 

A propensity for polyunsaturated phospholipids to enlarge domains has been noted in other 

studies. Indicative of the slow exchange of lipid molecules between raft-like and non-raft 

domains, separate signals assigned to domains > 35 nm in radius were resolved in 2H NMR 

spectra that we recorded for 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine 

(PEPC-d31) with eicosapentaenoic acid (EPA, 20:5) at sn-2 position (Calder, 2012; 

Lingwood & Simons, 2010; Shaikh et al., 2009; Shaikh, Wassall, et al., 2015; Wassall & 

Stillwell, 2008) in a mixed membrane containing eSM and chol (Williams et al., 2012). A 

transition from coexisting domains that are nano- to micro-scale in size on replacing 1-

stearoyl-2-docosahexaenoyphosphatidylcholine (SDPC) for 1-stearoyl-2-

oleoylephosphatidylcholine (SOPC) and PDPC for POPC in mixtures with SM and chol 

was evinced by a combination of spectroscopic and imaging techniques using probes that 

discriminate between liquid ordered (lo) and liquid disordered (ld) environments 

(Georgieva et al., 2015; Konyakhina & Feigenson, 2016). Coarse grain molecular 

dynamics (CGMD) simulations performed over a simulation time of 32 μs on a bilayer 
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composed of PDPC or POPC mixed with 1,2-dipalmitoylphosphatidylcholine (serving as 

substitute for SM) and chol (1:1:1 mol), in addition, revealed a growth of domains with the 

polyunsaturated phospholipid that was not apparent with its monounsaturated counterpart 

(K. R. Levental et al., 2016). An even greater enhancement in domain size was observed 

in subsequently published simulations run with 1,2-

didocosahexaenoylphosphatitdylcholine (DDPC) that has DHA esterified at both sn-1 and 

-2 positions for the polyunsaturated phospholipid (Lin et al., 2016).  

 

The formation of larger domains in the presence of polyunsaturated phospholipids is 

attributed here to the high disorder of PUFA chains. The segregation of chol into regions 

rich in SM with saturated chains that are predominantly linear in conformation is promoted 

because PUFA adopt a multitude of rapidly varying configurations that are incompatible 

with close proximity to the rigid steroid moiety (Wassall & Stillwell, 2009). High disorder 

and the accompanying larger molecular cross-sectional area, reduce the thickness of the 

bilayer for regions rich in polyunsaturated phospholipids (Stillwell, Shaikh, Zerouga, 

Siddiqui, & Wassall, 2005). Domains then enlarge to relieve the line tension associated 

with an increased hydrophobic mismatch between thicker SM-rich and thinner 

polyunsaturated phospholipid-rich regions (García-Sáez, Chiantia, & Schwille, 2007). In 

support of this scenario, that the size of domains formed in mixtures of saturated lipids and 

chol with unsaturated lipids depends upon the extent of unsaturation (hence degree of 

disorder) of the unsaturated lipid is well documented (Ackerman & Feigenson, 2015; 

Veatch & Keller, 2003b). A direct correlation between the size and differential in thickness 

of coexisting lo and ld domains was measured by SANS in mixed membranes composed of 

saturated 1,2-distearoylphosphatidylcholine (DSPC) and chol combined with POPC and 

1,2-dioleoloylphosphatidylcholine (DOPC) in varying relative proportion (Heberle et al., 

2013). As the fraction of more disordered DOPC with OA at the sn-1 and -2 positions was 

increased, the radius of domains and the mismatch in their hydrophobic thickness enlarged 

in a roughly linear manner. However, reservations have been expressed about generalizing 

this result (Bleecker, Cox, & Keller, 2016). It has been advocated that the size and stability 

of domains formed in lipid mixtures are strongly linked to the differential in order than 

thickness between them (Georgieva et al., 2015; Lin et al., 2016). 



75 

 

 

An increase in domain size due to DHA was not apparent in 2H NMR spectra observed in 

our earlier work on 1:1:1 mol mixtures of PDPE with SM and chol (Shaikh et al., 2009; 

Soni et al., 2008). Like in control experiments run on mixtures with POPE, only a single 

component was resolved in spectra collected for deuterated analogs of PDPE and SM. The 

spectra were interpreted in terms of fast exchange back and forth between more ordered 

SM-rich and less ordered PE-rich domains < 20 nm in size for both OA- and DHA-

containing membranes (Soni et al., 2008). We ascribe the reduction in the size of domains 

with PDPE compared to PDPC to the smaller head group for PE than PC. The consequent 

smaller cross-sectional area for PE constrains the reorientation of lipid chains, resulting in 

higher order parameters and concomitantly a thicker bilayer (Kučerka et al., 2015; Lafleur, 

Cullis, & Bloom, 1990). Thus, regions rich in PE are closer in order and thickness to raft-

like domains rich in SM and chol than the counterpart PC. The smaller PE head group also 

produces negative stress curvature, as demonstrated by a tendency to adopt inverted 

hexagonal HII phase (Shaikh, Cherezov, Caffrey, Stillwell, & Wassall, 2003), which can 

reduce line tension between domains (Kuzmin et al., 2005). 

4.6 DHA Infiltrates Raft-like Domains 

Work on model membranes established that, driven by high disorder and aversion for chol, 

PDPE is largely excluded from ordered raft-like domains in mixtures with SM and chol 

(Shaikh et al., 2004; Shaikh, Kinnun, et al., 2015; Shaikh et al., 2009; Soni et al., 2008). 

The implication is that DHA-containing PE indirectly exerts an influence on lipid rafts via 

changes in molecular organization of non-raft regions. Substituting PDPE for PDPC in a 

subsequent investigation, however, it was discovered a substantial amount of DHA-

containing PC enters raft-like domains (Shaikh, Kinnun, et al., 2015; Williams et al., 2012). 

A differential in affinity for the sterol due to head group size was proposed to be responsible. 

Here it is thus inferred that PDPC, unlike PDPE, penetrates lipid rafts and directly 

influences their molecular organization. 

 

2H NMR spectroscopy has the ability to directly provide an estimate of the composition of 

lipid domains when separate signals from the lipid species in each domain are resolved. 

The relative integrated intensity (area) of signals from a deuterium labeled lipid in the 
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different domains corresponds to the relative amount of that lipid species in the domains. 

