Radioligands targeting purinergic P2X7 receptor

Qi-Huang Zheng*

Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 1345 West 16th Street, Room 208, Indianapolis, IN 46202, USA

*Corresponding author. Tel.: +1 317-278-4671. Fax: +1 317-278-9711. E-mail address: qzheng@iupui.edu

Abstract—The purinergic P2X7 receptor (P2X7R) is an adenosine triphosphate (ATP) ligand-gated cationic channel receptor. P2X7R is closely associated with various inflammatory, immune, cancer, neurological, musculoskeletal and cardiovascular disorders. P2X7R is an interesting therapeutic target as well as molecular imaging target. This brief digest highlights the radioligands targeting P2X7R recently developed in drug discovery and molecular imaging agent development.

Keywords: Purinergic P2X7 receptor (P2X7R); Radioligands; Drug discovery; Molecular imaging; Positron emission tomography (PET); Single photon emission computed tomography (SPECT).

Introduction

The purinergic receptor P2X ligand-gated ion channel type 7 (P2X7R) is an adenosine triphosphate (ATP)-gated ion-channel.1-3 P2X7R is ubiquitously found in almost all tissues and organs of the body and highly expressed in the immune, peripheral, and central nervous systems, thus this receptor plays important roles in health and diseases.4-6 The overexpression of P2X7R is implicated in a number of downstream events in a cell-specific manner including inflammation, ATP-mediated cell proliferation and death, metabolic events, and phagocytosis, and associated with a wide variety of inflammatory, immune, cancer, neurological, musculoskeletal and cardiovascular disorders.7-12 P2X7R is an attractive therapeutic target, and many P2X7R antagonists have been developed for the treatment of P2X7R-related diseases such as inflammatory, infectious, neurological, cancer and heart diseases.13-17 Consequently P2X7R has become an interesting molecular imaging target, as the development of imaging agents parallels the drug development process.18 Advanced biomedical imaging techniques positron emission tomography (PET) and single photon emission computed tomography (SPECT) are two promising molecular imaging modalities with unrivaled sensitivity for diagnosis, staging, image-guided therapy and treatment monitoring of P2X7R-associated diseases, and there is a growing interest in design and evaluation of new radioligands for noninvasive in vivo imaging of P2X7R.19-21

Since P2X7R is a key player in inflammation, and overexpression of P2X7R is closely related to neuroinflammation, which is an essential step in the progression of brain disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD).1 PET is an ideal imaging technique with greater sensitivity than SPECT, which is particularly useful for studying the living brain, and the traditional imaging target in neuroinflammation is the translocator protein 18 kDa (TSPO).19 However, PET coupled with TSPO radioligands has come with some limitations such as low receptor binding, high inter-subject variability in binding affinity, and nonspecific binding in the human brain due to TSPO polymorphism, thus the imaging scientists have turned their efforts to search for alternative biological targets like P2X7R.19 The key is to develop an useful P2X7R radioligand. The rationale of radioligand development is well complied and discussed in an expert review, this excellent review documented all considerations including target density,
radioligand affinity, binding potential, selectivity for target, ligand efficacy, ability to penetrate the blood-brain barrier (BBB), specific binding versus nonspecific binding, plasma protein binding and efflux potential, etc. in the development of PET radioligands for brain imaging, and the general concepts can apply to the development of P2X7R targeting radioligands. The radioligand development includes two parts: first in vitro radioligand, generally labeled in high molar activity with a β-emitting radionuclide, often tritium (3H), but sometimes radioiodine like iodine-123 (123I), this is the first step of radioligand development; and then in vivo radioligand, often labeled with a positron emitting radionuclide carbon-11 (11C) or fluorine-18 (18F), this is the second step of radioligand development. This brief digest highlights the radioligands targeting P2X7R in drug discovery and development. This brief digest highlights the radioligands targeting P2X7R in drug discovery and development. This brief digest highlights the radioligands targeting P2X7R in drug discovery and development.

Radiosynthesis of P2X7R 11C-radioligands included two parts: first in vitro radiosynthesis, since the use of radiolabeled drugs is the ‘gold standard’ for drug discovery and development. Two representative P2X7R 3H-radioligands [3H]A-804598 (IC50 4.9 nM for rP2X7R) is a radiolabeled P2X7R antagonist with improved properties over [3H]1, because [3H]2 has less non-specific binding, and specific binding of [3H]2 in rat brain section was marked improved compared to [3H]1, in which [3H]1 cannot be completely displaced by P2X7R selective ligands.

