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Abdulwahab Alharbi 

THE USE OF NET BENEFIT IN MODELING NON-PROPORTIONAL HAZARDS 

Background: The hazard ratio (HR), representing the quantified estimate of treatment 

effect in survival analysis, measures the instantaneous relative difference of failure risk 

between two groups. The HR is typically assumed to be independent of time; however, this 

assumption is usually violated in practice. If the proportionality assumption holds, HR can 

be validly with the popular Cox proportional hazards model. When not proportional, the 

Wilcoxon-Gehan has been proposed to test the hypothesis of no difference. These have 

been recently generalized to evaluate differences in survival time for more than zero 

survival differences (the “net survival benefit”).  

Method: In this thesis, an attempt is made to illustrate the properties of generalized 

Wilcoxon Gehan tests as proposed by Buyse (2009). We use the concept of net survival 

benefit to re-analyze the trial by the Gastrointestinal Tumor Study Group (1982) by 

comparing chemotherapy versus combined chemotherapy and radiation in the treatment of 

locally unresectable gastric cancer. Survival times in days, for the 45 patients were 

recorded in each treatment arm. In that trial, a delayed treatment effect was observed, thus 

the HR is non-proportional. To provide a flexible assessment of the treatment effect, the 

net survival benefit was computed using datasets simulated under typical scenarios of 

proportional hazards, such as delayed treatment effect. 

Results: The generalized Wilcoxon statistic U, favored not adding radiation to 

chemotherapy, but only for survival up to 12 months. At Δ=0, U (0) = 491.  In the simulated 

data sets, the confidence interval under the null hypothesis U (0) is (-152, 388). The test 

statistic 491 is outside this interval indicating radiation treatment might be beneficial. At 
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𝑈(12) = 219, it is inside the confidence interval of no treatment effect (-154,268) indicating 

the benefit of Chemo only is gone after 12 months.    

Conclusions: The net survival benefit measured via Buyse’s generalized Wilcoxon 

statistic is a measure of treatment effect that is meaningful whether or not hazards are 

proportional. The associated statistical test is more powerful than the standard log-rank test 

when a delayed treatment effect is anticipated. 

 

         Constantin T. Yiannoutsos, PhD, Chair 
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Chapter One: Background 

 
Survival analysis is part of fundamental statistical methods useful for modelling 

time to event data such as death, heart attack, device failure, etc. This type of analysis is 

also useful in many aspects of legal proceedings including apportioning cost of future 

medical care, estimating years of life lost, evaluating product reliability, assessing drug 

safety, measuring viability of medical therapies and devices, assessing actuarial loss, etc. 

This branch of empirical science entails gathering and analysing data on time until a failure 

event (e.g., death). Survival analysis includes a variety of specific types of data analysis 

including “life table analysis,” “time to failure” methods, and “time to death” analysis 

(Tolley et al., 2016). 

There are several components associated with survival analysis. They are based on 

the usual probability density function and the cumulative density function. Mathematically, 

we define 𝑓(𝑡) as the probability that an event occurred at time t, its cumulative density 

function denoted as  𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡); implying the probability that an event occurred up 

to time t. The survival function denoted as 𝑆(𝑡), is the probability that the event occurred 

at time beyond t and is given by (Latouche, 2019); 

𝑆(𝑡) = 1 − 𝐹(𝑡) = 1 − 𝑃(𝑇 ≤ 𝑡). 

The hazard function ℎ(𝑡) is defined as the probability that the failure event occurred 

between t and t+Δt conditional that the unit of interest has survived up to t, and it is defined 

mathematically as follows (Latouche, 2019): 

ℎ(𝑡) =
𝑓(𝑡)

1 − 𝐹(𝑡) =
𝑓(𝑡)
𝑆(𝑡). 
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The cumulative hazard function 𝐻(𝑡), measures the accumulated hazard up to time t, and 

it is defined as (Latouche, 2019); 

𝐻(𝑡) = 2 ℎ(𝑥)𝑑𝑥 = 2
𝑓(𝑥)

1 − 𝐹(𝑥) 𝑑𝑥
	

(#,%]
= 2

𝑓(𝑥)
𝑆(𝑥)

	

(#,%]

	

(#,%]
𝑑𝑥. 