Here this approach was applied to the spectral components assigned to more ordered raft-

like and less ordered non-raft domains that were resolved in the 2H NMR spectra recorded 

in the current work for PDPC/PSM-d31/chol (Figure 4.3, right column) and 

PDPC/eSM/chol-d1 (Figure B.4, right column), and in the earlier study for PDPC-

d31/eSM/chol (Williams et al., 2012). 

This method of analysis is illustrated in Figure 4.4. The FTT depaked spectra presented are 

equivalent to spectra for a sample of single alignment oriented with the bilayer normal 

parallel to the direction of the magnetic field (McCabe & Wassall, 1997). They consist of 

a superposition of doublets, rather than of powder patterns as in a conventional FFT 

spectrum. The terminal methyl groups on PSM-d31 in PDPC/PSM-d31/chol (Figure 4.4, 

upper left panel) and on PDPC-d31 in PDPC-d31/eSM/chol (Figure 4.4, upper right panel) 

are responsible for the pair of doublets in the middle of the depaked spectra - the inner 

doublet is due to PSM-d31 and PDPC-d31 in the more disordered (non-raft) domain while 

the outer doublet is due to PSM-d31 and PDPC-d31 in the more ordered (raft-like) domain. 

Analogously, the inner and outer doublets in the depaked spectrum for PDPC/eSM/chol-d1 

(Figure 4.4, lower left panel) are respectively due to chol-d1 in non-raft and raft-like 

domains. From the relative integrated intensity of the signals ascribed to the two domains, 

the relative amount of PSM-d31, PDPC-d31 and chol-d1 was determined (Table B.3, 

Appendix B). The results are summarized in the pie charts plotted in Figure 4.4 (inset, 

lower right panel), which assume an approximately equivalent distribution of lipids 

between domains with eSM and PSM. Here it is found that the raft-like domain contains 

most of the total lipid - SM (28%) and chol (29%) comprise the majority with, as previously 

discovered (Williams et al., 2012), a significant amount of PDPC (23%). In the non-raft 

domain, PDPC is the major component (11%) together with lesser amounts of SM (4%) 

and chol (5%). Interestingly, the SM:chol ratio is nearly 1:1 mol in both domains. It is an 

observation consistent with high affinity between these two lipids and the existence of 

stoichiometric compositions at which lipids form a complex with the sterol (Lange, Tabei, 

Ye, & Steck, 2013). 

 



77 

 

 

These results reveal that, despite high disorder and aversion for chol, PDPC infiltrates SM-

rich/chol-rich domains. Similar behavior has been seen in other mixtures of lipids that form 

raft-like domains. Like PDPC-d31, two populations of PEPC-d31 in mixtures with eSM and 

chol (1:1:1 mol) were identified in 2H NMR spectra obtained in earlier work (Williams et 

al., 2012). The amount of PEPC-d31 (8%) in the spectral component attributed to the raft-

like domain was less than PDPC-d31. It was suggested greater disorder caused PEPC to be 

less compatible with infiltration into a more ordered environment. 2H NMR spectra 

consisting of a superposition of two spectral components were recorded for ternary 

mixtures of DOPC/N-stearoylsphingomyelin (SSM)/chol (1:1:1 mol) prepared with 

selectively deuterated analogs of the three lipids (Yasuda et al., 2015). In common with 

our interpretation, incorporation into raft-like and non-raft domains was deemed to be 

responsible. Although the distribution of SM and chol between the domains resembles that 

seen with PDPC, not nearly as much DOPC (10%) was found in the raft-like domain. 

Possible reasons include a greater mismatch in thickness for SSM vs. DOPC than for PSM 

vs. PDPC. SSM is thicker than PSM due to its longer amide-linked chain (stearic (18:0) as 

opposed to palmitic (16:0) acid), while comparable values have been published for the 

thickness of DOPC and PDPC bilayers (Ausili et al., 2017; Kučerka et al., 2008). The 

saturated sn-1 chain on PDPC may also pack better with the saturated chains on SM and 

the rigid steroid moiety of chol than the unsaturated (oleic (18:1)) chains at both sn-1 and 

-2 positions on DOPC. Coexistence of lo and ld domains was observed in SDPC/brain SM 

(bSM)/chol mixtures by a combination of FRET and fluorescence imaging in another study 

(Konyakhina & Feigenson, 2016). The mixing of SDPC with bSM/chol, it was concluded, 

is comparable to DOPC and POPC.  

 

Insight into how DHA affects molecular organization within rafts, in addition, may be 

gleaned from the 2H NMR spectra where two components were resolved. PSM-d31 in more 

ordered, raft-like domains is responsible for the outermost doublet (±54.2 kHz) in the 

depaked 2H NMR spectrum for PDPC/PSM-d31/chol at 30 °C (Figure 4.4, upper left panel 

- see also Figure B.5, Appendix B). Several methylene groups contribute to the high 

intensity of this composite doublet, which we attribute to a plateau region of approximately 

constant order (𝑆𝐶𝐷 ≈ 0.43) in the upper portion of the chain (Lafleur et al., 1989). As 
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judged by comparison with smoothed order parameter profiles published for bilayers of 

PSM-d31 mixed with just chol (Bartels et al., 2008; Bunge et al., 2008), the impact of PDPC 

on the raft-like environment is modest. Order in the initial plateau region of these profiles 

appears to asymptotically approach a limit (𝑆𝐶𝐷~0.45) with increasing concentration of 

chol in the binary mixture that only slightly exceeds the value measured for the raft-like 

domain in the ternary mixture with PDPC as well as PSM-d31 and chol. The incorporation 

of DOPC similarly produced minimal change in the order of SSM raft-like lo domains 

formed in DOPC/SSM/chol (1:1:1 mol) mixtures (Yasuda et al., 2015). Quadrupolar 

splittings measured with deuterated analogs of SSM selectively labeled throughout the 

entire amide linked chain were almost identical in the raft-like domains to measurements 

made on SSM/chol (1:1 mol) mixtures. 

