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Abstract

Single-cell RNA-sequencing (scRNA-seq) provides new opportunities to gain a mechanistic

understanding of many biological processes. Current approaches for single cell clustering

are often sensitive to the input parameters and have difficulty dealing with cell types with dif-

ferent densities. Here, we present Panoramic View (PanoView), an iterative method inte-

grated with a novel density-based clustering, Ordering Local Maximum by Convex hull

(OLMC), that uses a heuristic approach to estimate the required parameters based on the

input data structures. In each iteration, PanoView will identify the most confident cell clusters

and repeat the clustering with the remaining cells in a new PCA space. Without adjusting

any parameter in PanoView, we demonstrated that PanoView was able to detect major and

rare cell types simultaneously and outperformed other existing methods in both simulated

datasets and published single-cell RNA-sequencing datasets. Finally, we conducted

scRNA-Seq analysis of embryonic mouse hypothalamus, and PanoView was able to reveal

known cell types and several rare cell subpopulations.

Author summary

One of the important tasks in analyzing single-cell transcriptomics data is to classify cell

subpopulations. Most computational methods require users to input parameters and

sometimes the proper parameters are not intuitive to users. Hence, a robust but easy-to-

use method is of great interest. We proposed PanoView algorithm that utilizes an iterative

approach to search cell clusters in an evolving three-dimension PCA space. The goal is to

identify the cell cluster with the most confidence in each iteration and repeat the cluster-

ing algorithm with the remaining cells in a new PCA space. To cluster cells in a given

PCA space, we also developed OLMC clustering to deal with clusters with varying densi-

ties. We examined the performance of PanoView in comparison to other existing methods

using ten published single-cell datasets and simulated datasets as the ground truth. The
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results showed that PanoView is an easy-to-use and reliable tool and can be applied to

diverse types of single-cell RNA-sequencing datasets.

Introduction

Single-cell RNA-sequencing (scRNA-seq) has attracted great attention in recent years. Unlike

traditional bulk RNA-seq analysis, scRNA-seq provides access to cell-to-cell variability at the

single-cell level. This allows defining individual cell types, and subtypes, among a population

containing multiple types of cells, and also makes possible following how individual cell types

change over time or after being exposed to various perturbations [1–4].

Classifying single cells based on their expression profile similarity is the basis for scRNA-

seq analysis. A variety of clustering approaches have been developed and applied to scRNA-

seq analysis such as hierarchical clustering [5–7], K-means clustering [8–11], SNN-Cliq [12],

pcaReduce [13], SC3 [14], Seurat [3,15], SCANPY [16], RCA [17], and dropClust [18]. There

are also algorithms, like RaceID/RaceID2 [4,19] and GiniClust [20], were developed specifi-

cally to identify rare cell types. Nevertheless, one challenge is that clustering results are often

highly sensitive to input parameters, and sometimes the required parameters are not intuitive

to users (S1 Table). For example, DBSCAN [21] is a clustering that required two parameters to

classify clusters based on the densities of subpopulations, and has been applied in some

scRNA-seq studies [3,22]. However, it is difficult for users to pick proper required parameters

without the aid of other computer programs and different parameters can lead to different

clustering results (S1 Fig and S2 Fig). Furthermore, it is also challenging for density-based clus-

tering algorithms to properly handle clusters with different densities [23]. This can often be

the case for single cell clustering because different cell types can exhibit different levels of varia-

tion in similarity among the cluster members.

To address these issues, we have developed Panoramic View (PanoView), which utilizes an

iterative approach that searches cell types in an evolving principal component analysis (PCA)

space. The strategy is that we identify the cell cluster with the most confidence in each iteration

and repeat the clustering algorithm with the remaining cells in a new PCA space (Fig 1A). We

define the most confident cluster as the “mature” subpopulation that has the lowest variance in

the current PCA space. To cluster cells in a given PCA space, we have developed a novel den-

sity-based algorithm, namely Ordering Local Maximum by Convex hull (OLMC) (Fig 1B–

1D), that uses a heuristic approach to estimate the required parameters based on the input

data structures (see Methods).

