Genetic Selection for Alcohol Preference in Mice Alters Dorsal Striatum Neurotransmission

Date
2019-11
Language
English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Background Although it is widely acknowledged that the risk of developing an alcohol use disorder (AUD) is strongly influenced by genetic factors, very little is known about how this genetic predisposition may alter neurotransmission in a way that promotes AUD susceptibility. The dorsal striatum has garnered increased attention as a brain region of interest in AUD development given its significant roles in goal‐directed and habitual behavior.

Methods In the present work, dorsal striatal neurotransmission parameters were measured in preclinical mouse models of high and low AUD risk. We performed brain slice whole‐cell patch clamp electrophysiological recordings from medium spiny neurons (MSNs) in the dorsomedial (DMS) and dorsolateral (DLS) striatum of naïve adult male and female selectively bred high‐ and low‐alcohol–preferring lines of mice (HAP and LAP).

Results We found that MSNs of HAP mice were significantly more excitable than those of LAP mice, specifically in the DLS. Additionally, the frequencies of spontaneous glutamate‐ and GABA‐mediated currents were both elevated in HAP mice relative to LAP mice in both dorsal striatal subregions, whereas amplitude differences were more variable between lines and subregions. AMPAR/NMDAR current ratios were significantly lower in HAP mice in both DLS and DMS.

Conclusions Collectively, these results suggest that genetic predisposition for high or low alcohol consumption produces significantly different basal functional states within both DLS and DMS which may be important factors in the behavioral phenotypes of HAP and LAP mice.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Fritz, B. M., Munoz, B., & Atwood, B. K. (2019). Genetic Selection for Alcohol Preference in Mice Alters Dorsal Striatum Neurotransmission. Alcoholism: Clinical and Experimental Research, 43(11), pp 2312-2321. https://doi.org/10.1111/acer.14187
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Alcoholism: Clinical and Experimental Research
Rights
Publisher Policy
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}