On Sprays with Vanishing \(\chi\)-Curvature

Zhongmin Shen\(^*\)

Revised on March 15, 2021

Abstract

Every Riemannian metric or Finsler metric on a manifold induces a spray via its geodesics. In this paper, we discuss several expressions for the \(\chi\)-curvature of a spray. We show that the sprays obtained by a projective deformation using the S-curvature always have vanishing \(\chi\)-curvature. Then we establish the Beltrami Theorem for sprays with \(\chi = 0\).

Keywords: Sprays, Isotropic curvature, \(\chi\)-curvature and S-curvature.

1 Introduction

A spray \(G\) on a manifold \(M\) is a special vector field on the tangent bundle \(TM\). In a standard local coordinate system \((x^i, y^i)\) in \(TM\), a spray \(G\) can be expressed by

\[
G = y^i \frac{\partial}{\partial x_i} - 2G^i \frac{\partial}{\partial y_i},
\]

where \(G^i = G^i(x, y)\) are local \(C^\infty\) functions on non-zero vectors with the following homogeneity: \(G^i(x, \lambda y) = \lambda^2 G^i(x, y)\), \(\forall \lambda > 0\). Every Finsler metric induces a spray on a manifold. Some geometric quantities of a Finsler metric are actually defined by the induced spray only. These quantities are extremely interesting to us.

For a spray \(G\) on a manifold \(M\), with the Berwald connection, we define two key quantities: the Riemann curvature tensor \(R^i_{j,k,l}\) and the Berwald curvature tensor \(B^i_{j,k,l}\) (see [6]). Certain averaging process gives rise to various notions of Ricci curvature tensor. One of them is the Ricci curvature tensor: \(\text{Ric}_{j,l} := \frac{1}{2} \{ R^m_{j,m,l} + R^m_{l,m,j} \} \) ([2]). The well known Ricci curvature \(\text{Ric} := \text{Ric}_{j,l} y^j y^l = R^m_{j,m,l} y^j y^l\) has been studied for a long time by many people. Besides these quantities, we have another important quantity which is expressed in terms of the vertical derivatives of the Riemann curvature. It is the so-called \(\chi\)-curvature defined by

\[
\chi_k := -\frac{1}{6} \left\{ 2R^m_{k,m} + R^m_{m,k} \right\}.
\]

*supported in part by a NSFC grant (no: 12071423)

This is the author’s manuscript of the article published in final edited form as:

where $R^i_k = y^j R^i_{jk} y^j$. The χ-curvature can be expressed in several forms. For an arbitrary volume form dV,

$$
\chi_k = \frac{1}{2} \left\{ S_{k|m} y^m - S_k \right\},
$$

(2)

where $S = S(G,dV)$ is the S-curvature of (G,dV) ([5]). For a spray induced by a Finsler metric, the χ-curvature can be expressed by

$$
\chi_k = \frac{1}{2} \left\{ I_{k|p} y^p y^q + I_m R^m_k \right\},
$$

(3)

where $I_k := g^{ij} C_{ijk}$ denotes the mean Cartan torsion ([4] [1]). These are three typical expressions for the mysterious quantity χ. In this paper, we shall focus on sprays with $\chi = 0$.

For a spray G on a manifold M, in the projectively equivalent class of G, there is always a spray with $\chi = 0$. More precisely, for any volume form dV on M, we may construct a spray \hat{G} by a projective change:

$$
\hat{G}^i := G^i - \frac{S}{n+1} y^i,
$$

where S is the S-curvature of (G,dV). This spray \hat{G} is invariant under a projective change with dV fixed. This projective deformation is first introduced in [6]. We prove the following

Theorem 1.1 Let G be a spray on a manifold M. For any volume form dV, the spray \hat{G} associated with (G,dV) has vanishing χ-curvature, $\hat{\chi} = 0$.