 

Like PDPC/PSM-d31/chol, we ascribe the outermost signal (±42.4 kHz) in the depaked 2H 

NMR spectrum for PDPC-d31/eSM/chol at 30 °C to a plateau region of almost constant 

order (𝑆𝐶𝐷 ≈ 0.34) in the upper portion of the sn-1 chain for PDPC-d31 within more ordered 

raft-like domains (Figure 4.4, upper right panel – see also Figure B.5, Appendix B). The 

large disparity in order (Δ𝑆𝐶𝐷 ≈ 0.09) with respect to PSM-d31 implies that PDPC taken 

up into a raft-like domain does not mix homogeneously with SM. A definitive explanation 

eludes us at present. Two possible models are depicted in Figure 5. According to one 

scenario, PDPC sequesters into small-localized patches ( 𝑟 < 10  nm) to reduce the 

unfavorable exposure of DHA chains to the high concentration of chol in the raft-like 

domain (Figure 4.5, top panel). These small patches would not be devoid of chol, but the 

amount of sterol would be lower than in the surrounding environment. The second scenario 

has PDPC accumulating at the perimeter of raft-like domains (Figure 4.5, lower panel). A 

gradient in concentration of polyunsaturated phospholipid and thickness, and thereby line 

tension, would be created at the boundary with the thinner non-raft regions. 

4.7 Conclusion 

The 2H NMR experiments on model membranes performed here demonstrate that ordered 

domains enriched in chol and sphingolipids (lipid rafts) are a viable target for n-3 PUFA 

in the plasma membrane. The observation that replacing POPC with PDPC in mixtures 
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with SM and chol enlarges domains supports an underlying lipid driven mechanism by 

which n-3 PUFA regulate the size of lipid rafts. The take up of highly disordered n-3 PUFA 

into phospholipids in the non-raft environment increases the differential in order relative 

to lipid rafts, causing the rafts to cluster together into larger domains and thereby turn on 

resident signaling proteins. This view is consistent with imaging studies that have shown 

treating cells with EPA and DHA in vitro or by administration of EPA/DHA to mice 

increases the size of regions identified as rafts (Chapkin, Wang, Fan, Lupton, & Prior, 2008; 

Hou, McMurray, & Chapkin, 2016; Kim et al., 2008; Rockett et al., 2012). Studies with 

fluorescently labeled DHA have also shown incorporation of DHA directly into liquid 

ordered domains (Teague, Ross, Harris, Mitchell, & Shaikh, 2012). The effects of 

increasing raft size have functional consequences on the localization of proteins and their 

signaling (Kim et al., 2008; Rockett, Melton, Harris, Bridges, & Shaikh, 2013). Future 

studies will need to address other long chain n-3 PUFA, particularly docosapentaenoic acid 

(DPA) that is the elongation product of EPA, which could modulate raft size (M. Harris, 

Kinnun, Kosaraju, Leng, & Wassall, 2016). Subsequent studies, furthermore, should go 

beyond the use of a canonical 1:1:1 mixture of lipids given that DHA is esterified into 

phospholipids at lower levels in the plasma membrane of cells (Stillwell & Wassall, 2003).   

 

It is the observation here that PDPC, although highly disordered, infiltrates ordered raft-

like domains in mixtures with SM and chol adds credence to the assessment made on the 

basis of biochemical detergent assays that n-3 PUFA are incorporated into rafts in cells. In 

these studies EPA and DHA were detected in detergent resistant membranes (DRM), which 

are purported to crudely correspond to rafts (Pathak & London, 2011), isolated from cells 

incubated with n-3 PUFA (Rockett et al., 2012; Turk & Chapkin, 2013). A coherent picture 

has yet to emerge, however, on how n-3 PUFA affect molecular organization in regions 

identified as rafts in cellular systems. Increased (Kim et al., 2008), as well as decreased 

(Zech et al., 2009), order has been described following treatment with n-3 PUFA. This 

apparent contradiction in outcome reflects the complexity of biological cells, where 

variation in the levels of other fatty acids can moderate the response. Studies of lipid 

bilayers open a window on the response to controlled changes in composition that can help 

decipher what happens in more complex, biological membranes. In the current study, a 
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minimal effect of DHA on order in raft-like domains was inferred from the 2H NMR spectra 

obtained for PSM-d31 in mixtures with PDPC and chol. Sequestration of PDPC into small 

patches within raft-like domains is one possible scenario (Figure 4.5, top panel) that offers 

support for a proposal by which n-3 PUFA modify protein activity by de-clustering rafts 

(Shaikh, 2012). 
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Figure 4.1: 2H NMR spectra for 50 wt% aqueous dispersion in 50 mM Tris buffer (pH 7.5) 

of POPC/PSM-d31 (1:1 mol) (left column) and POPC/PSM-d31/chol (1:1:1 mol) (right 

column). Spectra are symmetrized about the central frequency to enhance signal/noise. 
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Figure 4.2: Variation of the first moment 𝑀1 as a function of temperature for POPC/PSM-

d31/ (1:1 mol) () and POPC/PSM-d31/chol (1:1:1 mol)  () (top panel); and for 

PDPC/PSM-d31 (1:1 mol) () and PDPC/PSM-d31/chol (1:1:1 mol) () (bottom panel). 

𝑀1 is plotted logarithmically for clarity. The lines through the data are merely meant to 

guide the eye. They were fit with a sigmoid function modified by a slope. 
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Figure 4.3: 2H NMR spectra for 50 wt% aqueous dispersion in 50 mM Tris buffer (pH 7.5) 

of PDPC/PSM-d31 (1:1 mol) (left column) and PDPC/PSM-d31/chol (1:1:1 mol) (right 

column). Spectra are symmetrized about the central frequency to enhance signal/noise. 

Arrows included in the spectrum for PDPC/PSM-d31/chol at 37 °C illustrate the resolution 

of signals assigned to the methyl groups on PSM-d31 in SM-rich (outer splitting) and PC-

rich (inner splitting) domains. Spectra are symmetrized about the central frequency to 

enhance signal/noise. 
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Figure 4.4: 2H NMR spectra at 30 C for PDPC/PSM-d31/chol (upper left panel), PDPC-

d31/eSM/chol (1:1:1 mol) (upper right panel) and PDPC/eSM/chol-d1 (lower left panel) 

(1:1:1 mol). Depaked spectra, together with an expansion of the central region in each case 

(above), are shown. The arrows designate pairs of signals assigned to the terminal methyl 

group on PSM-d31 and PDPC-d31 and to the 3α group on chol-d1 in more ordered SM-

rich/chol-rich (outer splitting) and more disordered PDPC-rich/chol-poor (inner splitting) 

domains. A Voigt lineshape (dashed lines) was fit to the peaks. The data for the samples 

containing PDPC-d31 are taken from Williams et al. (Williams et al., 2012). Spectra are 

symmetrized about the central frequency to enhance signal/noise. Pie charts depicting the 

composition of domains obtained from the fit of the peaks in the spectra are shown in the 

inset (lower right). The percentages are the amount of each lipid species in a domain with 

respect to the total amount of lipid in the mixed membrane. As shown, the majority of each 

lipid species resides within the more ordered (raft-like) domain. In total, 80% of the lipids 

reside within this domain. The reader is directed to Table B.3, Appendix B for the relative 

amount of each lipid in raft-like vs. non-raft domains. 
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Figure 4.5: A model depicting two possible scenarios for the arrangement of PDPC taken 

up into a SM-rich/chol-rich ordered domain. Top - PDPC molecules cluster together in 

small subdomains within the bigger raft-like, SM-rich/chol-rich domain. Bottom - PDPC 

molecules accumulate at the edge of the raft-like domain, creating a gradient in 

concentration and thickness at the border with the thinner PDPC-rich/chol-poor region. 

