Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer

Date

2016-03-15
Language
American English

Embargo Lift Date

Committee Members

Degree

Degree Year

Department

Grantor

Journal Title

Journal ISSN

Volume Title

Found At

American Physiological Society

Abstract

Altered myocardial fuel selection likely underlies cardiac disease risk in diabetes, affecting oxygen demand and myocardial metabolic flexibility. We investigated myocardial fuel selection and metabolic flexibility in human type 2 diabetes mellitus (T2DM), using positron emission tomography to measure rates of myocardial fatty acid oxidation {16-[18F]fluoro-4-thia-palmitate (FTP)} and myocardial perfusion and total oxidation ([11C]acetate). Participants underwent paired studies under fasting conditions, comparing 3-h insulin + glucose euglycemic clamp conditions (120 mU·m−2·min−1) to 3-h saline infusion. Lean controls (n = 10) were compared with glycemically controlled volunteers with T2DM (n = 8). Insulin augmented heart rate, blood pressure, and stroke index in both groups (all P < 0.01) and significantly increased myocardial oxygen consumption (P = 0.04) and perfusion (P = 0.01) in both groups. Insulin suppressed available nonesterified fatty acids (P < 0.0001), but fatty acid concentrations were higher in T2DM under both conditions (P < 0.001). Insulin-induced suppression of fatty acid oxidation was seen in both groups (P < 0.0001). However, fatty acid oxidation rates were higher under both conditions in T2DM (P = 0.003). Myocardial work efficiency was lower in T2DM (P = 0.006) and decreased in both groups with the insulin-induced increase in work and shift in fuel utilization (P = 0.01). Augmented fatty acid oxidation is present under baseline and insulin-treated conditions in T2DM, with impaired insulin-induced shifts away from fatty acid oxidation. This is accompanied by reduced work efficiency, possibly due to greater oxygen consumption with fatty acid metabolism. These observations suggest that improved fatty acid suppression, or reductions in myocardial fatty acid uptake and retention, could be therapeutic targets to improve myocardial ischemia tolerance in T2DM.

Description

item.page.description.tableofcontents

item.page.relation.haspart

Cite As

Mather, K. J., Hutchins, G. D., Perry, K., Territo, W., Chisholm, R., Acton, A., … DeGrado, T. R. (2016). Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer. American Journal of Physiology - Endocrinology and Metabolism, 310(6), E452–E460. http://doi.org/10.1152/ajpendo.00437.2015

ISSN

Publisher

Series/Report

Sponsorship

Major

Extent

Identifier

Relation

Journal

American Journal of Physiology - Endocrinology and Metabolism

Rights

Publisher Policy

Source

PMC

Alternative Title

Type

Article

Number

Volume

Conference Dates

Conference Host

Conference Location

Conference Name

Conference Panel

Conference Secretariat Location

Version

This item is under embargo {{howLong}}