Note that \hat{G} is projectively equivalent to G. Hence if G is of scalar curvature, then \hat{G} is of scalar curvature too. Hence it is of isotropic curvature since $\hat{\chi} = 0$. Thus \hat{G} must be of isotropic curvature. We obtain the following

Corollary 1.2 Let G be a spray of scalar curvature on a manifold M. For any volume form dV, the spray \hat{G} associated with (G,dV) must be of isotropic curvature.

The well-known Beltrami Theorem in Riemannian geometry says that for two projectively equivalent Riemannian metrics g_1, g_2, the metric g_1 is of constant curvature if and only if g_2 is of constant curvature. In particular, if a Riemannian metric g is locally projectively flat, then it is of constant curvature since g is locally projectively equivalent to the standard Euclidean metric. This theorem can be extended to sprays with $\chi = 0$.

Theorem 1.3 For two projectively equivalent sprays G_1, G_2 with $\chi = 0$, G_1 is of isotropic curvature if and only if G_2 is of isotropic curvature. In particular, if a spray G is locally projectively flat with $\chi = 0$, then it is of isotropic curvature.

Sprays or Finsler metrics with $\chi = 0$ deserve further study. Spherically symmetric metrics with $\chi = 0$ have been studied in [9].

Acknowledgment: The primary version of this note is part of my lectures during the summer school in 2018 in Xiamen University, China.
2 Preliminaries

A spray G on a manifold M is a vector field on the tangent bundle TM which is locally expressed in the following form

$$G = y^i \frac{\partial}{\partial x^i} - 2G^i \frac{\partial}{\partial y^i},$$

where $G^i = G^i(x, y)$ are local C^∞ function on $TU \equiv U \times \mathbb{R}^n$,

$$G^i(x, \lambda y) = \lambda^2 G^i(x, y), \quad \lambda > 0.$$

Put

$$N^i_j := \frac{\partial G^i}{\partial y^j}, \quad \Gamma^i_{jk} = \frac{\partial^2 G^i}{\partial y^j \partial y^k}.$$

Let $\omega^i := dx^i$ and $\omega^{n+i} := dy^i + N^i_j dx^j$ and $\omega^i := \Gamma^i_{jk} dx^k$. We have

$$d\omega^i = \omega^j \wedge \omega^i.$$

Put

$$\Omega^i_j := d\omega^i_j - \omega^k_j \wedge \omega^i_k.$$

We obtain two quantities R and B:

$$\Omega^i_j = \frac{1}{2} R^i_{jk} \omega^k \wedge \omega^l - B^i_{jl} \omega^k \wedge \omega^{n+l},$$

where $R^i_{jk} + R^i_{kj} = 0$.

$$R^i_{jk} = \frac{\delta \Gamma^i_{jk}}{\delta x^l} - \frac{\delta \Gamma^i_{jl}}{\delta x^k} + \Gamma^i_{ks} \Gamma^s_{jk} - \Gamma^i_{js} \Gamma^s_{lk},$$

$$B^i_{jk} = \frac{\partial \Gamma^i_{kl}}{\partial y^l}.$$

We have the first set of Bianchi identities

$$R^i_{jk} + R^i_{kj} + R^i_{lj} = 0$$

$$B^i_{jk} = B^i_{kj}.$$

In fact B^i_{jk} is symmetric in j, k, and $y^l B^i_{jk} = 0$. Put

$$R^i_{kl} := y^l R^i_{jk}, \quad R^i_{jk} := R^i_{kl} y^l, \quad R^i_k := y^j R^i_{jk} y^l.$$

The two-index Riemann curvature tensor R^i_{kl} and the four-index Riemann curvature tensor R^i_{jkl} determine each other by the following identity:

$$R^i_{jkl} = \frac{1}{3} \left\{ R^i_{k\cdot l \cdot j} - R^i_{l\cdot k \cdot j} \right\},$$
We also have
\[R^i_{jk} = \frac{1}{3} \left\{ 2R^i_{k,j} + R^i_{j,k} \right\}, \quad (8) \]
\[R^i_{kl} = \frac{1}{3} \left\{ R^i_{k,l} - R^i_{l,k} \right\}, \quad (9) \]
where \(T^*_k \) is the vertical covariant derivative, namely, \(T^*_k = \frac{\partial}{\partial y^k} (T^*_m) \).

