Neurocognitive Risk in Children With Cochlear Implants

Date
2014-07
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Medical Association
Abstract

IMPORTANCE Children who receive a cochlear implant (CI) for early severe to profound sensorineural hearing loss may achieve age-appropriate spoken language skills not possible before implantation. Despite these advances, reduced access to auditory experience may have downstream effects on fundamental neurocognitive processes for some children with CIs.

OBJECTIVE To determine the relative risk (RR) of clinically significant executive functioning deficits in children with CIs compared with children with normal hearing (NH).

DESIGN, SETTING, AND PARTICIPANTS In this prospective, cross-sectional study, 73 children at a hospital-based clinic who received their CIs before 7 years of age and 78 children with NH, with average to above average mean nonverbal IQ scores, were recruited in 2 age groups: preschool age (age range, 3–5 years) and school age (age range, 7–17 years). No children presented with other developmental, cognitive, or neurologic diagnoses.

INTERVENTIONS Parent-reported checklist measures of executive functioning were completed during psychological testing sessions.

MAIN OUTCOMES AND MEASURES Estimates of the RR of clinically significant deficits in executive functioning (≥ 1 SDs above the mean) for children with CIs compared with children with NH were obtained based on 2 parent-reported child behavior checklists of everyday problems with executive functioning.

RESULTS In most domains of executive functioning, children with CIs were at 2 to 5 times greater risk of clinically significant deficits compared with children with NH. The RRs for preschoolers and school-aged children, respectively, were greatest in the areas of comprehension and conceptual learning (RR [95% CI], 3.56 [1.71–7.43] and 6.25 [2.64–14.77]), factual memory ( 4.88 [1.58–15.07] and 5.47 [2.03–14.77]), attention (3.38 [1.03–11.04] and 3.13 [1.56–6.26]), sequential processing (11.25 [1.55–81.54] and 2.44 [1.24–4.76]), working memory (4.13 [1.30–13.06] and 3.64 [1.61–8.25] for one checklist and 1.77 [0.82–3.83] and 2.78 [1.18–6.51] for another checklist), and novel problem-solving (3.93 [1.50–10.34] and 3.13 [1.46–6.67]). No difference between the CI and NH samples was found for visual-spatial organization (2.63 [0.76–9.03] and 1.04 [0.45–2.40] on one checklist and 2.86 [0.98–8.39] for school-aged children on the other checklist).

CONCLUSIONS AND RELEVANCE A large proportion of children with CIs are at risk for clinically significant deficits across multiple domains of executive functioning, a rate averaging 2 to 5 times that of children with NH for most domains. Screening for risk of executive functioning deficits should be a routine part of the clinical evaluation of all children with deafness and CIs.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Kronenberger, W. G., Beer, J., Castellanos, I., Pisoni, D. B., & Miyamoto, R. T. (2014). Neurocognitive Risk in Children With Cochlear Implants. JAMA Otolaryngology-- Head & Neck Surgery, 140(7), 608–615. https://doi.org/10.1001/jamaoto.2014.757
ISSN
2168-6181
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
JAMA otolaryngology-- head & neck surgery
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}