Paclitaxel alters the function of the small diameter sensory neurons

Date
2011-07-08
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2011
Department
Department of Medical Neuroscience
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Although paclitaxel is a commonly used anti-neoplastic agent for the treatment of solid tumors, therapy often results in a number of side effects, the most debilitating of which is peripheral neuropathy. Peripheral neuropathy is defined as a pathology of peripheral nerves, and, depending on the type of nerves damaged, the neuropathy can be classified as sensory, motor, or autonomic neuropathy. In the case of peripheral neuropathy induced by paclitaxel, the symptoms are experienced in the extremities and are sensory in nature. Patients undergoing chemotherapy with paclitaxel often report sensory disturbances such as burning, tingling, numbness, a diminished sensation to pain and temperature, loss of vibration sense, loss of proprioception, and loss of deep tendon reflexes. Electrophysiological abnormalities including decreased sensory nerve action potential amplitude and conduction confirm damage to large myelinated fibers. However, the involvement of damage to small diameter sensory neurons in the etiology of paclitaxel – induced peripheral neuropathy is still controversial. Therefore, experiments were performed to determine if paclitaxel alters the function of small diameter sensory neurons and to examine the mechanisms responsible for the change in function. vi Sensory neuron mediated vasodilatation in paclitaxel – injected animals was examined as an indirect measure of calcitonin gene related peptide (CGRP) release and therefore of sensory neuron function. CGRP release was also directly measured from central terminals in the spinal cord. To examine mechanisms of paclitaxel – induced sensory neuron damage, CGRP release and neurite length was examined in paclitaxel – treated sensory neurons in culture. The results demonstrate that (1) paclitaxel decreases the ability of small diameter sensory neurons to produce an increase in blood flow in the skin; (2) paclitaxel alters the release of CGRP from the small diameter sensory neurons; (3) paclitaxel causes the neuronal processes of isolated sensory neurons to degenerate. This dissertation provides novel information showing that paclitaxel alters the function of small diameter sensory neurons and thus provides a better understanding of the mechanisms mediating the sensory disturbances characteristic of peripheral neuropathy resulting from chemotherapy with paclitaxel.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}