Slurry preparation of zeolite and metal - organic framework for extrusion based 3D – printing

Date
2018-05
Language
American English
Embargo Lift Date
Department
Committee Chair
Committee Members
Degree
M.S.M.E.
Degree Year
2018
Department
Mechanical Engineering
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Extrusion-based 3D printing is one of the emerging additive manufacturing technologies used for printing a range of materials from metal to ceramics. In this process, the required material is extruded from the extruder in the form of a slurry. Zeolite and MOFs are mainly used for CO2 adsorption in the form of pellets and beads due to their good adsorptive property. Researchers are developing monoliths of Zeolite and MOFs and fabricate them using traditional extrusion and implement them in the gas adsorption applications as an option for beads and pellets by developing a monolithic structure. Previous research on Zeolite 13X and 5A have shown good structural and physical properties in monolith form. In this study, we developed slurry of two molecular sieve Zeolite 3A and 4A monoliths powders, mixing it with bentonite clay, methyl cellulose, and PVA as a binder. The slurry preparation was carried out at room temperature. Once the 3D printed samples are dried at room temperature, a sintering process was performed to increase mechanical strength. To be used in real-time applications, the 3D printed Zeolite sample need to have sufficient mechanical strength. The BET surface area test showed good results for Zeolite 13X compared to available literature. The surface area calculated for 3D printed Zeolite 13X was 767m2/g and available literature showed 498 m2/g for 3D printed Zeolite 13X. The microhardness values of 3D printed Zeolite samples were measured using a Vicker hardness tester. The hardness value of the 3D - printed Zeolite samples increased from 8.3 ± 2 to 12.5 ± 3 HV0.05 for Zeolite 13X, 3.3 ± 1 to 7.3 ± 1 HV0.05 for Zeolite 3A, 4.3 ± 2 to 7.5 ± 2 HV0.05 for Zeolite 4A, 7.4 ± 1 to 14.0 ± 0.5 HV0.05 for Zeolite 5A respectively. The SEM, EDS and XRD analysis was performed for 3D printed samples before and after sintering to evaluate their structural properties. The SEM analysis reveals that all 3D printed Zeolite samples retained their microstructure after slurry preparation and also after the sintering process. The porous nature of 3D printed Zeolite walls was retained after the sintering process. The EDS analysis showed that the composition of 3D printed Zeolite samples remained somewhat similar with minor variation for before and after sintering. The framework structure of Zeolite Type X for Zeolite 13X and Zeolite Type A for Zeolite 3A, 4A, 5A were in good shape after sintering as standard peak intensity points were retained. Zn-MOF74 was synthesized using solvothermal synthesis which is a well-established synthesis process used for the synthesis of MOFs. We also developed slurry for Zn-MOF-74 using bentonite clay and PVA as binders and printed small parts using hand printing.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}