Results/Discussion

Results of simulated datasets

To evaluate the performance of PanoView, we first tested 1,200 simulated data with varying

configuration parameters (e.g. numbers of clusters and standard deviation of the members

within clusters). The performance of the clustering was evaluated using the Adjusted Rand

Index (ARI), which measures the similarity between the cell membership produced by a cho-

sen method and the ground truth [24].

We compared the performance of PanoView with 9 existing methods, including pcaReduce

[13], SC3 [14], Seurat [15], SCANPY [16], RCA [17], K-means without prior dimensional

reduction, PCA followed by DBSCAN, PCA followed by K-means, and t-SNE followed by K-

means. The results showed that PanoView and SCANPY outperformed other benchmarking

PanoView: An iterative clustering method for single-cell RNA sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007040 August 30, 2019 2 / 17

https://doi.org/10.1371/journal.pcbi.1007040


methods in all datasets tested using default parameters. Although we input the correct number

of clusters for K-means and pcaReduce, their performance decreased in the datasets with a

large number of clusters (K-means, t-SNE +Km, PCA+Km, pcaReduce in Fig 2A). For

DBSCAN, we tuned the required parameters until they reached optimal performance in data-

sets with n = 3 and 4 (PCA+DB in Fig 2A). However, its performance dropped significantly

when n>10. We also observed a similar outcome in Seurat, whose performance dramatically

dropped for n>17. It is worthy to note that these methods could achieve much better perfor-

mance if we tune the parameters for each dataset. In this study, we only used the default

parameters for all the methods and evaluated the robustness of the methods with different

datasets. SC3 and RCA with default parameters did not produce usable clustering result for the

simulated datasets.

Results of published scRNA-seq datasets

We applied PanoView to 11 published scRNA-seq datasets, ranging in size from 90 cells to

20,921 cells (S2 Table). We used the reported clustering results as the ground truth for the cal-

culation of ARI, assuming that the authors optimized their analysis correctly with the expertise

Fig 1. Panoramic view algorithm. (A) The schematic illustration of PanoView algorithm. (B-D) A toy model for the illustration of OLMC algorithm. (B)

500 random points in 2D space. Gray numbers represent the number of neighbors for each point. Colored numbers are three local maximum densities. (C)

The histograms represent the distance to local maximums. The heights of colored bars are used for constructing the first convex hull for each local

maximum. (D) Color-enclosed circles represent the convex hulls constructed by colored bars in (C) during OLMC algorithm.

https://doi.org/10.1371/journal.pcbi.1007040.g001
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in the research topics. Based on the overall performance of eight tested methods, we divided

them into two tiers by the median value of 0.5 in ARI (Fig 2B). The median values of ARI in

the first tier are 0.766 (PanoView), 0.614 (SC3), 0.535 (RCA), and 0.505 (Seurat). For the sec-

ond tier, the median values are 0.483 (SCANPY), 0.411 (pcaRecue), 0.327 (PCA+DB), 0.325

(Kmeans), 0.255 (PCA+Km), 0.318 (t-SNE +Km). This difference in tiers was not surprising,

as the methods in the first tier were specifically designed for single-cell analysis. Though

SCANPY and pcaReduce were also developed for the analysis of single cells, they did not show

good performance in this study. In the first tier, four methods seem to have relatively similar

performance. However, there is a noticeable difference in the datasets that exceed 3,000 cells.

Fig 2C shows that for these larger datasets, PanoView outperformed the other methods by a

significant margin, so that the median value of ARI was 0.729 and the rest of methods were

0.488 (RCA), 0.411 (SC3), 0.298 (SCANPY), 0.447 (Seurat), 0.305 (pcaReduce), 0.282 (t-SNE

+Km), 0.378 (PCA+DB), 0.245 (Kmeans), 0.185 (PCA+Km). We also observed that PanoView

Fig 2. The performance of PanoView in comparison to other existing methods using ten simulated datasets and published scRNA-seq datasets. (A) The ARI results

of 8 different computational methods in 1,200 simulated datasets. Error bars indicate standard deviation of ARI. (B) The ARI result of 10 clustering methods in 11

published single-cell RNA-seq datasets. The order of legend is based on the number of single-cells in descending order. Dots are the calculated ARI values for each

dataset. SC3 and pcaReduce did not produce usable clustering results for Campbell dataset. The dataset is missing for these two methods in B and C. (C) The ARI result

of 4 datasets that contain more than 3,000 cells. (D): The ARI result of 7 datasets that contain fewer than 3,000 cells.

https://doi.org/10.1371/journal.pcbi.1007040.g002
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displayed relatively less variation. For smaller datasets, PanoView (median: 0.766) still ranked

first among all methods tested (Fig 2D). The result of ARI values for all methods is provided in

S3 Table.