3H-Radioligands targeting P2X7R

Tritium is a long half-life (t1/2, 12.5 y) radioisotope. 3H-labeled drugs are widely used for studies of drug absorption, distribution, metabolism and excretion (ADME), since the use of radiolabeled drugs is the ‘gold standard’ for drug discovery and development. Two representative P2X7R 3H-radioligands [3H]A-804598 (IC50 4.9 nM for rP2X7R) is a radiolabeled P2X7R antagonist with improved properties over [3H]1, because [3H]2 has less non-specific binding, and specific binding of [3H]2 in rat brain section was marked improved compared to [3H]1, in which [3H]1 cannot be completely displaced by P2X7R selective ligands.

11C-Radioligands targeting P2X7R

Carbon-11 is a short half-life (t1/2, 20.4 min) PET radionuclide. Carbon-11 radiotracers have an unique advantage of back-to-back same-day studies, which can be of value when pharmacological or behavioral challenges are being studied. Carbon-11 radiotracers also have some disadvantages, for instance, their production requires an on-site cyclotron to produce radiolabeled precursor [11C]CO2; and the imaging statistics of these radiotracers is good only for about 60 to 90 min. P2X7R 11C-radioligands that have been reported over the last decade are listed in Figure 2. Radiosynthesis of P2X7R 11C-radioligands included two

Figure 1. 3H-Radioligands targeting P2X7R.

Figure 2. 11C-Radioligands targeting P2X7R.

Figure 3. A [11C]SMW139-PET SUV image of one healthy control and one MS patient (Adapted from the literature).

Figure 4. Sequential whole-body PET images obtained with [11C]GSK1482160 in the ten normal volunteers studied, from iterative reconstructions employing the scanner’s default scatter correction (Adapted from the literature41).

Figure 5. Average parametric LGA (Logan graphical analysis) VT (tissue volumes of distribution) [11C]-JNJ54173717-PET images in HV and PD (Adapted from the literature45).

The first in vivo P2X7R radioligand appeared in the literature is [11C]A-740003 (\((E)-N-(1-(2-cyano-3-(quinolin-5-yl)guanidino)-2,2-dimethylpropyl)-2-(4-methoxy-3-((11C)methoxy)phenyl)acetamide, [11C]3\)) with IC50 (nM) values 18 and 40 for rP2X7R and hP2X7R, respectively, published in 2014 by Janssen et al.28,29 Their subsequent efforts have generated two other P2X7R [11C]-radioligands [11C]SMW64-D16 (N-((3r,5r,7r)-adamantan-1-yl)methyl)-2-chloro-5-([11C]methoxy)benzamide, [11C]4) and [11C]SMW139 (2-chloro-5-([11C]methoxy)-N-((3s,5s,7s)-3,5,7-trifluoroadamantan-1-yl)methyl)benzamide, [11C]5) with Ki (nM) values 9 and 32, respectively, for hP2X7R.30-32 Preclinical evaluation of [11C]3 and [11C]4 in inflammation rodent models showed low brain uptake.29,31 In vivo radiometabolite analysis of [11C]5 showed the highest metabolic stability in rat plasma, and [11C]5 also showed high binding to hP2X7R in vivo in a hP2X7R overexpressing rat model, but in vitro ARG study in post mortem human brain tissue with [11C]5 were unable to demonstrate a difference in tracer binding between AD patients and healthy controls32,33

