Wireless Power Transfer: Efficiency, Far Field, Directivity, and Phased Array Antennas

Date
2021-08
Language
English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2021
Department
Electrical & Computer Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

This thesis is an examination of one of the main technologies to be developed on the path to Space Solar Power (SSP): Wireless Power Transfer (WPT), specifically power beaming. While SSP has been the main motivation for this body of work, other applications of power beaming include ground-to-ground energy transfer, ground to low-flying satellite wireless power transfer, mother-daughter satellite configurations, and even ground-to-car or ground-to-flying-car power transfer. More broadly, Wireless Power Transfer falls under the category of radio and microwave signals; with that in mind, some of the topics contained within can even be applied to 5G or other RF applications. The main components of WPT are signal transmission, propagation, and reception. This thesis focuses on the transmission and propagation of wireless power signals, including beamforming with Phased Array Antennas (PAAs) and evaluations of transmission and propagation efficiency. Signals used to transmit power long distances must be extremely directive in order to deliver the power at an acceptable efficiency and to prevent excess power from interfering with other RF technology. Phased array antennas offer one method of increasing the directivity of a transmitted beam through off-axis cancellation from the multi-antenna source. Besides beamforming, another focus of this work is on the equations used to describe the efficiency and far field distance of transmitting antennas. Most previously used equations, including the Friis equation and the Goubau equation, are formed by examining singleton antennas, and do not account for the unique properties of antenna arrays. Updated equations and evaluation methods are presented both for the far field and the efficiency of phased array antennas. Experimental results corroborate the far field model and efficiency equation presented, and the implications of these results regarding space solar power and other applications are discussed. The results of this thesis are important to the applications of WPT previously mentioned, and can also be used as a starting point for further WPT and SSP research, especially when looking at the foundations of PAA technology.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}