The observed difference in performance between PanoView and other methods is statisti-

cally significant. S5 Fig shows that PanoView performed statistically better than six methods

that include RCA, pcaReduce, t-SNE+Km, PCA+DB, Kmeans, and PCA+Km. When we fur-

ther evaluated the datasets that contain more than 3,000 cells in S5(B) Fig, PanoView’s perfor-

mance was better than eight methods except for RCA. In the case of datasets that have fewer

than 3,000 cells, PanoView performed significantly better than three methods (RCA, PCA

+DB, PCA+Km).

Computational cost

We also examined the computational cost of PanoView in the real scRNA-seq datasets. It is

not surprising that data analysis takes longer when datasets contain more cells (Fig 3). We also

compared the computational cost with other methods, which generated reasonable clustering

results. It is obvious that PanoView is not the fastest algorithm. SCANPY, Seurat and RCA are

faster than PanoView. It is interesting that SC3 and pcaReduce are slower than PanoView and

they failed to generate clustering results for the largest dataset.

Stability of default parameters in PanoView

PannoView produced the results using default parameters. We investigated whether the

default parameters produced the optimal results. We have 8 variables in the PanoView, includ-

ing Zscore, Gini, Bc, Bg, Maxbb, CellNumber, GeneLow, Fclust_height (see Methods for

details). If we provided 3 values for each variable, including one default value, we have 6,561

different combinations of these parameters. Since it takes too long to use all potential combi-

nations, we executed PanoView with 500 randomly picked combinations on the 10 scRNA-seq

datasets (To save the computational time, we didn’t include the Campbell et al dataset for this

analysis). Based on the sampling results from the 500 combinations, we found that the default

parameter set could produce overall good clustering results across the 10 datasets, ranking in

the top 98.2 percentile among the 500 parameter sets (Fig 4A and 4B). The similar observation

was made for each individual dataset (Fig 4C), although the default parameters performed bet-

ter in some datasets than others. The 500 clustering results are provided in S4 Table.

Results of detection of rare cell types

To evaluate the ability to identify rare cell types, we first applied PanoView to 260 simulated

datasets and benchmarked it with Seurat, GiniClust, RaceID2, and SCANPY. GiniClust and

RaceID2 are two single-cell methods that were specifically designed for detecting rare cell

types. We used recovery rate and false positive rate to evaluate the performance of detecting

rare cell types (table in Fig 5). PanoView had the best performance that it correctly recovered

the rare cell subpopulation in 87.31% of datasets. Although GiniClust recovered 66.54% of

datasets, there were 85 datasets contained false-positive rare clusters, resulting in a false-posi-

tive rate of 32.69%. In the case of PanoView, only 6 datasets had false-positive rare clusters,

resulting in a false-positive rate of 2.3%. Seurat had 3 false-positive rare clusters, resulting in a

false-positive rate of 1.15%. We used one simulated dataset to illustrate the accuracy between

methods (Fig 4B–4F). PanoView is the only method that perfectly identified rare cell popula-

tions and major cell populations. GiniClust did recover the rare cell populations; however, it

also produced false positive cells that were scattered in the three other major clusters. Seurat

and SCANPY also showed poor performance in identifying rare cell types. Specifically, Seurat
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divided the one rare cell type into three clusters, while SCANPY grouped rare cells into one

major cluster. RaceID2 did not produce a usable clustering result for this chosen dataset.