  



86 

 

 

 CONCLUSIONS 

The main focus of the thesis was characterizing the interaction of PUFA (in the form of 

DHA) with the raft-like domains (containing sphingomyelin and cholesterol) of model 

membranes. The major technique used here was solid-state 2H NMR spectroscopy, in 

which custom software was developed for. This chapter will summarize the work presented 

and suggest future directions. 

5.1 2H NMR Spectroscopy Data Processing and Analysis 

For bulk materials in the solid state, broadline NMR spectroscopy extracts details of 

molecular orientation and anisotropy of molecular reorientation by analysis of the 

lineshape. This technique allows for a direct measurements of order and dynamics in solids 

and gels which has been extensively applied to biological materials (Kinnun et al., 2015) 

and non-biological materials (Kinnun et al., 2013) as described in Chapter 2. It is a niche 

area of NMR for which standard software often lack necessary features. 

 

Both EchoNMR processor and fitter developed here, collectively referred to as EchoNMR 

tools as described in Chapter 3, process data obtained by broadline NMR spectroscopy. 

These tools have been designed with a focus on user usability and the open-source mindset, 

to allow for quick processing of data and flexibility. This is achieved in the MATLAB® 

(Mathworks) programming environment which allows for the development of the graphical 

user interfaces and runs as an interpreter which allows the code to be open-source. The 

collection of solid state 2H NMR spectra from model membranes relies on using the solid 

echo NMR pulse sequence to avoid phase distortion due to the receiver dead time. 

EchoNMR processor facilitates the transformation of the signal recorded in the time 

domain by this sequence to a broadline spectrum. This includes many automated routines 

in EchoNMR processor to help eliminate human guess work in data processing. There is 

then the option in EchoNMR fitter to make corrections (e.g. for the pulse width) and to 

perform lineshape fits to extract spectral parameters. 
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5.2 The Effect of PUFA on Raft Domain Formation 

Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) that 

relieves the symptoms of a wide variety of chronic inflammatory disorders. As yet the 

structural mechanism is not completely understood. However, studies suggest it may be 

membrane mediated (Rockett et al., 2013; Rockett et al., 2012). Using protein-free model 

membranes of controlled composition, this research was on the plasma membrane as a site 

of action. 

 

The molecular organization of [2H31]-N-palmitoylsphingomyelin (PSM-d31) mixed with 1-

palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) or 1-palmitoyl-2-

oleoylphosphatidylcholine (POPC), as a monounsaturated control, and cholesterol (chol) 

(1:1:1 mol) was examined in a model membrane by solid state 2H NMR spectroscopy. The 

spectra were analyzed in terms of segregation into ordered SM-rich/chol-rich (raft-like) 

and disordered PC-rich/chol-poor (non-raft) domains that are nanoscale in size. Spectra 

that are single-component, attributed to fast exchange between domains (𝑟 < 45 nm), for 

PSM-d31 mixed with POPC and chol become two-component, attributed to slow exchange 

between domains (𝑟 > 30 nm), for PSM-d31 mixed with PDPC and chol. The appearance 

of two spectral components suggests an increase in the size of domains when POPC was 

replaced by PDPC. Thus, the interpretation here agrees with the proposal that PUFA can 

increase the size of raft domains. 

 

Determination of domain composition identifies the infiltration of raft-like domains by 

DHA. The resolution of separate signals from PSM-d31, and correspondingly from [3α-

2H1]cholesterol (chol-d1) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine 

(PDPC-d31), in raft-like and non-raft domains enabled the determination of the composition 

of the domains in the PDPC-containing membrane. Most of the lipid (28% SM, 29% chol 

and 23% PDPC with respect to total lipid at 30 °C) was found in the raft-like domain. 

Despite substantial infiltration of PDPC into raft-like domains, there appears to be minimal 

effect on the order of SM implying the existence of internal structure that limits contact 

between SM and PDPC. The likely culprit is an of DHA aversion for cholesterol. Two 

scenarios arise from this observation, where PDPC is either sequestered in subdomains 
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within the raft or in an annulus around the raft-like domain. It is my opinion that it is 

improbable that the area of an annulus the domain would be large enough such that the 

diffusion of PDPC between the non-raft domain and the annulus would be slow enough to 

be observable with 2H NMR spectroscopy. Thus it is more probable that the ordered 

component observed for PDPC is due to PDPC sub-domains “lost” within the large raft-

like domain. These results suggest a significant refinement to the model by which DHA 

regulate the architecture of ordered, sphingolipid-chol-enriched domains (rafts) in 

membranes. 

5.3 NMR Software Development 

The software developed here has focused on quickly processing and analyzing anisotropic 

lineshapes produced by one-dimensional NMR spectroscopy. The rapid nature of the data 

processing is partially due to the rapid weighted-FFT dePaking algorithm (McCabe & 

Wassall, 1997). Because this technique is almost as fast as a standard FFT it could have 

potential beyond one dimensional experiments. Multidimensional NMR spectroscopy 

arises when pulse sequences have multiple time parameters. By default, there is always the 

direct time parameter which is the time domain of the FID. However, the solid echo pulse 

experiment (discussed in Chapter 3) has an additional time parameter, the inter pulse delay, 

which can be referred to as the indirect dimension. If multiple FID are recorded with 

sequential increments in the indirect dimension, both the FID and then the indirect 

dimension can be fast Fourier transformed to yield a two dimensional spectrum. 