Further covariant derivatives yield the second set of Bianchi identities:
\[R^i_{jk l} |_m + R^i_{jl m} |_k + R^i_{jm k} |_l = 0 \quad (10) \]
\[R^i_{kl m} = B_j^i m l | k - B_j^i m k | l \quad (11) \]
\[B_j^i k l = B_j^i k m l. \quad (12) \]

Contracting (10) with \(y^l \) yields
\[R^i_{kl m} + R^i_{lm k} + R^i_{mk l} = 0. \quad (13) \]
Contracting (13) with \(y^l \) yields
\[R^i_{k|m} - R^i_{m|k} + R^i_{mk|l} y^l = 0. \quad (14) \]

3 The \(\chi \)-curvature

The \(\chi \)-curvature defined by the Riemann curvature tensor in (1) can be expressed in several ways.

Lemma 3.1
\[\chi_k = -\frac{1}{2} R^m_{m k} = -\frac{1}{2} R^m_{m k} y^l. \quad (15) \]

Proof: It follows from (8). Q.E.D.

Lemma 3.1 tells us that if \(R^m_{m k} = 0 \), then \(\chi = 0 \).

Put
\[T^i_k := R^i_k - \left\{ R^i_k - \frac{1}{2} R y^l \right\}, \quad (16) \]
where \(R := \frac{1}{n-1} R^m_m \). By definition, \(G \) is of isotropic curvature if \(T^i_k = 0 \). Note that
\[\text{trace}(T) := T^m_{m} = 0. \]

By a direct computation, we can obtain another expression for \(\chi_k \).

Lemma 3.2
\[\chi_k = -\frac{1}{3} T^m_{k.m}. \quad (17) \]
Lemma 3.2 tells us that if G is of isotropic curvature, then $\chi = 0$.

Recall the definition of the Weyl curvature

$$W^i_k := A^i_k - \frac{1}{n+1} A^m_{k,m} y^i,$$ \hspace{1cm} (18)

where $A^i_k := R^i_k - R \delta^i_k$. Clearly,

$$W^m_{k,m} = 0.$$

We obtain a nice formula for the Weyl curvature.

Lemma 3.3 The Weyl curvature is given by

$$W^i_k = R^i_k - \left\{ R \delta^i_k - \frac{1}{2} R_{k,i} y^i \right\} + \frac{3}{n+1} \chi y^i. \hspace{1cm} (19)$$

Proof: One can easily rewrite W^i_k as

$$W^i_k = R^i_k - \left\{ R \delta^i_k - \frac{1}{2} R_{k,i} y^i \right\} - \frac{1}{2(n+1)} \left\{ 2R^m_{k,m} + (n-1)R_y \right\} y^i.$$

By (1), we prove the lemma. Q.E.D.

Given a volume $dV = \sigma(x) dx^1 \cdots dx^n$, the S-curvature of (G, dV) is defined by

$$S := \Pi - y^m \frac{\partial}{\partial x^m} \left(\ln \sigma \right).$$

We have the following expression for χ.

Lemma 3.4 ([2])

$$\chi^k = \frac{1}{2} \left\{ S_{k|m} y^m - S_{k} \right\}. \hspace{1cm} (20)$$

In local coordinates, by (20), one can easily get

$$\chi^k = \frac{1}{2} \left\{ \Pi_{x^m y^k y^m} - \Pi_{x^k} - 2\Pi_{x^k y^m} G^m \right\}, \hspace{1cm} (21)$$

where $\Pi := \frac{\partial G^m}{\partial y^m}$. Clearly, χ is independent of dV.