In addition to simulated datasets, we also used Patel dataset to examine the performance of

detecting rare cells (S4 Fig). GiniClust reported that it successfully detected one rare cell type

in this dataset [20], which consists of 9 cells in glioblastoma tumors. These cells were also dis-

covered by the original study showing highly expressed oligodendrocyte genes [6]. In our

result (S4 Fig), PanoView identified a cluster (cluster #2) that includes 7 cells, which are corre-

sponding to the rare cells in the original study. SCANPY reported a cluster with 9 cells, among

which 8 were the rare cells. SC3 identified a cluster with 10 cells, among which 8 were the rare

cells. Seurat assigned 9 rare cells to a major cluster, which has 88 cells in total. A similar

Fig 3. Computational times for selected clustering methods. The X-axis represents the number of cells in 8 datasets. Note that SC3 and pcaReduce

did not produce usable clustering result for Campbell dataset.

https://doi.org/10.1371/journal.pcbi.1007040.g003
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outcome was also observed in RCA and pcaReduce that both algorithms merged the rare cells

to a major cluster. RaceID2 recovered 8 rare cells from a cluster with 9 cells; however, it also

produced many much smaller clusters than the other methods. These results indicated that

PanoView not only recovers most rare cells but also produces reasonable clusters representing

the heterogeneity in glioblastoma tumors cells.

Clusters of single-cell subpopulations in mouse embryonic hypothalamus

Finally, we applied PanoView to a newly generated scRNA-seq dataset of 959 cells obtained

from embryonic day 16 (E16) mouse hypothalamus. The mammalian hypothalamus, which is

the central regulator of a broad range of physiological processes and behavioral states, is highly

complex at the cellular level [25–27]. Cell subtypes in the developing hypothalamus are very

poorly characterized. PanoView identified a total of 11 clusters (Fig 6A), the majority of which

consisted of radial glia, neurogenic and gliogenic progenitor cells, immature neurons, as

Fig 4. The results of PanoView for 10 scRNA-seq datasets with 500 random parameter sets. (A) Boxplots of 500 simulation results. We ordered the 500 parameter

sets based on median values of ARI in ascending order. The blue line indicates the median values of 10 ARI values for each parameter set. The vertical pink line

represents the result of PanoView with the default parameters. (B) The distribution of median ARI in 500 simulation results. The default value ranked 98.2 percentile.

(C) Boxplots of 500 clustering results in 10 scRNA-seq datasets. Red stars are the ARI results with current default parameters.

https://doi.org/10.1371/journal.pcbi.1007040.g004
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expected. A considerable number of non-neuronal cells were also profiled, including pericytes,

endothelial cells, erythrocytes, and macrophages. We selected 12 marker genes to show the

specific expression level across 11 clusters (Fig 6B). Four rare cell clusters were also identified,

which consisted of a myeloid-like cell type that likely consists of pericyte precursors [28], tis-

sue-resident microglia, infiltrating monocytes, and an unidentified vascular cell type. With the

exception of the last cell type, which likely represents a previously uncharacterized subtype of

endothelial or pericyte precursor cell, the other three rare cell types represent cells that are

known to be found in the embryonic mouse brain.

Summary

In this study, we have described the development and performance of PanoView to identify

cell subpopulations in single-cell gene expression datasets. Without any tuning of the parame-

ters, PanoView produced reasonable clustering results in 1,200 simulated data and 11 pub-

lished scRNA-seq datasets. Furthermore, without any adjustment, PanoView was able to

identify rare cell types in both simulated data and scRNA-seq datasets. The robust perfor-

mance of PanoView may be the result of both searching cell clusters one by one in the evolving

PCA space and improved density-based clustering. Note that it is possible that other clustering

Fig 5. The evaluation of detecting rare cell types. (A) The recovery rate and false positive rate in detecting rare cell types in 260 simulated datasets. SC3 was not

included in the comparison because it did not produce usable results in our simulation (B) The ground truth of the selected simulated data. Cluster 999 represents the

predefined rare cell type and the t-SNE coordinates of three rare cells were adjusted for better visualization. (C, D, E, F) We selected one of the simulated datasets to

visualize the performance of different computational methods (PanoView, GiniClust, Seurat, SCANPY). RaceID2 did not produce clustering result in this simulated

dataset.

https://doi.org/10.1371/journal.pcbi.1007040.g005
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methods may show improved performance once we fine-tune their parameters with the input

from experienced experts. We believe that PanoView can offer reliable performance with mod-

erate computational cost and can be applied to diverse types of scRNA-seq dataset. The clus-

tering of single cells will automatically identify cell specificity. After the identification of cell

types, we are also able to determine the marker genes that show specific expression in each cell

type (e.g. Fig 6B). We believe that the cell atlas and the corresponding marker genes will be a

valuable resource to study various biological processes.

