In-Vitro-Simulated Occlusal Tooth Wear Monitoring by Polarization-Sensitive Optical Coherence Tomography

Date
2019
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.D.
Degree Year
2019
Department
School of Dentistry
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Background: Erosive tooth wear (ETW) is the loss of tooth substance due to chemo-mechanical action unrelated to bacteria. ETW affects approximately 46 percent of children/adolescents and 80 percent of adults in the U.S. Visual examination indices are available for the clinical assessment of ETW. Although useful, they are subjective and heavily based on the clinical experience of the examiner. Some quantitative techniques have been proposed and used for clinically assessing erosive tooth wear, including quantitative light-induced fluorescence, ultrasonic measurement, and more recently, polarization-sensitive optical coherence tomography (PS-OCT). Objective: The objective of this study was to explore the ability of PS-OCT to objectively measure erosive tooth wear on occlusal surfaces. Method: This study was conducted in two phases. In the first phase, 10 sound extracted human lower first premolars were selected and then exposed to tooth wear simulation gradually. PS-OCT and micro computed tomography (μ-CT) were used to evaluate enamel thickness of those premolars at the buccal cusp tip during the simulation. In phase 2, 40 extracted human lower first premolars with different severity levels of ETW on occlusal surfaces were selected based on the Basic Erosive Wear Examination (BEWE) index. A total of 10 teeth (n =10) were selected for each BEWE score (0/1/2/3). PS-OCT and μ-CT were used to evaluate the enamel thickness at the highest point on the occlusal surface. Results: There was good agreement between PS-OCT and μ-CT in both phases (phase 1: 0.89 and phase 2: 0.97) with no significant difference between PS-OCT and μ-CT. Conclusion: This result shows the potential of PS-OCT as reliable method for measuring enamel thickness and monitoring tooth wear progression on the occlusal surface

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}