4 Sprays with $\chi = 0$

A spray is said to be S-closed if in local coordinates, $\Pi = \frac{\partial G^m}{\partial y^m}$ is a closed local 1-form. The spray induced by a Riemannian metric $g = g_{ij}(x)y^i y^j$ is S-closed. In fact

$$\Pi = y^k \frac{\partial}{\partial x^k} \left[\ln \sqrt{\det(g_{ij}(x))} \right]. \hspace{1cm} (22)$$
By (22), for any volume form \(dV = \sigma(x)dx^1 \wedge \cdots \wedge dx^n\), the S-curvature of \((G, dV)\) is a closed 1-form,

\[S = y^k \frac{\partial}{\partial x^k} [\ln \varphi(x)], \]

where \(\varphi(x) = \sqrt{\det(g_{ij}(x))}/\sigma(x)\).

We have the following

Proposition 4.1 If a spray is S-closed, then \(\chi = 0\). In particular, if for some volume form \(dV = \sigma dx^1 \cdots dx^n\), the S-curvature of \((G, dV)\) is a closed 1-form, then \(\chi = 0\).

Proof: By assumption,

\[S = \Pi - y^m \frac{\partial}{\partial x^m} (\ln \sigma) = \eta_k y^k, \]

with \((\eta_k)_x^l = (\eta_l)_x^k\). Then by (21), \(\chi_k = 0\).

Q.E.D.

Let \(\tilde{F}\) be a Finsler metric and \(G\) be a spray on a manifold \(M\). The spray coefficients \(\tilde{G}^i\) of \(\tilde{F}\) can be expressed as follows

\[\tilde{G}^i = G^i + Py^i + \frac{1}{2} \tilde{F} g^{ik} \{ \tilde{F}_{m} y^m - \tilde{F}_{|k} \}. \]

(23)

where \(P = \tilde{F}_{m} y^m / (2 \tilde{F})\). Thus \(\tilde{F}\) is projectively equivalent to \(G\) if and only if

\[\tilde{F}_{m} y^m - \tilde{F}_{|k} = 0. \]

(24)

This is the generalized version of the famous Rapcsák Theorem. By (20), we obtain the following

Theorem 4.2 Let \(G\) be a spray with \(\chi = 0\) and \(dV\) be a volume form. If for the S-curvature \(S\) of \((G, dV)\), \(\tilde{F} = |S|\) is a Finsler metric, then it is projectively equivalent to \(G\).

5 Sprays of isotropic curvature

A spray \(G\) is said to be of scalar curvature if

\[R^i_k = R \delta^i_k - \tau_k y^i, \]

(25)

where \(\tau_k\) is a positively homogeneous function of degree one with \(\tau_k y^k = R\). This is equivalent to that \(W^i_k = 0\). By (19), we see that (25) is equivalent to the following

\[R^i_k = R \delta^i_k - \frac{1}{2} R_k y^k - \frac{3}{n+1} \chi_k y^i. \]

(26)

The \(\chi\)-curvature characterizes sprays of isotropic curvature among sprays of scalar curvature. By (26), we obtain the following
Theorem 5.1 ([3]) Let G be a spray of scalar curvature. G is of isotropic curvature if and only if $\chi = 0$.

Proof of Theorem 1.3: If G_1 is of isotropic curvature, then G_2 is of scalar curvature by the projective equivalence. Since $\chi = 0$, we see that G_2 is of isotropic curvature by Proposition 5.1. Q.E.D.

If G is of isotropic curvature, then
\[
R^i_{jkl} = \frac{1}{2} \left\{ R_{i|j|m} \delta^i_k - R_{-m|j|l} \delta^i_l \right\}.
\]

Assume that G is of isotropic curvature. By (10), we obtain
\[
(R_{i|j|m} - R_{m|j|i}) \delta^i_k + (R_{m|j|k} - R_{-k|j|m}) \delta^i_l + (R_{k|j|i} - R_{-l|j|m}) \delta^i_m = 0. \tag{27}
\]

This yields
\[
(R_{i|m} - R_{m|i}) \delta^i_k + (R_{m|k} - R_{-k|m}) \delta^i_l + (R_{k|l} - R_{-l|k}) \delta^i_m = 0. \tag{28}
\]

