Epigenetic alteration by prenatal alcohol exposure in developing mouse hippocampus and cortex

Date
2014-08
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2014
Department
Department of Anatomy & Cell Biology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Fetal alcohol spectrum disorders (FASD) is the leading neurodevelopment deficit in children born to women who drink alcohol during pregnancy. The hippocampus and cortex are among brain regions vulnerable to alcohol-induced neurotoxicity, and are key regions underlying the cognitive impairment, learning and memory deficits shown in FASD individuals. Hippocampal and cortical neuronal differentiation and maturation are highly influenced by both intrinsic transcriptional signaling and extracellular cues. Epigenetic mechanisms, primarily DNA methylation and histone modifications, are hypothesized to be involved in regulating key neural development events, and are subject to alcohol exposure. Alcohol is shown to modify DNA methylation and histone modifications through altering methyl donor metabolisms. Recent studies in our laboratory have shown that alcohol disrupted genome-wide DNA methylation and delayed early embryonic development. However, how alcohol affects DNA methylation in fetal hippocampal and cortical development remains elusive, therefore, will be the theme of this study. We reported that, in a dietary alcohol-intake model of FASD, prenatal alcohol exposure retarded the development of fetal hippocampus and cortex, accompanied by a delayed cellular DNA methylation program. We identified a programed 5-methylcytosine (5mC) and 5-hydroxylmethylcytosine (5hmC) cellular and chromatic re-organization that was associated with neuronal differentiation and maturation spatiotemporally, and this process was hindered by prenatal alcohol exposure. Furthermore, we showed that alcohol disrupted locus-specific DNA methylation on neural specification genes and reduced neurogenic properties of neural stem cells, which might contribute to the aberration in neurogenesis of FASD individuals. The work of this dissertation suggested an important role of DNA methylation in neural development and elucidated a potential epigenetic mechanism in the alcohol teratogenesis.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
Keywords
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}