Synchronous neural oscillations in Parkinson’s disease: Variability and its potential network mechanisms

Date
2016-04-08
Language
American English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Office of the Vice Chancellor for Research
Abstract

Recent studies indicate that patterns of oscillatory synchronous activity in Basal Ganglia (BG) may be relevant to BG physiology and disorders, including Parkinson’s disease (PD). Oscillations in BG, in particular, in relation to motor control, are observed in different species, different conditions and different dopaminergic states (e.g., PD vs. normal). The rich membrane properties of BG neurons easily support oscillatory behavior. Correlations of oscillatory activity between different BG locations depend on the brain state and are dynamically organized.

A general feature of BG oscillations is strong power and correlations of the β-band activity when no movement is performed and replacement of β with γ-band activity during movement. Dopamine-depleted state, such as PD, is marked by increase of oscillatory and synchronous activity, in particular in the β-band. This study explores the dynamical nature of these oscillations on short time-scales.

Description
poster abstract
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
L.L. Rubchinsky, C. Park, and R.M. Worth. (2011, April 8). Synchronous neural oscillations in Parkinson’s disease: Variability and its potential network mechanisms. Poster session presented at IUPUI Research Day 2016, Indianapolis, Indiana.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Rights
Source
Alternative Title
Type
Poster
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}