Materials and methods

Ethics statement

All experimental procedures were pre-approved by the Institutional Animal Care and Use

Committee of the Johns Hopkins University School of Medicine.

PanoView algorithm

The key of PanoView is to iteratively search clusters in different sets of variable genes. Our

algorithm first performs PCA reduction based on a set of variable genes (defined below). By

choosing the first three principal components which explain the largest variance across all

cells, PanoView then applies a novel density-based clustering approach, ordering local maxi-

mum by convex hull (OLMC), to cluster cells into multiple groups. These groups are evaluated

by their variances and the Gini index in the current gene space. PanoView then identifies the

best “mature” cluster that is the one with the lowest variance, and the rest of the cells will be

put into the next iteration. A new set of variable genes is determined with the remaining cells

and the same procedure (PCA reduction and OLMC) is repeated. The iteration of PanoView is

terminated when no more cluster can be produced, or Gini index reaches a threshold. Next,

Fig 6. Single-cell clusters of mouse embryonic hypothalamus identified by PanoView. (A) Visualization of identified cell types from embryonic hypothalamus using

t-SNE. (B) Relative expression of 12 selected marker genes in embryonic hypothalamus.

https://doi.org/10.1371/journal.pcbi.1007040.g006
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PanoView produces a hierarchal dendrogram for all generated clusters and merges similar

clusters based on the cluster-to-cluster distance.

A pseudo-code is provided as the following to detail as to how PanoView works:
Algorithm: PanoView
Input: expression matrix Einput
Output: cluster set M
1: Let Ei = Einput,i = 1
2: while there are variable genes in Ei
3: Generate cluster set Ci by OLMC in 3D PCA
4: Calculate s2

min, Gini for clusters in Ci
5: if any of Gini > 0.05
6: select the mature cluster mi with minimum s2

min; mi � Ci

7: remaining cluster set Ri = Ci−mi
8: Ei+1 = Ei−Ri
9: i = i+1
10: calculate variable genes in Ei+1
11: else if all of Gini < 0.05
12: output cluster set M = Ci+m1+� � �+mi
13: stop iteration
14: Generate hierarchal dendrogram for clusters in M
15: Merge nearby clusters if differential cluster-cluster
distance < 20%
16: Output hierarchal dendrogram for revised M

Variable genes for PCA

We adopt the procedure described in Macosko et al to find variable genes [3]. First, all genes

are grouped into 20 bins based on their average expression levels. Second, the ratio of variance

and mean for genes in each bin is calculated. Third, z-normalization is performed using the

ratio of variance and mean in each bin and using the z-score as a threshold to obtain a set of

variable genes. The default value of z-score is 1.5 (Zscore = 1.5). We also exclude the lower

expressed genes whose average expression is less than 0.5 (Genelow = 0.5). This selection of

variable genes is carried out during each iteration of PanoView.

Ordering local maximum by convex hull (OLMC)

For clustering single cells, we developed ordering local maximum by convex hull (OLMC), a

density-based clustering, to identify local maximums in three-dimensional gene space. First,

we compute the pairwise Euclidean distance of cells. The distances were grouped into Bc bins

(default value = 20) with equally distance interval. The Rc is the bin interval of the histogram

that represents the calculated distribution based on the input dataset. Second, we applied the

k-nearest neighbors algorithm implemented in Scikit [29] to compute the number of neigh-

bors within distance Rc for each cell. The cells are then ordered based on the number of neigh-

bors, with each cell annotated as Pi, where i is the ranking index from 1 to the total number of

cells. P1 represents the global maximum in the space. Third, the cells are equally grouped into

Bg bins based on the distance to P1. The cells in the first bin are considered as the first group