The first-in-human results concluded that uptake of [11C]5 can be quantified with PET using binding potential (BPND) as a measure for specific binding in healthy controls (n = 5) and patients (n = 5) with active relapsing remitting multiple sclerosis (RRMS), but the sample size is very limited, so additional studies are needed for further clinical evaluation of [11C]5 as a novel neuroinflammation tracer.34 A [11C]5-PET SUV (standardized uptake values) image of one healthy control and one MS patient is shown in Figure 3.34 We and other group have synthesized and evaluated [11C]GSK1482160 (\((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-((11C)methyl)-5-oxopyrrolidine-2-carboxamide, [11C]6\)), IC50 3 nM for hP2X7R35-39 as a P2X7R [11C]-radioligand. Preclinical evaluation in a lipopolysaccharide (LPS)-induced neuroinflammation mouse model38 and an experimental autoimmune encephalomyelitis (EAE) rat model as well as micro-PET study in cynomolgus macaque39 indicated [11C]6 is a promising radioligand targeting P2X7R in neuroinflammation. Production of [11C]6 as a radiopharmaceutical has been validated,40 and the estimation of radiation dosimetry for [11C]6 in normal human subjects has been reported.41 The results indicated brain uptake was low, but in most other organs the uptake and clearance of [11C]6 appears suitable for use in PET assessment of P2X7R expression as a potential marker of regional inflammation.41 [11C]6-PET images in the ten normal volunteers are summarized in Figure 4.41 Due to this significant drawback, we continue to develop new P2X7R [11C]-radioligands with improved properties, consequently, [11C]IUR-1801 ([11C]F-GSK1482160, (S)-N-(2-fluoro-3-(trifluoromethyl)benzyl)-1-((11C)methyl)-5-oxopyrrolidine-2-carboxamide, [11C]8), [11C]IUR-1802 ([11C]Br-GSK1482160, (S)-N-(2-bromo-3-(trifluoromethyl)benzyl)-1-((11C)methyl)-5-oxopyrrolidine-2-carboxamide, [11C]9) and [11C]IUR-1803 ([11C]I-GSK1482160, (S)-N-(2-iodo-3-(trifluoromethyl)benzyl)-1-((11C)methyl)-5-
Fluorine-18 is another PET radioisotope with a longer half-life (112, 109.7 min). Fluorine-18 radiotracers have some significant advantages. For example, a fluorine-18 radioligand would be ideal for widespread use, which permits imaging of up to 5 h post-injection, and will result in a better match between the pharmacokinetics of binding and the physical decay of the label. The disadvantage of a fluorine-18 radiotracer is unable to result in a better match between the pharmacokinetics of binding and the physical decay of the label. The advantage of a fluorine-18 radiotracer is unable to

Further biological evaluation of GSK1482160 [11C]halo-analogs [11C]IUR-1802 and [11C]IUR-1803 is currently underway. Recently, another P2X7R [11C]-radioligand [11C]-JNJ54173717 ((S)-(2,3-dichlorophenyl)(3-(4-(([11C]methoxy)pyridin-2-yl)-6-methyl-5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanone, [11C]7, IC50 7.7 and 10 nM for hP2X7R and rP2X7R, respectively) has been described.43,44 Preclinical evaluation and clinical evaluation of [11C]7 have been published, and the results suggested [11C]7 is suitable for quantifying P2X7R expression in human brain, but the difference in P2X7R binding between healthy volunteers (HV) and PD patients could not be demonstrated.44,45 [11C]-PET images in HV and PD are depicted in Figure 5.45 The comparison study of [11C]7 with a TSPO radioligand [18F]-DPA714 concluded [18F]-DPA714 showed increased signal while [11C]7 was not elevated in symptomatic amyotrophic lateral sclerosis (ALS) patients.46

