About | Contact Us | Send Feedback
University Library

The Effects of Nicotine on the Proteolytic Activity of Periodontal Pathogens

Show full item record

Title: The Effects of Nicotine on the Proteolytic Activity of Periodontal Pathogens
Author: Kaeley, Janice,1976-
Advisor: Gregory, Richard L., Chairman of Research Committee
Blanchard, Steven B., Program Director
Kowolik, Michael J.
Windsor, L. Jack
Zunt, Susan L., 1951-
Degree: M.S.D.
Degree Year: 2011
Department: School of Dentistry
Grantor: Indiana University
Permanent Link: http://hdl.handle.net/1805/2708
Abstract: Periodontal disease is the leading cause of tooth loss in adults. Bacterial biofilm on tooth surfaces is the primary initiator of periodontal disease. Various factors contribute to the severity of periodontal disease including the different virulence factors of the bacteria within the biofilm. In the progression of periodontal disease, the microflora evolves from a predominantly Gram positive microbial population to a mainly Gram negative population. Specific gram negative bacteria with pronounced virulence factors have been implicated in the etiology and pathogenesis of periodontal disease, namely Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola which form the red complex of bacteria. The orange complex bacteria become more dominant in the maturation process of dental plaque and act to bridge the early colonizers of plaque with the later more dominant red complex bacterial and consists of such bacteria as Campylobacter showae, Campylobacter rectus, Fusobacterium nucleatum and Prevotella intermedia. Perhaps the most investigated contributing factor is the relationship between smoking and periodontal disease. When examining the association between cigarette smoking and interproximal bone loss, greater bone loss is associated with higher cigarette consumption, longer duration (i.e., pack year history) and higher lifetime exposure. The presence of various virulence factors such as the production of a capsular material, as well as the proteolytic activity of the various periopathodontic bacteria has been associated with the pathogenesis of periodontitis. Even though many different enzymes are produced in large quantities by these periodontal bacteria, trypsin-like enzymes, chymotrypsin-like enzymes and elastase-like enzymes, as well as dipeptidyl peptidase-like enzymes, have been thought to increase the destructive potential of the bacterium and mediate destruction of the periodontal apparatus. More specifically, it is hypothesized that the proteolytic activity of other clinically important periodontal pathogens, such as Fusobacterium nucleatum, Prevotella intermedia and Porphyromonas assacharolyticus, is increased in the presence of nicotine. The purpose of this study was to determine the effects of nicotine on F. nucleatum, P. intermedia and P. assacharolyticus proteolytic activity. Cultures were maintained on anaerobic blood agar plates containing 3% sheep blood. Bacterial cells were harvested from the plates and washed. Washed F. nucleatum, P. intermedia and P. assacharolyticus cells were incubated with 1 mg/ml of nicotine. Bacterial cells not incubated with nicotine were used as positive controls. Secreted enzymatic activity was measured using the synthetic chromogenic substrates glycyl-L-proline-p-nitroanilide (GPPNA), N-succinyl-L-alanyl-L-alanyl-L-alanyl-p-nitroanilide (SAAAPNA), N-succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide (SAAPPPNA) and N-α-benzoyl-L-arginine-p-nitroanilide (L-BAPNA) (Sigma-Aldrich Products, St. Louis, MO, USA). Appropriate means and standard deviations were determined for each of the enzymatic activities measured and analysis of variance (ANOVA) was used to compare the groups utilizing a 5% significance level for all comparisons. Results demonstrated that after 60 minutes of incubation of F. nucleatum, P. intermedia and P. assacharolyticus cells with 1 mg/ml of nicotine and the various synthetic substrates, had the following proteolytic activity for GPPNA: 0.83 ± 0.14, 0.72 ± 0.03 and 0.67 ± 0.10, respectively; SAAAPNA: 0.82 ± 0.06, 0.76 ± 0.05 and 0.68 ± 0.08, respectively; SAAPPPNA: 0.90 ± 0.13, 0.85 ± 0.17 and 0.72 ± 0.03, respectively; and BAPNA: 0.81 ± 0.15, 0.74 ± 0.13 and 0.74 ± 0.16, respectively. In conclusion, the results indicate that in the presence of 1 mg/ml of nicotine, the proteolytic activity of F. nucleatum and P. assacharolyticus was increased with all of the synthetic substrates (with statistical significance seen only in the increases with F. nucleatum and GPPNA, SAAAPNA and BAPNA). The proteolytic activity exhibited an increasing trend in activity for P. intermedia with SAAPPPNA and BAPNA but a decreasing trend in activity with GPPNA and SAAAPNA when incubated with 1 mg/ml of nicotine, once again demonstrating no statistical significance for any of the substrates. Therefore, it could be concluded that based on these results nicotine at a concentration of 1 mg/ml may increase the proteolytic activity of periodontal pathogens and thus may increase periodontal disease activity and subsequent periodontal breakdown. Further studies are needed to validate these results utilizing different concentrations of nicotine.
Keywords: periodontal pathogens
proteolytic activity
MeSH Subjects: Nicotine -- adverse effects
Periodontal Diseases
Prevotella intermedia -- enzymology
Fusobacterium nucliatum -- enzymology
Porphyromonas -- enzymology
Date: 2011-11-17
Description: Indiana University-Purdue University Indianapolis (IUPUI)
Appears in Collections: Dentistry School Theses and Dissertations


Files in this item

View File J Kaeley Thesis - Final.pdf (1.084Mb - application/pdf)

    Items in IUPUIScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Show full item record

Search Repository

Advanced Search


My Account