Traditionally multidimensional NMR spectroscopy has found wide-application in samples 

in solution form, which has allowed the structural and dynamical determination of many 

molecules and compounds (Palmer & Dinshaw, 2002; Shampo et al., 2012). Until the 

advent of magic angle spinning NMR spectroscopy, multidimensional techniques have 

been lacking for samples in the solid state. This is due to the incomplete motional averaging 

in solids producing broad lineshapes that can be difficult to interpret, especially in multiple 

dimensions. Magic angle spinning is one way to remedy this, which narrows the broadened 

lineshape. 
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A less utilized technique is to enhance the spectral resolution via dePaking. This has not 

been traditionally used as it has been computationally intensive in a single dimension, 

which becomes significantly worse in multiple dimensions. However, the development of 

the weighted-FFT algorithm has drastically reduced the computation required (McCabe & 

Wassall, 1997). This allows the technique of dePaking to be used in multiple dimensions, 

especially for axially symmetric spectra which is produced in 2H NMR spectroscopy. In 

some ways a dePaking technique has already been used to observe the relaxation of specific 

spectral components by Brown et al. (Brown, Thurmond, Dodd, Otten, & Beyer, 2002), by 

plotting dePaked spectra as a time series to resolve site-dependent relaxation. However, 

the authors used a more-intensive dePaking algorithm and were only able to have a few 

time points. With the use of the more rapid dePaking algorithm, it is quicker to dePake 

along the direct time domain, which can then be traditionally fast Fourier transformed 

along the indirect time domain, and thus generate a true two-dimensional spectrum. If 

paired with pulse sequences, such as ones used in correlation spectroscopy (Levitt, 2008), 

this could yield additional structural parameters (due to correlations in the second 

dimension) along with the dynamical parameters provided by the order parameters. As for 

all new techniques, there are possible technical limitations to overcome. First, it is unclear 

the exact effect of dePaking on partially relaxed spectra which are often produced in 

multidimensional NMR spectroscopy. Partially-relaxed spectra were dePaked by the 

aforementioned work by Brown et al. (Brown et al., 2002) with little detriment. This could 

be due to the many dePaking techniques being sensitive primarily to the sharp components 

produced by perpendicular orientations of the labeled sample (McCabe & Wassall, 1997) 

and thus potentially insensitive to the exact features of the rest of the powder pattern which 

may be distorted. Another technical limitation is the appearance of artifacts at twice the 

frequency of observed peaks. As these artifacts are due to the partial derivative of the 

weighted-FFT technique detecting the shoulders of powder patterns, it is possible they 

could exhibit correlations in the second dimension. A user of the technique would have to 

be aware of this as it could result in false-peaks. 
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5.4 Future Directions of PUFA and Raft Research 

The size and biological role of raft-domains continues to be discussed and debated (I. 

Levental & Veatch, 2016), however, it is of general consensus that the membrane is 

laterally inhomogeneous at some scale. Further the origin of this inhomogeneity is also 

under debate with the two prime candidates for a lipid-driven mechanism being thickness 

mismatch or difference in order. Theoretically thickness mismatch produces curvature 

strain, thus line tension, at domain boundaries (Kuzmin et al., 2005) and there has been 

experimental evidence showing that increased thickness mismatch increases domain size 

(Heberle et al., 2013; Williams et al., 2012). Although there has been experimental 

evidence showing that the difference in order, due to cholesterol interactions, can also 

result in domain formation (K. R. Levental et al., 2016; Veatch & Keller, 2003b) there has 

been less application of theory in such cases. There may be an entropic cost, thus potential 

line tension, for disordered lipids to reside near cholesterol, however it is difficult to 

calculate. One potential way to calculate this is to estimate the average length and depth of 

cholesterol perpendicular to the membrane normal, and then estimate the entropic cost of 

extending the length of a lipid chain, thus reducing the number of configurations, to match 

this conformation. The difficulty in this is choosing an appropriate model to estimate the 

entropy. Lipids are not entropic springs, rather they are under lateral pressure which 

produces orienting potential. There has been work in modeling this potential (Petrache et 

al., 2000) which continues to be tested (Kinnun et al., 2015) that could potentially be used 

in estimating this entropic cost. However, modeling has typically been focused on saturated 

chains rather than unsaturated chains. Thus it may be advantageous to use molecular 

dynamics simulations to aid in determining a simple theory in the prediction of domain 

formation in the cases of cholesterol. 

 

It is becoming clear that PUFA fatty acids increase membrane inhomogeneity. Although 

the focus here was on the raft-like domain and the effect of DHA, there are other n−3 

PUFAs found in foods, which may have biological roles. For example, eicosapentaenoic 

acid (EPA, 20:5) is also common in fish oils alongside DHA. Previously it was discovered 

that EPA has a greater propensity than DHA to promote raft-like domains (Williams et al., 

2012). Here the reduced chain length of EPA when compared to DHA, presumably reduces 
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the lipid order (Williams et al., 2012) thus producing a thinner lipid and theoretically 

increases the line tension between domains. However, future experiments would need to 

confirm this. Interestingly EPA, within cells often converts to docosapentaenoic acid (DPA, 

22:5) (M. Harris et al., 2016), which increases the chain length of the fatty acid to be 

equivalent to DHA albeit with one less double bond. A recent study has shown order to be 

approximately equal to or slightly greater in DPA- than DHA-containing bilayers (M. 

Harris et al., 2016). This means that DPA could affect rafts similar to DHA. Unfortunately, 

studies are lacking for DPA on its effects on raft-like domains, thus there are plenty of 

opportunities to study phospholipids containing this n-3 PUFA and its biological roles. In 

particular, the technique of 2H NMR spectroscopy used here would be equally well-suited 

in studying the effect of DPA-containing lipids on raft-like domains. 
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APPENDIX A. SUPPLEMENTAL MATERIAL FOR LINESHAPE 

SIMULATION 

Relaxation can be orientationally dependent, which manifests as a frequency dependent 

decay (Domenici, 2009; Morrison & Bloom, 1993, 1994; Separovic & Cornell, 2000). For 

this reason, signals far away from the center-frequency of the spectrum can appear to have 

lower amplitudes in the frequency domain. The relaxation rate is often proportional to 

square of the frequency (Domenici, 2009; Morrison & Bloom, 1993). To handle this, one 

component of the signal observed can be assumed to be a cosine decayed by an amplitude 

function, 𝐴(𝑡): 

