Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration

Date

2016-10
Language
American English

Embargo Lift Date

Committee Members

Degree

Degree Year

Department

Grantor

Journal Title

Journal ISSN

Volume Title

Found At

Spandidos

Abstract

The present study aimed to evaluate the molecular mechanisms underlying combinatorial bone marrow stromal cell (BMSC) transplantation and chondroitinase ABC (Ch-ABC) therapy in a model of acellular nerve allograft (ANA) repair of the sciatic nerve gap in rats. Sprague Dawley rats (n=24) were used as nerve donors and Wistar rats (n=48) were randomly divided into the following groups: Group I, Dulbecco's modified Eagle's medium (DMEM) control group (ANA treated with DMEM only); Group II, Ch-ABC group (ANA treated with Ch-ABC only); Group III, BMSC group (ANA seeded with BMSCs only); Group IV, Ch-ABC + BMSCs group (Ch-ABC treated ANA then seeded with BMSCs). After 8 weeks, the expression of nerve growth factor, brain-derived neurotrophic factor and vascular endothelial growth factor in the regenerated tissues were detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Axonal regeneration, motor neuron protection and functional recovery were examined by immunohistochemistry, horseradish peroxidase retrograde neural tracing and electrophysiological and tibialis anterior muscle recovery analyses. It was observed that combination therapy enhances the growth response of the donor nerve locally as well as distally, at the level of the spinal cord motoneuron and the target muscle organ. This phenomenon is likely due to the propagation of retrograde and anterograde transport of growth signals sourced from the graft site. Collectively, growth improvement on the donor nerve, target muscle and motoneuron ultimately contribute to efficacious axonal regeneration and functional recovery. Thorough investigation of molecular peripheral nerve injury combinatorial strategies are required for the optimization of efficacious therapy and full functional recovery following ANA.

Description

item.page.description.tableofcontents

item.page.relation.haspart

Cite As

Wang, Y., Jia, H., Li, W.-Y., Guan, L.-X., Deng, L., Liu, Y.-C., & Liu, G.-B. (2016). Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration. Experimental and Therapeutic Medicine, 12(4), 1980–1992. https://doi.org/10.3892/etm.2016.3585

ISSN

1792-0981 1792-1015

Publisher

Series/Report

Sponsorship

Major

Extent

Identifier

Relation

Journal

Experimental and Therapeutic Medicine

Source

Publisher

Alternative Title

Type

Article

Number

Volume

Conference Dates

Conference Host

Conference Location

Conference Name

Conference Panel

Conference Secretariat Location

Version

Published version

Full Text Available at

This item is under embargo {{howLong}}