Intravenous Self-Administration of Alcohol in Selectively Bred High- and Low- Alcohol Preferring Mice

Date
2011-08-02
Language
American English
Embargo Lift Date
Department
Committee Chair
Committee Members
Goodlett, Charles R.
Murphy, James M.
Chester, Julia A.
Degree
Ph.D.
Degree Year
2011
Department
Department of Psychology
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Genetic vulnerability to alcoholism is theorized to be caused by multiple interacting genetic loci, each with a small to modest effect combining under certain environmental influences to contribute to vulnerability to ethanol dependence. Animal models such as selectively bred rodent lines can be used to address this hypothesis of genetic vulnerability. High-drinking lines are implicitly assumed by many to be evidence of high ethanol reinforcement without consideration for variables such as differential pre- and post ingestive effects, low response to alcohol or novelty-seeking. Therefore, it is an open question as to whether animal studies support the idea that genetic differences in free-choice drinking are correlated with genetic differences in other assessments of ethanol-reinforced behavior, including those utilizing operant and classical conditioning. Thus, the present study utilizes selectively bred High- and Low- Alcohol Preferring mice tested for operant intravenous alcohol administration to address the hypothesis that High Alcohol Preferring mice would show evidence of greater alcohol reinforcement than their selectively bred opposite, Low Alcohol Preferring mice. Evidence for greater reinforcement was supported by High Alcohol Preferring mice voluntarily pressing a lever to administer an intravenous dose of alcohol in a two lever choice paradigm, administering higher doses of intravenous alcohol, and tracking the location of the active alcohol lever during a lever reversal procedure in comparison to Low Alcohol Preferring mice. This study supports the High- and Low- Alcohol Preferring mice as a useful genetic model of alcohol-related vulnerability even when utilizing a route of administration that bypasses the digestive system.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}