18F-Radioligands targeting P2X7R

The first reported P2X7R 18F-radioligand was [18F]EFB (E)-2-cyano-1-(4-(18F)fluoro)benzyl)-3-(quinolin-5-yl)guanidine, [18F]11 with Kᵢ (nM) values 2.88, 36.1 and 547 for hP2X7R, rP2X7R and mP2X7R, respectively, described by Fantoni et al.47 Like [11C]3, [18F]11 is another cyanoguanidine derivative. Preclinical evaluation of [18F]11 showed low brain uptake in both healthy rats and LPS-rats.47 We have developed two [18F]fluoroalkyl derivatives of GSK1482160: [18F]IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-(18F)fluoro)ethyl)-5-oxopyrrolidine-2-carboxamide, [18F]12, Kᵢ, 3.73 nM for hP2X7R and [18F]IUR-1602 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(3-(18F)fluoro)propyl)-5-oxopyrrolidine-2-carboxamide, [18F]13, Kᵢ, 23.6 nM for hP2X7R).48,49 In vivo evaluation of [18F]12 and [18F]13 is in progress. Janssen R&D group has developed a promising P2X7R 18F-radioligand 18F-JNJ-64413739 ((S)-3-(18F)fluoro)-2-(trifluoromethyl)pyridin-4-yl)(6-methyl-1-(pyrimidin-2-yl)-1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-d]pyridin-5-yl)methanone, [18F]14) with Kᵢ (nM) values 15.9 and 2.7 for hP2X7R and rP2X7R, respectively.50 Preclinical and clinical evaluations of [18F]14 in LPS-rats, nonhuman primate rhesus macaques, and healthy human subjects were all performed.50-52 Although in both nonhuman primate and human studies, no appropriate reference region in brain could be identified; in addition, a high inter-individual signal variability across human subjects was noticed, and the influence of genetic polymorphism on P2X7R expression level or radioligand binding property is still
unknown, in this proof-of-concept study, they have demonstrated that [18F]14 is a suitable PET radioligand for the quantification of P2X7R expression in the human brain.50-52 [18F]14-PET images in healthy male subjects are indicated in Figure 7.52 Fu et al. has reported another P2X7R 18F-radioligand 18F-PTTP ((2-chloro-3-(difluoro-[18F]fluoro)methyl)phenyl)(1-(pyrimidin-2-yl)-1,4,6,7-tetrahydro-5H-
[1,2,3]triazolo[4,5-c]pyridin-5-yl)methanone, [18F]15 with K_i (nM) values 4.2 and 6.8 for hP2X7R and rP2X7R, respectively.53,54 Preclinical evaluation of [18F]15 in both inflammation mice and tumor-bearing mice was performed, and the results concluded that [18F]15 has potential to screen new P2X7R drugs, quantify P2X7R-associated peripheral inflammation, and distinguish inflammation from certain solid tumors.54

123I-Radioligand targeting P2X7R

Iodine-123 is a SPECT radioisotope with the half-life (t1/2, 13.22 h). So far only one P2X7R 123I-radioligand appeared in the literature,55 as indicated in Figure 8. Radiosynthesis used the iodination of the tin precursor with [123I]NaI.55,56 [123I]TZ6019 ((S,E)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(3-((123)[I]iodo)allyl)-5-oxopyrrolidine-2-carboxamide, [123I]16), a derivative of GSK1482160, is a potent P2X7R antagonist with 9.49-12.9 nM IC50 values in three different assays. In vitro characterization of [123I]16 and its response to neuroinflammation in an AD mouse model were performed, and the results indicated that [123I]16 has specific binding for P2X7R with low nanomolar affinity. [123I]16 could be useful for detecting the increase of P2X7R expression in brain, for in vitro assays to screen new P2X7R antagonists, and for ex vivo ARG to assess P2X7R expression in neuroinflammatory related diseases.55 This P2X7R 123I-radioligand can be used for in vivo SPECT imaging, and it also opens an avenue for P2X7R antagonists to be labeled with PET radioisotope iodine-124 (t1/2, 4.2 d) and other SPECT radioisotopes iodine-125 (t1/2, 59.49 d) and iodine-131 (t1/2, 8.02 d).

Lipophilicity of P2X7R radioligands

The major application of P2X7R radioligands discussed here is in brain neuroinflammation imaging, and the lipophily is an important consideration in the development of P2X7R radioligands. The octanol-water partition coefficient (commonly expressed as LogP) is an important physical parameter directly correlated with the biological activities of a wide variety of organic compounds.57,58 LogP provides an assessment of lipophilicity that often correlates with a compound’s ability to penetrate the BBB. Compound lipophilicity is expressed in several different ways including terms LogP, CLogP, ΔLogP, and LogD.57 Table 1 gives LogP and calculated CLogP values of P2X7R radioligands in comparison with 18F-DPA714 and [11C]PBR28.59,60 Both 18F-DPA714 and [11C]PBR28 are extensively investigated TSPO radioligands in human studies. The data are easily obtained from ChemDraw Professional 18.0 (ChemOffice). It is noted that LogP range for compounds expected to enter the brain readily was about 1-3,61 or <5,22 and the optimal range of LogD74 reported for an optimum central nervous system (CNS) penetration of drug molecules was 2.0-3.5.57 As seen in Table 1, LogP data (1.88-3.29) of PET P2X7R radioligands [11C]GSK1482160, [11C]SMW139, [11C]JNJ-54173717 and 18F-JNJ-64413739, which are in clinical evaluation, are in the range of LogP and LogD74 (1-5). Likewise, LogP data of [11C]PBR28 and 18F-DPA714 (2.98 and 3.71) are also in this range. These data suggest that [11C]GSK1482160, [11C]SMW139, [11C]JNJ-54173717 and 18F-JNJ-64413739 meet LogP criteria and have appropriate lipophilicity for brain uptake.