The hazard ratio (HR) (Sedgwick, Hazards and hazard ratios, 2012; Austin, 2007; 

Blagoev, Wilkerson, & Fojo, 2012), which represents the quantified estimate of the 

treatment effect in survival analysis, measures the relative difference of instantaneous risk 

between two groups. Generally, the hazard ratio is a function of time, but is often assumed 

to be proportional over time (and thus constant or independent of time). If the 

proportionality assumption holds, the hazard ratio can be estimated using the popular Cox 

proportional hazards model. Survival curves can be compared directly by the method of 

Kaplan and Meier (Buyse, 2010), while the groups’ survival distributions are compared by 

the log-rank test (Sato & Berry, 1991) or other Kaplan-Meier-based tests (Yavuz, Lambert, 

& Lambert, 2011).    
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Chapter Two: Methods 

A number of statistical tests have been considered to compare the survival 

distributions between two groups. We focus in this thesis on non-parametric tests. 

 

The log-rank test 

The log-rank test is most powerful under the assumption of proportional hazards. 

When the proportional hazards assumption is not met, the computed hazard ratio does not 

reliably reflect the treatment benefit, because the true hazard ratio is changing over time 

(Sato & Berry, 1991). Moreover, the standard log-rank test that is optimal under 

proportional hazards, may lack statistical power to compare two treatment groups when 

treatment effects are delayed, in which case a global interpretation of the hazard ratio 

comes into question (Conrad, Furner, & Qian, 1999; Sedgwick, 2011). Weighted log-rank 

tests are used in situations where the proportional hazards assumption does not apply, by 

allocating different weights to events according the events’ times.  

 

Linear-rank tests 

Apart from the log rank test, there exist other nonparametric tests, cumulatively 

named linear rank tests, which are generalized nonparametric methods for testing the null 

hypothesis of equal survival distribution among groups. An early example of such a test is 

the Gehan test (Magel, 1991; Shen & Le, 2000; Williamson, Lin, & Bush, 2002; 

Philonenko, Postovalov, & Kovalevskii, 2016). Gehan’s test is a generalization of the 

popular Wilcoxon-Mann-Whitney test for the two‐group comparison problem. Gehan’s 

insight defines a Wilcoxon-type U statistic as follows: 
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𝑈'( = 5
+1, 𝑖𝑓	𝑋' > 𝑌( 	𝑜𝑟	𝑋′' > 𝑌′(
−1, 𝑖𝑓	𝑋' < 𝑌( 	𝑜𝑟	𝑋′' < 𝑌′(
0, 𝑖𝑓	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

 

 

where 𝑋′' and 𝑌′( represent censored observations. 

Harrington (2005) describe the link between the log rank, Gehan and various other linear-

rank tests through the statistic 𝐾, referred to as weighted log rank statistic. The statistic is 

defined as: 

𝐾 = F
𝑛)𝑛*
𝑛) + 𝑛*

H
)
*
𝑊J

𝑌K)
𝑛)
LJ

𝑌K*
𝑛*
L F
𝑛) + 𝑛*
𝑌K) + 𝑌K*

H 

 

If 𝑊 = 1, then the statistic is reduced to the original log rank statistic. On the other hand, 

if 𝑊 ≠ 1, we end up with various other tests.  For example, if W is the proportion of cases, 

then the statistic is reduced to the Gehan statistic. Since the proportion of cases of each 

group is used as weights, the Gehan statistic is slightly more powerful than the Log rank 

test under the nonproportionality assumption (Harrington, 2005). 

