Investigating Differences in Nutritional Parameters in Ugandan Children with *Plasmodium falciparum* Severe Malaria

Lucy D. Brown¹, Katrina Co², Robert O. Opoka³, Caitlin Bond², Dibyadyuti Datta², Chandy C. John²

¹Indiana University School of Medicine, Indianapolis, Indiana, ²Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, ³Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
24 million children are infected with *P. falciparum* each year in Sub-Saharan Africa.¹

In 2018, malaria produced an estimated 272,000 deaths in children <5 years.¹

Worldwide, 67% of all malarial deaths are among children <5 years.¹

Uganda carries 5% of the global malaria burden.¹

Undernutrition is one of the most important risk factors associated with malaria.
Severe Malaria (SM)

Cerebral Malaria (CM)

Severe Malarial Anemia (SMA)

Prostration (Pros)

Respiratory Distress (RDS)

Malaria with Complicated Seizures (MS)

DIFFERENT TYPES OF UNDERNUTRITION

NORMAL

WASTING
Low weight for height

STUNTING
Low height for age

UNDERWEIGHT
Low weight for age

OBJECTIVES

- **AIM 1**: Establish whether Weight-for-Age, Height-for-Age, and Weight-for-Height Z-scores at enrollment and 12-month follow-up differ in Severe Malaria (SM) groups (CM, RDS, MS, SMA, and Pros) versus Community Controls (CC)

- **AIM 2**: Determine if nutritional markers differ in manifestations of malaria associated with Higher Mortality (CM and RDS) compared to groups with Lower Mortality (SMA, MS, and Pros)

- **AIM 3**: Compare nutritional markers by Mortality Status
Neurodevelopmental Outcomes in Children with Severe Malaria (NDI) Study Overview

- **Design:** Prospective longitudinal cohort study to assess neurodevelopmental outcomes in children with severe malaria
- **Location:** Mulago and Jinja, Uganda
- **Time points for nutritional markers:** Admission and 12-month follow-up

Neurological Complications

- **Cerebral Malaria (CM)**
 - Coma (Blantyre coma score ≤2)

- **Respiratory Distress (RDS)**
 - Deep acidotic breathing or lower chest wall retractions
 - No crepitations on pulmonary examination

- **Malaria w/ complicated seizures (MS)**
 - Two or more generalized seizures in 24 hours, or seizure lasting >30 minutes in duration

- **Severe Malarial Anemia (SMA)**
 - Serum hemoglobin ≤5 g/dL

- **Prostration (Pros)**
 - In children ≥1 year-old, lost ability to sit unsupported or stand
 - In children <1 year-old, lost ability to drink or breastfeed
METHODS

Ugandan children 6 months – 4 years (n=530)

Severe Malaria
P. falciparum on blood smear
(Baseline, n=410; 12-months, n=343)

Community Controls
(Baseline, n=120; 12-months, n=110)

High-mortality malaria
(Baseline, n=140; 12-months, n=96)

- Cerebral Malaria
 (Baseline, n=58; 12-months, n=31)

- Respiratory Distress
 (Baseline, n=82; 12-months, n=65)

Low-mortality malaria
(Baseline, n=270; 12-months, n=248)

- Complicated Seizures
 (Baseline, n=124; 12-months, n=113)

- Severe Malarial Anemia
 (Baseline, n=86; 12-months, n=80)

- Prostration
 (Baseline, n=60; 12-months, n=55)
METHODS

Ugandan children 6 months – 4 years (n=530)

Severe Malaria
P. falciparum on blood smear
(Baseline, n=410; 12-months, n=343)

High-mortality malaria
(Baseline, n=140; 12-months, n=96)
- Cerebral Malaria
 (Baseline, n=58; 12-months, n=31)
- Respiratory Distress
 (Baseline, n=82; 12-months, n=65)

Low-mortality malaria
(Baseline, n=270; 12-months, n=248)
- Complicated Seizures
 (Baseline, n=124; 12-months, n=113)
- Severe Malarial Anemia
 (Baseline, n=86; 12-months, n=80)
- Prostration
 (Baseline, n=60; 12-months, n=55)

Community Controls
(Baseline, n=120; 12-months, n=110)
METHODS

Ugandan children 6 months – 4 years (n=530)

Severe Malaria
P. falciparum on blood smear
(Baseline, n=410; 12-months, n=343)

Community Controls
(Baseline, n=120; 12-months, n=110)

High-mortality malaria
(Baseline, n=140; 12-months, n=96)

Cerebral Malaria
(Baseline, n=58; 12-months, n=31)