Table 1. LogP and CLogP of P2X7R radioligands in comparison with TSPO radioligands 18F-DPA714 and [11C]PBR28.

<table>
<thead>
<tr>
<th>Compound</th>
<th>LogP</th>
<th>CLogP</th>
</tr>
</thead>
<tbody>
<tr>
<td>[18F]A-804598 ([18F]1)</td>
<td>4.37</td>
<td>3.21</td>
</tr>
<tr>
<td>[18F]JNJ-54232334 ([18F]2)</td>
<td>3.65</td>
<td>2.00</td>
</tr>
<tr>
<td>[11C]A-740003 ([11C]3)</td>
<td>5.15</td>
<td>2.47</td>
</tr>
<tr>
<td>[11C]SMW139-D16 ([11C]4)</td>
<td>4.12</td>
<td>4.72</td>
</tr>
<tr>
<td>[11C]SMW139 ([11C]5)</td>
<td>2.31</td>
<td>2.90</td>
</tr>
<tr>
<td>[11C]GSK1482160 ([11C]6)</td>
<td>1.88</td>
<td>1.58</td>
</tr>
<tr>
<td>[11C]JNJ-54173717 ([11C]7)</td>
<td>3.29</td>
<td>2.28</td>
</tr>
<tr>
<td>[11C]IUR-1801 ([11C]8)</td>
<td>1.48</td>
<td>1.21</td>
</tr>
<tr>
<td>[11C]IUR-1802 ([11C]9)</td>
<td>2.15</td>
<td>1.93</td>
</tr>
<tr>
<td>[11C]IUR-1803 ([11C]10)</td>
<td>2.68</td>
<td>1.71</td>
</tr>
<tr>
<td>[18F]EFB ([18F]11)</td>
<td>4.21</td>
<td>3.03</td>
</tr>
<tr>
<td>[18F]JUR-1601 ([18F]12)</td>
<td>2.07</td>
<td>2.51</td>
</tr>
<tr>
<td>[18F]JUR-1602 ([18F]13)</td>
<td>2.17</td>
<td>2.74</td>
</tr>
<tr>
<td>[18F]JNJ-64413739 ([18F]14)</td>
<td>2.09</td>
<td>1.27</td>
</tr>
<tr>
<td>[18F]PTTP ([18F]15)</td>
<td>2.18</td>
<td>1.12</td>
</tr>
<tr>
<td>[123I]TZ6019 ([123I]16)</td>
<td>3.77</td>
<td>3.58</td>
</tr>
<tr>
<td>[18F]DPA714</td>
<td>3.71</td>
<td>3.33</td>
</tr>
<tr>
<td>[11C]PBR28</td>
<td>2.98</td>
<td>2.71</td>
</tr>
</tbody>
</table>

Conclusion
In summary, P2X7R targeting radioligands recently developed have been reviewed. As therapeutic drugs, P2X7R ligands (antagonists) have been extensively studied. As diagnostic imaging agents, although over a dozen P2X7R radioligands have been published over the last several years, only a few PET P2X7R radioligands are being evaluated in clinical trials, furthermore, only \(^{18}F\)-JNJ-64413739 can be used to access P2X7R expression in health and disease, to evaluate target engagement by P2X7R antagonists, and to guide dose selection. Most of these P2X7R PET agents have significant drawbacks like not potent enough binding affinity \(K_i\) values, not widespread use due to short half-life of radionuclide carbon-11, limited BBB penetration and/or little brain uptake, low specific activity, therefore, there is a huge room to develop an ideal P2X7R radioligand that can be used in the clinical setting to study P2X7R expression levels in diseases especially in neurodegenerative disorders such as AD and PD.

Declaration of competing interest

The author declares that he has no conflict of interest relevant to this article.

Acknowledgments

This work was partially supported by Indiana University Showalter Young Investigator Award, Indiana University School of Medicine Biomedical Research Grant, and the Advanced Imaging Research and Technology Development (AIRTD) grants from the Department of Radiology and Imaging Sciences at Indiana University School of Medicine in the United States.

References

