EXTREME HEAT EVENT RISK MAP CREATION USING A RULE-BASED CLASSIFICATION APPROACH

Date
2012-03-19
Language
American English
Embargo Lift Date
Department
Degree
M.S.
Degree Year
2011
Department
Department of Geography
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

During a 2011 summer dominated by headlines about an earthquake and a hurricane along the East Coast, extreme heat that silently killed scores of Americans largely went unnoticed by the media and public. However, despite a violent spasm of tornadic activity that claimed over 500 lives during the spring of the same year, heat-related mortality annually ranks as the top cause of death incident to weather. Two major data groups used in researching vulnerability to extreme heat events (EHE) include socioeconomic indicators of risk and factors incident to urban living environments. Socioeconomic determinants such as household income levels, age, race, and others can be analyzed in a geographic information system (GIS) when formatted as vector data, while environmental factors such as land surface temperature are often measured via raster data retrieved from satellite sensors. The current research sought to combine the insights of both types of data in a comprehensive examination of heat susceptibility using knowledge-based classification. The use of knowledge classifiers is a non-parametric approach to research involving the creation of decision trees that seek to classify units of analysis by whether they meet specific rules defining the phenomenon being studied. In this extreme heat vulnerability study, data relevant to the deadly July 1995 heat wave in Chicago’s Cook County was incorporated into decision trees for 13 different experimental conditions. Populations vulnerable to heat were identified in five of the 13 conditions, with predominantly low-income African-American communities being particularly at-risk. Implications for the results of this study are given, along with direction for future research in the area of extreme heat event vulnerability.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}