Respiratory Distress
(Baseline, n=82; 12-months, n=65)

Low-mortality malaria
(Baseline, n=270; 12-months, n=248)

Complicated Seizures
(Baseline, n=124; 12-months, n=113)

Severe Malarial Anemia
(Baseline, n=86; 12-months, n=80)

Prostration
(Baseline, n=60; 12-months, n=55)

AIM 2 vs.
STATISTICAL ANALYSIS

Nutritional Markers of Interest:

- **WAZ0 and WAZ12**, Weight-for-Age Z-score at 0 and 12 months, <2SD is *underweight*
- **HAZ0 and HAZ12**, Height-for-Age Z-score at 0 and 12 months, <2SD is *stunting*
- **WHZ0 and WHZ12**, Weight-for-Height Z-score at 0 and 12 months, <2SD is *wasting*

\[z^a = \frac{\text{score} - \text{mean in } CC}{\text{SD in } CC} \]

\(^a\) Z-score is widely recognized as the most important descriptor for analysis and presentation of malnutrition data in children.
Table 1. Demographic characteristics of study children (N=530)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>CM</th>
<th>RDS</th>
<th>MS</th>
<th>SMA</th>
<th>Pros</th>
<th>CC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, N (% female)</td>
<td>23 (40)</td>
<td>32 (39)</td>
<td>54 (44)</td>
<td>40 (47)</td>
<td>26 (43)</td>
<td>56 (47)</td>
<td>231 (44)</td>
</tr>
<tr>
<td>Age, Mean Years (SD)</td>
<td>2.33 (0.97)</td>
<td>1.77 (0.87)</td>
<td>2.16 (0.92)</td>
<td>2.00 (0.84)</td>
<td>2.20 (0.90)</td>
<td>2.20 (1.02)</td>
<td>2.11 (0.94)</td>
</tr>
</tbody>
</table>
WAZ and WHZ at baseline were significantly lower ($p<0.001$) among SM groups than in community controls (CC).

*p < .05, **p < .01, ***p < .001, ns not significant
WAZ and HAZ at baseline were significantly lower (p<0.01) among high mortality (HM) groups than in low mortality (LM) groups. At 12-month follow-up, HAZ remained significantly lower (p<0.01) in HM vs. LM.

*p < .05, **p < .01, ***p < .001, ns not significant
Children who died at admission or following discharge (CM, N=20; RDS, N=7) had significantly lower WAZ (p<0.05) compared to those who survived.

* p < .05, **p < .01, ***p < .001, ns not significant
At baseline, associated with SM groups (vs CC), HAZ (suggesting stunting) At baseline & follow-up, associated with HM groups (vs LM) WAZ (suggesting underweight) At baseline, associated with SM groups (vs CC), HM groups (vs LM), and children who died
Malaria as a Causal Agent for Malnutrition:

In Ethiopia, previous exposure to *P. falciparum* infection was a predictor for the manifestation of malnutrition in children <5, and children previously exposed to malaria were 1.87 times more likely to be malnourished than children unexposed to malaria (Gone et al., 2017).

A study of *P. vivax* in the Brazilian Amazon suggested that children who had previously suffered malaria episodes presented worse anthropometric parameters, notably reduced linear velocity (Alexandre et al., 2015).

In Niger, children with malaria infection at admission and subsequently treated with an artemisinin-based combination therapy had reduced height gain, at -0.002 mm/day. Malaria infection may impair height gain (Oldenberg et al., 2018).

Malnutrition as a Causal Agent for Malaria:

Stunting, but not wasting, has been shown to be significantly associated with down-regulation of the anti-*P. falciparum* antibodies in pre-school children in Senegal, thereby modulating the overall immune response and increasing risk of infection (Fillol et al., 2009).
Stunting as a Protective Agent Against Malaria:

A study from Papua New Guinea found that **stunting decreased susceptibility to malaria-related morbidity in children**. They proposed that parasites cannot proliferate in a host that is protein-deprived; therefore, there may be potentially beneficial effects of micronutrient deficiencies, particularly vitamin E and riboflavin (Genton et al., 1998).

However, we have shown that **stunting was the only nutritional parameter that remained significantly lower in HM groups at the 12-month follow-up**.
There exists a complex relationship between malnutrition and severe malaria (Schiable et al., 2007)
Underweight, stunting, and wasting may be risk factors for severe malaria.

Overall, improving nutritional status among children in Uganda is necessary to prevent malnutrition, to combat child mortality, and to reduce the global disease burden caused by severe malaria.