 

Buyse’s generalized Gehan test 

More recently, Buyse (2009), proposed a generalized Gehan test, which is based on 

the concept of the “net survival benefit”. Buyse’s idea is based on the fact that, if survival 

time between two groups is denoted by 𝑋and 𝑌, then there is a hierarchy of outcomes such 

that 𝑋 − 𝑌 > 𝜏	denotes a favorable outcome, while 𝑋 − 𝑌 < −𝜏 implies an unfavorable 

outcome and anything in between (i.e., |𝑋 − 𝑌| ≤ 𝜏) is inconclusive or neutral (Buyse, 
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2009). This idea can readily be extended to survival analysis in the sense of Gehan such 

that (Buyse, 2009) 

Pairwise comparison Pair is 

𝑋' − 𝑌( > 𝜏 
P𝑋' − 𝑌(P ≤ 𝜏 
𝑋' − 𝑌( < −𝜏 

Favorable 
Neutral 

Unfavorable 

𝑋'+ − 𝑌( > 𝜏 
P𝑋'+ − 𝑌(P ≤ 𝜏 
𝑋'+ − 𝑌( < −𝜏 

Favorable 
Uninformative 
Uninformative 

𝑋' − 𝑌(+ > 𝜏 
P𝑋' − 𝑌(+P ≤ 𝜏 
𝑋' − 𝑌(+ < −𝜏 

Uninformative 
Uninformative 
Unfavorable 

𝑋'+ − 𝑌(+ > 𝜏 
P𝑋'+ − 𝑌(+P ≤ 𝜏 
𝑋'+ − 𝑌(+ < −𝜏 

Uninformative 
Uninformative 
Uninformative 

 

Table 1: Generalized pairwise comparison for a time-to-event variable (Buyse, 2010). 

where 𝑋' and 𝑌( are the observed failure times in the two groups and 𝑋'+ and 𝑌(+ are the 

respective censored cases.  Buyse’s generalized Gehan test is based on 𝜏 the net survival 

benefit. It expands the options for the null hypothesis in cases where survival advantages 

𝜏 > 0 may not be meaningful. It must be noted that Buyse’s test reduces to the usual Gehan 

test when 𝜏 = 0. 

 

  In this report the objective is to compare the statistical power of non-parametric 

procedures for testing the equality of two survival distributions when the proportionality 

assumption of the hazards is violated. The procedures used are the log rank and Buyse’s 

generalized Gehan test (which includes Gehan’s test).  
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Randomization tests 

As the calculation of the variability of the distributions involved in the various tests 

considered here are complicated to derive, we will use simulation-based tests to determine 

critical regions and thresholds of rejection of the null hypothesis. Such randomization test 

can be used to test the null hypothesis 𝐻#: ∆= 𝜏, 𝜏 ≥ 0, and to calculate confidence 

intervals for the observed difference in the survival between two treatments ∆,-.. The 

randomization tests attempt to mimic (simulate) the assumed data generated mechanism 

under the null hypothesis. They generate repeated realizations of the results under the null 

hypothesis (say B). Operationally, this is done by keeping all individual times to event 

unchanged but permuting the individual treatment labels which are re-allocated at random 

(Basu, 1980). This is the reason that randomization tests are also called permutation tests. 

We use this approach in this thesis to perform inference when assessing various tests. 

 

 

Illustration 

As an illustration of the above methods, we present a reanalysis of a clinical trial in 

oncology. The Gastrointestinal Tumor Study Group (1982) compared chemotherapy versus 

combined chemotherapy and radiation therapy in the treatment of locally unresectable 

gastric cancer. Survival times in days, for the 45 patients on each treatment were recorded. 

Considerations of delayed treatment effect were present in this study, suggesting that the 

survival benefit may not have been time-independent (i.e., constant and thus proportional 

between the two groups). We first performed a Kaplan-Meier analysis of their data.  Figure 
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1 presents the Kaplan-Meier plot that compares chemotherapy versus combined 

chemotherapy and radiation therapy in the treatment of locally unresectable gastric cancer. 

 

In the figure, the x axis represents the time (in days), while the y axis shows the 

survival probability.  The chemotherapy-only arm exhibits higher survival than 

chemotherapy plus radiation from the beginning till approximately 800 days. After that, 

the chemotherapy-plus-radiation arm tends to exhibit higher survival than chemotherapy 

until the end of follow-up. As can be observed from Figure 1, the estimated survival curves 

cross, which suggests that the hazards are not proportional.  

As usual, the hypotheses of interest are: 

 

Figure 1: Kaplan-Meier plot for the Gastrointestinal Tumor Study Group (1982) 
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H0 = chemotherapy only and chemotherapy plus radiation have the same survival 

distribution. 

