Attentional set shifting in HAP3, LAP3, and cHAP mice is unaffected by either genetic differences in alcohol preference or an alcohol drinking history

Date
2020-08
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Psychological Association
Abstract

Alcohol consumption may precede, or result from, behavioral inflexibility and contribute to individuals' difficulties ceasing drinking. Attentional set shifting tasks are an animal analog to a human behavioral flexibility task requiring recognition of a previous strategy as inappropriate, and the formation and maintenance of a novel strategy (Floresco, Block, & Tse, 2008). Abstinent individuals with alcohol use disorder, nonalcoholic individuals with a family history of alcoholism, and mice exposed to chronic-intermittent alcohol vapor show impaired behavioral flexibility (Gierski et al., 2013; Hu, Morris, Carrasco, & Kroener, 2015; Oscar-Berman et al., 2009). Behavioral flexibility deficits can be linked to frontal cortical regions connected to the striatum (Ragozzino, 2007), and alterations to the endocannabinoid system, implicated in drug seeking and consumption (Economidou et al., 2006; Serrano & Parsons, 2011), may affect these behaviors. Alcohol-preferring and nonpreferring rodents exhibit differences in CB1 receptor expression (CB1R; Hansson et al., 2007; Hungund & Basavarajappa, 2000), but whether dorsal striatal CB1Rs are important for other alcohol-related behaviors such as attentional set shifting tasks remains unclear. This study assesses whether selectively bred high (HAP) versus low alcohol-preferring mice differ in an operant attentional set shifting task or CB1R levels in the dorsal striatum and whether a history of voluntary alcohol consumption in crossed HAP mice exacerbates inflexibility. Contrary to our hypothesis, neither genetic differences in alcohol preference nor drinking affected set shifting. However, high alcohol-preferring mice-3 mice showed reduced levels of dorsal striatal CB1R compared with low alcohol-preferring-3 mice, suggesting that genetic differences in alcohol consumption may be mediated in part by striatal CB1R.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Millie LA, Boehm SL, Grahame NJ. Attentional set shifting in HAP3, LAP3, and cHAP mice is unaffected by either genetic differences in alcohol preference or an alcohol drinking history. Exp Clin Psychopharmacol. 2020;28(4):379-387. doi:10.1037/pha0000359
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Experimental and Clinical Psychopharmacology
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}