Contracting (28) with y^m yields
\[
(R_{i|m} y^m - 2R_{i|m}) \delta^i_k + (2R_{m|k} - R_{-k|m} y^m) \delta^i_l + (R_{k|l} - R_{-l|k}) y^i = 0. \tag{29}
\]

Taking trace $i = k$ in (29), we obtain
\[
(n - 2)(R_{i|m} y^m - 2R_{i|l}) = 0. \tag{30}
\]

Theorem 5.2 If G is an n-dimensional spray of isotropic curvature R ($n \geq 3$), then R satisfies
\[
\frac{1}{2} R_{i|m} y^m - R_{i|l} = 0. \tag{31}
\]

Proof: By assumption $n \geq 3$, we obtain from (30),
\[
R_{i|l} - \frac{1}{2} R_{i|m} y^m = 0.
\]

Q.E.D.

For a spray G, we introduce a new quantity $\eta = \eta_k dx^k$,
\[
\eta_k := \frac{1}{2} R_{k|m} y^m - R_{k|l}, \tag{32}
\]

where $R := \frac{1}{n-1} \text{Ric}$.

For a spray of isotropic curvature R on n-dimensional manifold M ($n \geq 3$), By Theorem 5.2, $\eta = 0$.

7
Let $L := \tilde{F}^2$ be a Finsler metric and G be a spray on a manifold. By (23), the spray coefficients of \tilde{F} can be expressed as

$$\tilde{G}^i = G^i + \frac{1}{4}L^{-1}L_{[m}y^m y^i} - \frac{1}{8}L^{-1}\tilde{g}^{ik}L_{[m}y^m L_{k]} + \frac{1}{4}\tilde{g}^{ik}\left\{L_{[k]}m y^m - L_{[k]}\right\}.$$

We obtain

$$\tilde{G}^i = G^i + \frac{1}{4}\tilde{g}^{ik}L_{[k]} + \frac{1}{2}\tilde{g}^{ik}\left\{\frac{1}{2}L_{[k]}m y^m - L_{[k]}\right\}. \quad (33)$$

In [7], we introduced a notion of dually flat Finsler metrics. This concept can be generalized as follows. \tilde{F} is said to be dually equivalent to G if $L := F^2$ satisfies

$$\tilde{G}^i = G^i + \frac{1}{4}\tilde{g}^{ik}L_{[k]}.$$

By (33), this is equivalent to

$$\frac{1}{2}L_{[k]}m y^m - L_{[k]} = 0. \quad (34)$$

For a spray G on an n-dimensional manifold M with isotropic scalar curvature R. Assume that R is a Finsler metric, by Theorem 5.2, R satisfies (31). Thus one can see that R is dually equivalent to G.

6 Projective change by the S-curvature

Let G be a spray and dV be a volume form on an n-dimensional manifold M. We deform G to another spray \hat{G} by

$$\hat{G} := G - \frac{S}{n+1}y^i,$$

where S denotes the S-curvature of (G, dV). From the definition, we see that \hat{G} is projectively equivalent to G.

Lemma 6.1 Let G be a spray and dV a volume form on a manifold M. Let \hat{G} be the spray associated with (G, dV). Then the S-curvature of (G, dV) vanishes. Hence, $\hat{\chi} = 0$.

Proof: Recall

$$\hat{\chi}_k = \frac{1}{2}\left\{\hat{S}_{[m,k}y^m - \hat{S}_{[k]}\right\}.$$

On the other hand, $\hat{G}^i = G^i + Py^i$ with $P = -\frac{S}{n+1}$. Thus

$$\hat{S} = S + (n + 1)P = 0.$$

This yields that $\hat{\chi} = 0$. Q.E.D.
Lemma 6.2 If \(G_1 \) and \(G_2 \) are two projectively equivalent sprays on a manifold \(M \), then for any volume form \(dV \), the spray \(\hat{G}_1 \) associated with \((G_1, dV) \) and \(\hat{G}_2 \) associated with \((G_2, dV) \) are equal, i.e., \(G_1 = G_2 \).