𝑆(𝑡) = 𝐴(𝑡)𝑃(𝑡) (A. 1). 

where 𝑃(𝑡) = 𝑐𝑜𝑠(𝜔𝑡) is the sinusoidal signal. The amplitude function is assumed to be a 

Gaussian decay: 

𝐴(𝑡) = 𝐴0𝑒𝑥𝑝(−𝐺𝑡2) (A. 2) 

where 𝐴0 is the initial amplitude and 𝐺 is the corresponding Gaussian relaxation rate (units 

of 1 s2⁄ ). This type of decay is seen in standard compounds such as perdeuterated 

hexamethylbenzene (hexamethylbenzene-d18 obtained from Sigma Aldrich, St. Louis) in 

powder form as shown in Figure A.2. For this sample a Bruker AMX-300 spectrometer 

(Kinnun et al., 2013) with a 7.05 T superconducting magnet (Oxford Instruments, Osney 

Mead, UK) was used. Keep in mind that relaxation still occurs before the echo and after 

the last pulse, which I denote by the time 𝑡0 and is equivalent to the interpulse delay, and 

modifies equation A. 2 to become: 

𝐴(𝑡) = 𝑒𝑥𝑝(−𝐺(𝑡 + 𝑡0)2) (A. 3). 

This expands to: 

𝐴(𝑡) = 𝑒𝑥𝑝(−𝐺𝑡2)𝑒𝑥𝑝(−2𝐺𝑡0𝑡)𝑒𝑥𝑝(−𝐺𝑡0
2) (A. 4) 

where the first term, 𝑒𝑥𝑝(−𝐺𝑡2), is the expected Gaussian decay and the second term, 

𝑒𝑥𝑝(−2𝐺𝑡0𝑡), is an exponential decay which becomes more relevant at longer times until 

acquisition, 𝑡0. The effect of this decay on the observed spectrum is better understood in 

the Fourier space. Inserting equation A. 4  into equation A. 1  and performing a Fourier 

transform (𝑠(𝜔) = ft[𝐴(𝑡)𝑃(𝑡)]) yields: 
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𝑠(𝜔) = [
𝑒𝑥𝑝 (−

𝜔2

4𝐺)

√2𝐺
] ⨂ [

2𝐺𝑡0

𝜋((2𝐺𝑡0)2 + 𝜔2)
] ⨂[𝑒𝑥𝑝(−𝐺𝑡0

2)𝑝(𝜔)] (A. 5) 

where ⨂ indicates a frequency-dependent convolution. The first two terms broaden the 

spectrum in the Fourier space, however the last term, 𝑒𝑥𝑝(−𝐺𝑡0
2), modifies the amplitude 

of the spectrum, 𝑝(𝜔). This last term has the potential of distorting the observed potential. 

 

Evidence, as shown in Figure A.2 (right bottom), suggests the Gaussian relaxation term, 𝐺, 

should be frequency dependent which distorts the observed spectra according to equation 

A. 6. Given the evidence that these rates depend on the square of the frequency, I assume 

the Gaussian relaxation rate to take the form of: 

𝐺 = 𝑅0
2 + (𝜔𝑅𝜔)2 (A. 6) 

where 𝑅0  is the frequency-independent relaxation rate (units of rad s⁄ ) and 𝑅𝜔  is the 

frequency-dependent relaxation rate (unitless due to the presence 𝜔), which is typically 

referred to as a square-law dependence. Given equation A. 6, the last term in equation A. 5 

becomes: 

𝑒𝑥𝑝(−𝐺𝑡0
2)𝑝(𝜔) = 𝑒𝑥𝑝(−𝑅0

2𝑡0
2)𝑒𝑥𝑝(−(𝜔𝑅𝜔)2𝑡0

2)𝑝(𝜔) (A. 7) 

where the first term, 𝑒𝑥𝑝(−𝑅0
2𝑡0

2), is the overall reduction of the spectrum, 𝑝(𝜔), and 

the second term, 𝑒𝑥𝑝(−(𝜔𝑅𝜔)2𝑡0
2), distorts the spectrum by a Gaussian lineshape. 

EchoNMR fitter implements equation A. 7  with A. 5  via a frequency-dependent 

convolution process which distorts the lineshape (as shown in equation A.7) but also 

includes the frequency-dependent line-broadening that results. An example of this type of 

fit is shown in Figure A.3. 
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Figure A.1: EchoNMR fitter is capable of simulating, and capable of fitting, asymmetric 

powder patterns. From table 2.1, the asymmetry parameter is derived in terms of the electric 

field gradients as 𝜂 = √2 3⁄ (𝑉𝑦𝑦
PAS − 𝑉𝑥𝑥

PAS) 𝑉𝑧𝑧
PAS⁄ . Here is a sample simulation of an 

asymmetric powder pattern with an asymmetry parameter of 0.20. In axially-symmetric 

powder patterns this parameter is zero. 
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Figure A.2: A solid echo pulse sequence was performed on powder hexamethylbenzene-

d18 with varying interpulse delays. The resulting spectra obtained after fast Fourier 

transform from the echo peak is shown on the left, with the interpulse delay given in the 

inset. For long interpulse delays the spectrum becomes distorted due to frequency-

dependent relaxation, which diminishes the shoulders. The amplitude of the spectra, as a 

function of interpulse delay, decays as a Gaussian which is shown in the right-top (the 

amplitude has been normalized). The Gaussian relaxation (decay rate) depends on the 

square of the frequency (right bottom) which is referred to as a square law. Near the 

theoretical singularity, ~9 kHz, the uncertainty increases as the broadened peak affects 

neighboring amplitudes. This likewise happens for the edges of the spectrum. 
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Figure A.3: EchoNMR fitter can fit lineshapes which are distorted due to pulse effects and 

relaxation effects. A sample spectrum of powder hexamethylbenzene-d18 recorded using a 

solid echo pulse sequence with an interpulse delay of 660 μs is shown here to illustrate 

diminished shoulders due to relaxation effects.  
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APPENDIX B. SUPPLEMENTAL MATERIAL FOR THE EFFECT 

OF DHA ON RAFT DOMAINS 

Table B.1: Average order parameters 𝑆𝐶̅𝐷 derived from 2H NMR spectra for POPC/PSM-

d31 and POPC-d31/eSM in 1:1 mol mixtures and in 1:1:1 mol mixtures with chol, and for 

PDPC/PSM-d31 and PDPC-d31/eSM in 1:1 mol mixtures and 1:1:1 mol mixtures with chol 

at 37 ºC. The values for samples prepared with POPC-d31 and PDPC-d31 are taken from 

Williams et al. (Williams et al., 2012). aValues are comparable in magnitude to average 

order parameters published for POPC/PSM-d31 and POPC-d31/PSM (1:1 mol) (Bunge et 

al., 2008). 