H1= chemotherapy only and chemo plus radiation do not have the same survival 

distribution. 

The log-rank statistic for the data is 𝐾 = 0.2319 and the associated p-value = 

0.6301; since the p-value is greater than 0.05 we fail to reject the null hypothesis. From the 

Kaplan-Meier plot, we see that the survival function from the treatment groups cross which 

suggests a violation of the proportional hazard function, which in turn suggests that the 

power of the log-rank test to detect the differences (in survival) between the groups is 

reduced. This may be because of a delayed treatment effect or early toxicity in the 

chemotherapy-plus-radiation arm, as the Kaplan Meier curve for chemotherapy-only 

patients shows better survival in the earlier time points. 

An alternative test to this one is the Wilcoxon (Gehan) test. 

The Wilcoxon statistic is 𝐾/ = 3.9965 with p-value = 0.0456; since the P-value is 

less than 0.05 we reject the null hypothesis and conclude that there is evidence of an overall 

difference in survival between the two treatment groups. This conclusion is different from 

the one we made when we preformed the log-rank test. Because the Wilcoxon statistic puts 

more weight on the earlier time points where the chemotherapy only treatment is better. 

 

 

 

 

 



 

9 

Chapter Three: Results 

The results of the previous analysis are shown in Figure 2.  In this analysis we have 

turned the scale from days into months by dividing by 365.25 – average year length in days 

– and multiplying by 12 – number of months in a year. The brown line is the Generalized 

Gehan test statistic (Buyse, 2009) for 𝜏 equal to 0 and up to 120 months.  The green and 

the blue lines are the empirical upper and lower 95% confidence interval bound (i.e., the 

97.5th and 2.5th percentiles of the empirical distribution of the Generalized Gehan test based 

on 1,000 permutation tests as described in the Methods Section. (Simulated under no 

treatment effect.) The red line denotes the median (i.e., 50th percentile of the same empirical 

distribution). 

 

Figure 2: Generalized Wilcoxon Statistic for various months 
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At  𝛥 = 0, 𝑈(0) = 491,	The corresponding confidence interval for the data 

simulated with no treatment effect is (-127, 388). If we think of this confidence interval as 

representing the range of values that might be observed if there is no treatment effect, then 

the fact 491 is outside this range indicates that the chemotherapy only treatment increases 

survival probability for a benefit of zero months. This favorable effect was not maintained 

when the analysis was focused on long-term survival differences (e.g. 𝛥 =12 months).  One 

can observed from the Kaplan-Meier plots that the treatment survival lines cross at about 

two years this means that tests that weight time periods equally will not find any difference 

between the treatments. But tests that put more emphasis on the first month might show 

more value on the chemotherapy only treatment Recall that the log-rank test was not 

statistically significant for even Δ=0.  

In this study, 𝑈(12) = 219. The confidence interval assuming no treatment effect 

is ( -154, 61). So, the chemotherapy only treatment does not provide a treatment benefit 

longer than 12 months. The curve for the U statistic crosses the simulated median at about 

two years, this is the same points where the Kaplan-Meier cross. The radiation therapy does 

best at 54 months, even though it is not significant.  But the curve above seems to support 

the investigators’ assertion of a possible delayed treatment effect, which gives the early 

advantage to the chemotherapy-only treatment arm and later advantage to adding radiation.  

The power of the generalized Wilcoxon statistic compared favorably to the standard log-

rank test. In addition, the generalized Gehan test of Buyse (2009) suggests that the survival 

advantage may persist for up to 6 months or even later (Figure 2). 
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Chapter Four: Conclusions 

The net long-term survival benefit achieved via generalized Wilcoxon statistic is a 

measure of treatment effect that is meaningful whether or not hazards are proportional. The 

associated statistical test is more powerful than the standard log-rank test when a delayed 

treatment effect is anticipated.  This covers the case where the patient is unwilling to 

undergo treatment unless there is a long-term benefit, such as 12 months or more.  It also 

covers the case where the treatment, such as radiation therapy causes long term harm even 

though it provides short term survival benefits. Or radiation might be harmful in the short 

term but may keep the cancer from coming back in the long term.  These analysis methods 

allow quantification of these benefits.  
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