Proof: It is easy to see that if \(\hat{G}_1 = G_1^i + Py^i \), then
\[
S_1 = S_2 + (n+1)P.
\]

Then
\[
\hat{G}_1^i = G_1^i - \frac{S_1}{n+1}y^j = [G_2^i + Py^i] - \frac{S_2 + (n+1)P}{n+1}y^i = G_2^i - \frac{S_2}{n+1}y^i = \hat{G}_2.
\]

Q.E.D.

Proof of Corollary 1.2: First by definition, \(\hat{G} \) is projectively equivalent to \(G \). Thus \(\hat{G} \) is of scalar curvature. Since \(\hat{\chi} = 0 \), by Lemma 5.1, we see that \(\hat{G} \) is of isotropic curvature.

Q.E.D.

By the above lemma, any geometric quantity of \(\hat{G} \) is a projective invariant of \(G \) with respect to a fixed volume form \(dV \). Further, if the geometric quantity of \(\hat{G} \) is independent of the volume form \(dV \), then the quantity is a projective quantity of \(G \).

Lemma 6.3 Let \(G \) be a spray and \(dV \) a volume form on a manifold \(M \). For the spray \(\hat{G} \) associated with \((G, dV) \), the Riemann curvature of \(\hat{G} \) is given by
\[
\hat{R}^i_k = R^i_k + \tau \delta^i_k - \frac{1}{2} \tau_{,ik}y^j + \frac{3\chi_k}{n+1}y^i,
\]
where
\[
\tau := \left(\frac{S}{n+1} \right)^2 + \frac{1}{n+1}S_{,m}y^m.
\]

Proof: By a direct argument. Q.E.D.

By (35), we get the projective Ricci curvature tensor \(\tilde{\text{Ric}}_{ij} := \frac{1}{2} \{ \hat{R}_{jml} + \hat{R}_{i,mj} \} \) and the projective Ricci curvature \(\tilde{\text{Ric}} := \tilde{\text{Ric}}_{ij}y^iy^j \).

\[
\tilde{\text{Ric}}_{ij} = \text{Ric}_{ij} + \frac{n-1}{2} \tau_{,ij} + H_{ij},
\]
\[
\tilde{\text{Ric}} = \text{Ric} + (n-1)\tau,
\]

9
where $\widehat{\text{Ric}} = \widehat{\text{Ric}}_{jil} y^i y^j$ is the Ricci curvature of \widehat{G} and

$$H_{ij} := \frac{1}{2} \left\{ \chi_{i,j} + \chi_{j,i} \right\}.$$

It is natural to consider other quantities of \widehat{G}, such as the Berwald curvature defined in (4) and the T-curvature defined in (16)

$$\hat{B}^{i}_{jkl} = \frac{\partial^3 \hat{G}^i}{\partial y^j \partial y^k \partial y^l},$$

$$\hat{T}^i_k = \hat{R}^i_k - \left\{ \hat{R}^j_k - \frac{1}{2} \hat{R} k y^j \right\}.$$

Clearly, \hat{B} and \hat{T} are projective invariants with a fixed volume form dV. We have the following

Proposition 6.4 Let G be a spray on a manifold and \hat{G} a spray associated with (G, dV) for some volume form dV. Then the Berwald curvature \hat{B} and \hat{T} are independent of dV, hence they are projective invariants of G. In fact $\hat{B} = D$ is the Douglas curvature and $\hat{T} = W$ is the Weyl curvature of G.

Here we provide another description of the Douglas curvature and the Weyl curvature of a spray.

Let G be a spray and \hat{G} be the spray associated with (G, dV) for some volume form dV. Let $\hat{\eta}$ be the quantity of \hat{G} defined in (32). Then $\hat{\eta}$ is a projective invariant of G for a fixed volume form dV. In fact, $\hat{\eta} = W^o$ the so-called Berwald-Weyl curvature ([6]). If G is of scalar curvature, then \hat{G} is of isotropic curvature. Thus $\hat{\eta} = 0$ when $n = \dim M \geq 3$ by Theorem 5.2.