Membrane 

composition 

𝑆𝐶̅𝐷  

 

No cholesterol 

 

With cholesterol 

 

 

POPC /PSM-d31 

 

 

0.203a 

 

0.288 

 

POPC-d31/eSM 
 

 

0.137a 

 

0.231 

 

PDPC /PSM-d31 

 

 

0.155 

 

0.253 

 

PDPC-d31/eSM 

 

 

0.122 

 

0.192 
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Table B.2: Quadrupolar splitting at 30 °C of the terminal methyl peaks on PSM-d31 and 

PDPC-d31 and of the 3α site on chol-d1 in each domain for the PDPC/SM/chol (1:1:1) 

mixture. These values were measured from the depaked spectra plotted in Figure 4.4 and 

correspond to the frequency of the respective signals (indicated by arrows). They were used 

to estimate a lower bound for the lifetime (𝜏 > 1 2𝜋Δ𝜈⁄ ) within domains and for the size 

(𝑟 = √4𝐷𝜏) of the domains. The values for PDPC-d31 are taken from Williams et al. 

(Williams et al., 2012). 

 

Lipid 

 

 

Disordered Peak 

∆𝝂𝒓 (kHz) 

 

 

Ordered Peak 

∆𝝂𝒓 (kHz) 

 

𝚫𝝂 

(kHz) 

 

𝝉 

(μs) 

PSM 2.3 6.6 4.3 >37.2 

PDPC 3.0 4.4 1.4 >115 

Cholesterol 40.5 48.6 8.1 >19.8 
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Figure B.1: Molecular structure of PDPC, POPC, PSM and chol. 
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Figure B.2: A comparison of the variation of the first moment 𝑀1  as a function of 

temperature for POPC/PSM-d31 (1:1 mol) () and POPC-d31/eSM/chol (1:1:1 mol)  (●) 

(top panel); and for POPC/PSM-d31 (1:1 mol) (■) and POPC-d31/eSM/chol (1:1:1 mol) 

(▲) (bottom panel). 𝑀1 is plotted logarithmically for clarity. The data for the samples 

containing POPC-d31 are taken from Williams et al. (Williams et al., 2012). 
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Figure B.3: A comparison of the variation of the first moment 𝑀1  as a function of 

temperature for PDPC/PSM-d31 (1:1 mol) () and PDPC-d31/eSM/chol (1:1:1 mol)  (●) 

(top panel); and for PDPC/PSM-d31 (1:1 mol) (■) and PDPC-d31/eSM/chol (1:1:1 mol) 

(▲) (bottom panel). 𝑀1 is plotted logarithmically for clarity. The data for the samples 

containing PDPC-d31 are taken from Williams et al. (Williams et al., 2012). 
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Figure B.4: 2H NMR spectra for 50 wt% aqueous dispersion in 50 mM Tris buffer (pH 7.5) 

of POPC/eSM/chol-d1 (1:1:1 mol) (left column) and PDPC/eSM/chol-d1 (1:1:1 mol) (right 

column). Spectra are symmetrized about the central frequency to enhance signal/noise. 

Arrows included in the spectra for PDPC/eSM/chol-d1 illustrate the resolution of signals 

assigned to the 3α group on chol-d1 in SM-rich (outer splitting) and PC-rich (inner splitting) 

domains. Spectra are symmetrized about the central frequency to enhance signal/noise. 
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Figure B.5: 2H NMR spectra for 50 wt% aqueous dispersion in 50 mM Tris buffer (pH 7.5) 

of POPC/eSM/chol-d1 (1:1:1 mol) (left column) and PDPC/eSM/chol-d1 (1:1:1 mol) (right 

column). Spectra are symmetrized about the central frequency to enhance signal/noise. 

Arrows included in the spectra for PDPC/eSM/chol-d1 illustrate the resolution of signals 

assigned to the 3α group on chol-d1 in SM-rich (outer splitting) and PC-rich (inner splitting) 

domains. Spectra are symmetrized about the central frequency to enhance signal/noise. 
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Platform Talks 

March 25th, 2017 – “PUFA: A Raft-Domain Driving Force”, 132nd Annual Indiana 

Academy of Science Meeting, Indianapolis, Indiana 

February 14th, 2017 – “Raft-like Domains Are Driven Together by PUFA”, 61st Annual 

Biophysical Society Meeting, New Orleans, Louisiana 

November 10th, 2016 – “Solid State 2H NMR Spectroscopy Reveals How PUFA Alter 

Membrane Structure”, IUPUI Department of Physics Public Colloquium, 

Indianapolis, Indiana  
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March 26th, 2016 – “Raft Busters: A Molecular Role for DHA in Biological Membranes”, 

131st Annual Indiana Academy of Science Meeting, Indianapolis, Indiana 

March 21th, 2015 – “Solid State 2H NMR Reveals that DHA Disorders Raft-like Domains 

in Model Membranes”, 130th Annual Indiana Academy of Science Meeting, 

Indianapolis, Indiana  

May 12th, 2014 – “Intermembrane Forces and Membrane Deformation Observed via 

Dehydration and Osmotic Pressure”, 3rd Annual Bluegrass Molecular 

Biophysics Symposium, Lexington, Kentucky 

March 9th, 2013 – “DHA and EPA Interaction with Raft Domains Observed with Solid-

State 2H NMR Spectroscopy”, 128th Annual Indiana Academy of Science 

Meeting, Indianapolis, Indiana 

March 10th, 2012 – “Biomembrane Deformation and Intermembrane Forces Probed by 

Osmotic Stress and Dehydration”, 127th Annual Indiana Academy of Science 

Meeting, West Lafayette, Indiana 

October 21st, 2011 – “Biomembrane Structure and Dynamics Controlled by Dehydration 

and Osmotic Stress”, American Physical Society 4CS Meeting, Tucson, 

Arizona 

April 2011 – “Modulating Membrane Structure and Dynamics with Osmotic Stress”, 8th 