Future directions include studying undernutrition as a causative risk factor for development of severe malaria by isolating children who acquired malaria during the study.
This project was funded, in part, with support from the Short-Term Training Program in Biomedical Sciences Grant funded, in part by T35 HL 110854 from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. I would also like to acknowledge and express my gratitude towards my mentors, Dr. Dibyadyuti Datta and Dr. Chandy John, for an invaluable summer experience.
REFERENCES

Blantyre coma score

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye movement</td>
<td></td>
</tr>
<tr>
<td>Watches or follows</td>
<td>1</td>
</tr>
<tr>
<td>Fails to watch or follow</td>
<td>0</td>
</tr>
<tr>
<td>Best motor response</td>
<td></td>
</tr>
<tr>
<td>Localizes painful stimulus</td>
<td>2</td>
</tr>
<tr>
<td>Withdraws limb from painful stimulus</td>
<td>1</td>
</tr>
<tr>
<td>No response or inappropriate response</td>
<td>0</td>
</tr>
<tr>
<td>Best verbal response</td>
<td></td>
</tr>
<tr>
<td>Cries appropriately with pain, or, if verbal, speaks</td>
<td>2</td>
</tr>
<tr>
<td>Moan or abnormal cry with pain</td>
<td>1</td>
</tr>
<tr>
<td>No vocal response to pain</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Fully conscious children score 5; children who do not respond to painful stimuli score 0. Response to pain should be assessed via firm nailbed pressure, sternal pressure, and pressure over the supraorbital ridge. Blantyre coma score ≤2 is associated with mortality.

Figure 4a. Nutritional markers according to disease group at baseline

![Graph showing nutritional markers at baseline](image)

Figure 4b. Nutritional markers according to disease group at 12 months

![Graph showing nutritional markers at 12 months](image)

*p < .05, **p < .01, ***p < .001
Table 2a. Nutritional markers according to disease group at baseline

<table>
<thead>
<tr>
<th>Mean (SD) (N)</th>
<th>Severe malaria (SM) groups</th>
<th>Higher Mortality (HM) groups</th>
<th>Lower Mortality (LM) groups</th>
<th>CC N=120</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CM N=58<sup>a</sup></td>
<td>RDS N=82<sup>a</sup></td>
<td>MS N=124</td>
</tr>
<tr>
<td>Weight-for-age z-score, baseline</td>
<td>-1.23 (1.14) (54)</td>
<td>-1.33 (1.04) (80)</td>
<td>-0.901 (1.00)</td>
<td>-1.03 (1.10)</td>
</tr>
<tr>
<td>Height-for-age z-score, baseline</td>
<td>-1.18 (1.14) (58)</td>
<td>-1.46 (1.35) (82)</td>
<td>-0.992 (1.29)</td>
<td>-1.03 (1.31)</td>
</tr>
<tr>
<td>Weight-for-height z-score, baseline</td>
<td>-0.790 (1.19) (54)</td>
<td>-0.789 (1.19) (80)</td>
<td>-0.531 (1.05)</td>
<td>-0.660 (1.02)</td>
</tr>
</tbody>
</table>

^a For variables for which N is less than the total N listed for group, N's for that variable and group are noted in table.

Table 2b. Nutritional markers according to disease group at 12 months

<table>
<thead>
<tr>
<th>Mean (SD) (N)</th>
<th>Severe malaria (SM) groups</th>
<th>Higher Mortality (HM) groups</th>
<th>Lower Mortality (LM) groups</th>
<th>CC N=110</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CM N=31</td>
<td>RDS N=65</td>
<td>MS N=113<sup>a</sup></td>
</tr>
<tr>
<td>Weight-for-age z-score, 12-months</td>
<td>-0.431 (0.781)</td>
<td>-0.76 (0.980)</td>
<td>-0.654 (0.818) (113)</td>
<td>-0.495 (1.01) (79)</td>
</tr>
<tr>
<td>Height-for-age z-score, 12-months</td>
<td>-0.98 (1.02)</td>
<td>-1.86 (1.31)</td>
<td>-1.15 (1.13) (112)</td>
<td>-1.29 (1.04) (80)</td>
</tr>
<tr>
<td>Weight-for-height z-score, 12-months</td>
<td>0.16 (0.85)</td>
<td>0.368 (1.25)</td>
<td>-0.022 (0.884) (112)</td>
<td>0.304 (1.20) (79)</td>
</tr>
</tbody>
</table>

^a For variables for which N is less than the total N listed for group, N's for that variable and group are noted in table.