G1, and a convex hull H1 that compose of a set of vertices is constructed. Third, we search for

the next local maximum density. Assuming Pm is the first one from the remaining ranked

cells, we first define RH1
Pm as the distance to the nearest vertices of H1 and �RH1 is the average of

pairwise distance for the vertices of convex hull H1. If RH1
Pm <

�RH1 , Pm will be added into the

group G1, and corresponding convex hull H1 is updated (i.e. expanding), suggesting Pm is not

a local maximum. If RH1
Pm >

�RH1 , the new local maximum Pm is located and the corresponding

PanoView: An iterative clustering method for single-cell RNA sequencing data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007040 August 30, 2019 10 / 17

https://doi.org/10.1371/journal.pcbi.1007040


convex hull H2 is constructed based on the distance to Pm. The searching for the next local

maximum would be ended if the number of remaining cells is not sufficient to construct a con-

vex hull. Once every local maximum density is located, assign every cell to the nearest local

maximum densities. To sum up, the key of OLMC algorithm is to first find where the global

maximum density is and use convex hull to locate the next local maximum.

To illustrate OLMC, a toy model consisting of 500 random points is provided (Fig 1B–1D).

In Fig 1B, each number represents the number of neighbors within Rc = 0.5. The histograms in

1C represent the distance to local maximums and are built by Bg = 10. The number of 27 in Fig

1B is where the highest density is. The first convex hull (the cyan in Fig 1D) is constructed by

the points within the first bar (Fig 1C) of the distance histogram. After removing the points in

the cyan convex hull, the next point with the highest density is where number of 23 is, and the

second convex hull is constructed by the points in the first bar (in green) of the second histo-

gram that is calculated by distance distribution to the point of 23, a local maximum density.

Followed by the same procedure, the next local maximum (point of 22 in yellow) is located

and the third convex hull is built. In the end, OLMC identifies the locations of three local max-

imums, and assign rest of the points to the nearest local maximums.

In PanoView, the goal is to find as many clusters as possible during the iterations. There-

fore, we adopted a heuristic approach to optimize the bin size Bg that controls the histogram

of distance to local maximums for constructing convex hulls. We generated a simulated

data of 500 2D points to illustrate the optimization (S3 Fig). By incrementally increase the

bin size by 5, OLMC would reach a saturated state that no more local maximums can be

located. We carry out the optimization until the saturated state or the bin size of 100

(Maxbb = 20)

Due to the computational efficiency, this optimization is only activated when the number

of cells during iterations is smaller than CellNumber = 1000. Otherwise, the default Bg = 20.

Cluster evaluation in PanoView

One crucial step in PanoView is to evaluate the clusters produced by OLMC for locating the

“mature” cluster during each iteration. The idea is to use Gini index to evaluate the inequality

of clusters. PanoView first calculates the pairwise correlation distance xi,j for every cell within

each cluster using

xi;j ¼ 1 �
ðvi � �viÞ � ðvj � �vjÞ

kðvi � �viÞk2kðvj � �vjÞk2

where vi, vj are n-dimensional vectors and �vi; �vj are the means of the elements of vector vi, vj,
respectively [30]. The algorithm then calculates the variance σ2 of distances xi,j for each cluster

and ranked the clusters in the descending order.

PanoView then calculates the Gini index Gi (i = 2, to n), for the top i clusters. Here n is the

total number of clusters in this iteration. The Gini index [31] was defined as

Gini ¼
Pn

i¼1

Pn
j¼1
js2

i � s
2
j j

2n2m

where s2
i ; s

2
j are the variances in a population of variances, n is the number of variances, and μ

is the mean of a population of variances.

If there is a Gini smaller than the threshold of 0.05, PanoView will keep the cluster with

the minimum variance (i.e. the “mature” cluster) and put the rest of cells into the next

iteration.
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Generation of simulated datasets

We used Scikit’s sample generator [29] with default parameters except the number of clusters

and standard deviation within each cluster. These datasets served as the ground truths to eval-

uate the ability to identify cell subpopulations for chosen computational methods. Each simu-

lated dataset consists of 500 cells and 20,000 genes, with expression values in the range of 0 to

10,000. The cells are equally divided into numbers of clusters based on randomly generated n
centers (3�n�22). In each cluster, cells are dispersed around the center of the cluster with a

given standard deviation (SD = 0.5,1,2). For each n, we generated 20 random configurations

(i.e. datasets). In total, we generated 1,200 different random datasets.