Proposition 6.5 Let G be a spray on a manifold and \hat{G} a spray associated with (G, dV) for some volume form dV. Assume that G is of scalar curvature. Then the projective invariant $\hat{\eta} = 0$ in dimension $n \geq 3$.

7 Examples

In this section, we shall give some sprays of isotropic curvature.

Example 7.1 Let $F = \alpha + \beta$ be a Randers metric on an n-dimensional manifold M, where $\alpha = \sqrt{a_{ij}(x)y^i y^j}$ is a Riemannian metric and $\beta = b_i(x) y^i$ is a 1-form on M. Let $\nabla \beta = b_{ij} y^i dx^j$ denote the covariant derivative of β with respect to α. Let

$$r_{ij} := \frac{1}{2} \left(b_{ij} + b_{ji} \right), \quad s_{ij} := \frac{1}{2} \left(b_{ij} - b_{ji} \right), \quad s_j := b^i s_{ij},$$

$$q_{ij} := r_{im} s^m_j, \quad t_{ij} := s_{im} s^m_j, \quad t_j := b^i t_{ij}.$$
Let
\[\hat{G}^i := G^i_\alpha + \alpha s^i_\alpha. \] (39)
In fact \(\hat{G} \) is the spray associated with \((G, dV_\alpha)\). It is proved that \(\hat{G} \) is of scalar curvature if and only if the Riemann curvature \(\bar{R}^i_k \) of \(\alpha \) and the covariant derivatives of \(\beta \) satisfy the following equations ([8])

\[\bar{R}^i_k = \kappa \left\{ \alpha^2 \delta^i_k - y_k y^i \right\} + \alpha^2 t^i_k + t_{00} \delta^i_k - t_{0i} y_k - 3 s^i_0 s^0, \] (40)

\[s_{ij|k} = \frac{1}{n-1} \left\{ a_{ik}s^m_j|m - a_{jk}s^m_i|m \right\}. \] (41)

where \(\kappa = \kappa(x) \) is a scalar function on \(M \). In this case, \(\hat{G} \) is actually of isotropic curvature. \(\bar{R}^i_k = \bar{R}\delta^i_k - \frac{1}{2} \bar{R} y^i \). By a simple computation, we obtain a formula for \(\bar{R} := \frac{1}{n-1} \text{Ric} \):

\[\bar{R} = \kappa \alpha^2 + t_{00} + \frac{2}{n-1} \alpha s^m_0|m. \]

Example 7.2 Consider a spray on an open subset \(U \subset R^2 \),

\[G = y^1 \frac{\partial}{\partial x^1} + y^2 \frac{\partial}{\partial x^2}, \]

where

\[G^1 = B(y^1)^2 + 2C y^1 y^2 + D(y^2)^2 + \frac{1}{3} (f_{x^1}(y^1)^2 + f_{x^2}(y^1)^2) \]

\[G^2 = -A(y^1)^2 + 2B y^1 y^2 - C(y^2)^2 + \frac{1}{3} (f_{x^1} y^1 y^2 + f_{x^2}(y^1)^2) \]

where

\[A = A(x^1, x^2), \ B = B(x^1, x^2), \ C = C(x^1, x^2), \ D = D(x^1, x^2), \ f = f(x^1, x^2) \]

are \(C^\infty \) functions on \(U \). The geodesics are the graphs of \(x^2 = \phi(x^1) \)

\[\phi'' = 2A(x^1, \phi) + 6B(x^1, \phi) \phi' + 6C(x^1, \phi)(\phi')^2 + 2D(x^1, \phi)(\phi')^3. \]

We have

\[\Pi = \frac{\partial G^m}{\partial y^m} = f_{x^1} y^1 + f_{x^2} y^2. \]

Thus \(\chi_k = 0 \). Further computation shows that \(G \) is of isotropic curvature.
References

Zhongmin Shen
Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, IN 46202-3216, USA.
zhengmin@math.iupui.edu