Understanding Aromatase: A Mechanistic Basis for Drug Interactions and New Inhibitors

Date
2012-03-16
Authors
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2012
Department
Department of Pharmacology & Toxicology
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Aromatase is the cytochrome P450 enzyme that converts androgens to estrogens. Aromatase is the target of the aromatase inhibitor class of drugs widely used to treat estrogen-mediated conditions including breast cancer. Little is known about the role of this enzyme in drug metabolism or in drug interactions. Since this lack of knowledge has been an impediment to optimal therapy, it is important to understand these roles of aromatase. Therefore, a comprehensive series of studies was carried out to characterize its ability to metabolize drugs and its susceptibility to inhibition by xenobiotics. The overall objective of this work was to better understand the interactions of small molecules with aromatase and to use this new knowledge to predict aromatase-mediated drug interactions and anticipate novel molecular structures that interact with the enzyme. Aromatase was shown to be a drug metabolizing enzyme able to metabolize methadone both in vitro (Km of 314 μM) and in vivo (22% of methadone clearance). A number of novel aromatase inhibitors that employ diverse kinetic mechanisms were identified. These include a potent competitive inhibitor: norendoxifen (Ki of 35 nM), two non-competitive inhibitors: endoxifen (Ki of 4.0 μM) and N-desmethyl-tamoxifen (Ki of 15.9 μM), a mechanism-based inhibitor: methadone (KI of 40.6 ± 2.8 μM; kinact of 0.061 ± 0.001 min-1), and a stereoselective inhibitor: naringenin (IC50s of 2.8 μM for (R)-enatiomer and 1.4 μM for (S)-enatiomer). Through investigation of the structure-potency relationships so discovered, a series of new biochemical structures to be exploited as aromatase inhibitors were identified.
These studies have identified new roles for aromatase as a catalyst for methadone metabolism and as a mediator of the effects of tamoxifen by demonstrating that a number of its metabolites can act as aromatase inhibitors. This work also provides a new mechanistic framework for the design of novel aromatase inhibitors that can be used in breast cancer. Overall, the data suggest ways to more consistently treat breast cancer with current medications, to better anticipate drug interactions, and therefore to improve the quality of life of patients in ways that minimize side effects, while optimizing therapeutic benefits, in each person treated.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}