Annual Arizona Biophest, Tempe, Arizona 

March 2011 – “Thermodynamic Equivalence of Hydration and Osmotic Stress in 

Membrane Deformation”, 55th Annual Biophysical Society Meeting, 

Baltimore, Maryland 

April 2010 – “Theoretical Equivalence of Hydration and Osmotic Pressure in Membrane 

Deformation”, 7th Annual Arizona Biophest, Tucson, Arizona 

May 2009 – “Theoretical Interpretation of Biomembrane Deuterium NMR Data”, 6th 

Annual Arizona Biophest, Phoenix, Arizona 

May 2008 – “Solid-State 2H NMR Spectroscopy for the Undergraduate Physics 

Laboratory”, University of Arizona Department of Physics Undergraduate 

Symposium, Tucson, Arizona 

 

Poster Presentations 

April 20th, 2017 – “DHA Drives Domain Formation in Model Raft Membranes”, American 

Chemical Society Think Like a Molecule Poster Session, Indianapolis, Indiana 

April 8th, 2016 – “Raft Busters: A Molecular Role for DHA in Biological Membranes”, 

IUPUI Research Day, Indianapolis, Indiana 

February 28th, 2016 – “Solid-state 2H NMR Reveals the Impact of DHA on Molecular 

Organization in Raft-like Domains”, 60th Annual Biophysical Society Meeting, 

Los Angeles, California 

http://meetings.aps.org/Meeting/4CF11/Event/157583
http://meetings.aps.org/Meeting/4CF11/Event/157583
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February 25th, 2016 – “Solid-state 2H NMR Reveals the Impact of DHA on Molecular 

Organization in Raft-like Domains”, American Chemical Society Think Like 

a Molecule Poster Session, Indianapolis, Indiana 

April 17th, 2015 – “DHA Alters Raft-like Membrane Domains as Revealed by Solid State 
2H NMR Spectroscopy”, IUPUI Research Day, Indianapolis, Indiana 

February 9th, 2015 – “DHA Disorders Raft-like Domains as Revealed by Solid State 2H 

NMR”, 59th Annual Biophysical Society Meeting, Baltimore, Maryland 

February 10th, 2014 – “Solid State 2H NMR Studies of the Disordering of Raft-like 

Domains by N-3 PUFA”, 58th Annual Biophysical Society Meeting, San 

Francisco, California 

February 2014 – “Intermembrane Forces & Membrane Deformation Observed via 

Dehydration & Osmotic Pressure”, 58th Annual Biophysical Society Meeting, 

San Francisco, California 

April 5th, 2013 – “DHA and EPA Interaction with Raft Domains Observed with Solid-State 
2H NMR Spectroscopy”, IUPUI Research Day, Indianapolis, Indiana 

February 2013 – “Membrane Structure and Intermembrane Forces Observed with Small 

Angle X-Ray Scattering”, 57th Annual Biophysical Society Meeting, 

Philadelphia, Pennsylvania 

February 2013 – “Disordering of Raft Domains BY DHA and EPA Observed with Solid-

State 2NMR Spectroscopy”, 57th Annual Biophysical Society Meeting, 

Philadelphia, Pennsylvania 

February 2010 – “Osmotic Membrane Deformation Revealed by 2H NMR and Small-

Angle X-Ray Scattering”, 54th Annual Biophysical Society Meeting, San 

Francisco, California 

February 2010 – “Collective Membrane Dynamics under Osmotic Stress”, 54th Annual 

Biophysical Society Meeting, San Francisco, California 

February 2009 – “Structural and Dynamical Markers of Membrane Osmotic Stress from 

X-Ray Scattering and Solid-State 2H NMR”, 53rd Annual Biophysical Society 

Meeting, Boston, Massachusetts 

April 2008 – “Solid-State 2H NMR Spectroscopy for the Undergraduate Physical 

Chemistry Laboratory”, University of Arizona Undergraduate Chemistry Fair, 

Tucson, Arizona 

 

Leadership/Service 

Indianapolis Project Seed 

Mentor (2013, 2014, 2015, 2016, and 2017) 

I mentored disadvantaged high school students as they gained hands-on 

experience in science over the summer months. Students in this program are 

http://www.abstractsonline.com/submit/submitEdit.asp?CKey=%7B5211362C%2DDAF0%2D4CE8%2D852C%2D2C91DACB0729%7D&mKey=%7B65C07790%2D3DC0%2D4A68%2DA0F7%2DE533A63E290D%7D
http://www.abstractsonline.com/submit/submitEdit.asp?CKey=%7B5211362C%2DDAF0%2D4CE8%2D852C%2D2C91DACB0729%7D&mKey=%7B65C07790%2D3DC0%2D4A68%2DA0F7%2DE533A63E290D%7D
http://www.abstractsonline.com/submit/submitEdit.asp?CKey=%7B5211362C%2DDAF0%2D4CE8%2D852C%2D2C91DACB0729%7D&mKey=%7B65C07790%2D3DC0%2D4A68%2DA0F7%2DE533A63E290D%7D
http://www.abstractsonline.com/submit/submitEdit.asp?CKey=%7B5211362C%2DDAF0%2D4CE8%2D852C%2D2C91DACB0729%7D&mKey=%7B65C07790%2D3DC0%2D4A68%2DA0F7%2DE533A63E290D%7D
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monetarily compensated and, at the culmination of their time, they present their 

research to their peers. 

 

High School Summer Research in Physics at IUPUI 

Mentor (2013 and 2017) 

I mentored high school students as they gained research experience in physics 

laboratories during the summer. Before the culmination of the summer, the 

students present the final outcome of their research to peers and other 

laboratory members. 

 

Girls Rock Indianapolis 

Equipment Assistant and Videographer (2014, 2015, 2016, and 2017) 

I helped transport musical equipment, and record performances, for a camp 

aimed at promoting girl’s self-confidence through music. 

 

Indiana Academy of Science 

Physics Demonstration Assistant (2015 and 2016) 

I demonstrated physical principles using, sound, magnetism, and lasers, aimed 

at inspiring high school students in pursuing a career in science. 

Science Fair Judge (2014, 2015 and 2016) 

I judged scientific projects conducted and presented by elementary and middle 

school students at the Building Blocks Academy in Indianapolis, IN. 

 

Mohave Community College Student Council 

Student Senator (2005) 

 

Professional Affiliations 

American Physical Society 

Biophysical Society 

Indiana Academy of Science 

 


