Modern Monte Carlo Methods and Their Application in Semiparametric Regression

Date
2021-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2021
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The essence of Bayesian data analysis is to ascertain posterior distributions. Posteriors generally do not have closed-form expressions for direct computation in practical applications. Analysts, therefore, resort to Markov Chain Monte Carlo (MCMC) methods for the generation of sample observations that approximate the desired posterior distribution. Standard MCMC methods simulate sample values from the desired posterior distribution via random proposals. As a result, the mechanism used to generate the proposals inevitably determines the efficiency of the algorithm. One of the modern MCMC techniques designed to explore the high-dimensional space more efficiently is Hamiltonian Monte Carlo (HMC), based on the Hamiltonian differential equations. Inspired by classical mechanics, these equations incorporate a latent variable to generate MCMC proposals that are likely to be accepted. This dissertation discusses how such a powerful computational approach can be used for implementing statistical models. Along this line, I created a unified computational procedure for using HMC to fit various types of statistical models. The procedure that I proposed can be applied to a broad class of models, including linear models, generalized linear models, mixed-effects models, and various types of semiparametric regression models. To facilitate the fitting of a diverse set of models, I incorporated new parameterization and decomposition schemes to ensure the numerical performance of Bayesian model fitting without sacrificing the procedure’s general applicability. As a concrete application, I demonstrate how to use the proposed procedure to fit a multivariate generalized additive model (GAM), a nonstandard statistical model with a complex covariance structure and numerous parameters. Byproducts of the research include two software packages that all practical data analysts to use the proposed computational method to fit their own models. The research’s main methodological contribution is the unified computational approach that it presents for Bayesian model fitting that can be used for standard and nonstandard statistical models. Availability of such a procedure has greatly enhanced statistical modelers’ toolbox for implementing new and nonstandard statistical models.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}