For evaluating the ability to identify rare cell-types, we followed the same procedure to gen-

erate simulated datasets. The number of clusters ranged from 3 to 15, and the standard deriva-

tion of each cluster was 1. In each dataset, we randomly picked one cluster and removed 90%

of the cells from that cluster. This cluster was defined as the rare cell subpopulation. In other

words, the size of the rare cluster is about 0.6% to 3% of the total population. We also varied

the random state of the generator by 20 random numbers to have a total of 260 random data-

sets. The command line to generate the simulated datasets in python’s Scikit is “make_blobs

(n_samples = 500, n_features = 20000, centers = None, cluster_std = 1.0, center_box = (-10.0,

10.0), shuffle = True, random_state = None)”. The python code for generating simulated data-

sets are available at PanoView’s Github repository.

Real single-cell RNA-seq datasets

We used the following 11 scRNA-seq datasets in our study. Yan et al profiled transcriptomes of

human preimplantation embryos and human embryonic at different passages [32] (GSE36552).

Goolam et al profiled transcriptomes of mouse preimplantation development from zygote to

late blastocyst [33] (E-MTAB-3321). Deng et al used scRNA-seq to study the allelic expression

of mouse preimplantation embryos of mixed background (CAST/EiJ × C57BL/6J) from zygote

to late blastocyst [34] (GSE45719). Pollen et al used low-coverage scRNA-seq to study the devel-

opment of the cerebral cortex in hiPSCs [35] (SRP041736). Patel et al reported expression pro-

files of single glioblastoma cells from 5 individual tumors [6] (GSE57872). Usoskin et al used

single-cell transcriptome analysis to study cell types of mouse neurons [36] (GSE59739). Villani

used scRNA-seq to classify dendritic and monocyte populations from human blood [37]

(GSE94820). Zeisel used scRNA-seq to study the transcriptome of mouse somatosensory cortex

S1 and hippocampus CA1 [2] (GSE60361). Tirosh et al used scRNA-seq to study genotypic and

phenotypic states of melanoma tumors from 19 patients [38] (GSE72056, GSE77940). Baron

et al used inDrop technique to profile the transcriptomes of human and mouse pancreatic cells

[5] (GSE84133). Campbell et al used Drop-seq to study transcriptomes of mouse arcuate

nucleus and median eminence [39] (GSE93374).

Benchmark with other clustering methods

For parameters in pcaReduce, we used the default setup (nbt = 1, q = 30, method = “s”). For

key parameters in Seurat, we used model.use = “negbinom”, pcs.compute = 30, weight.by.var =

FALSE, dims.use = 1:10, do.fast = T, reduction.type = "pca", dims.use = 1:10. For key parameters

in SCANPY, we used counts_per_cell_after = 1e4, min_mean = 0.0125, max_mean = 3, min_d-
isp = 0.5, max_value = 10, n_neighbors = 10, n_pcs = 40. For RCA, we used the default setup.

For SC3, we used the default setup and sc3_estimate_k as the final clustering output. In the

Baron dataset, SC3 only reported the clustering result for 5,000 random cells due to the activa-

tion of SVM. We had to use these reported 5,000 cells to calculate the ARI value. For DBSCAN,

we first did PCA reduction with Scikit’s default setup and adjusted epsilon and minPts based
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on the visualization of PCA space. We also used Scikit’s default setup for executing Kmeans

(n_clusters = k, init = ’random’) and t-SNE (n_components = 2, random_state = 1, init = ’ran-

dom’, n_iter = 1000).

For benchmarking RaceID2 in our simulated datasets, we used the default setup from the

manual and did not pass the step of findoutliers. Therefore, we used @cluster$kpart as the final

clustering result. For benchmarking GiniClust in our simulated datasets, we used the default

parameters from the manual except for Gini.pvalue_cutoff. We adjusted it from 0.0001 to 0.005

because the default value of 0.0001 did not produce useable clustering results.

Evaluation of performance in detecting rare cell types

We used recovery rate and false positive rate to evaluate the performance of clustering meth-

ods on detecting rare cell types. In each simulated dataset, we always have one rare cell cluster

and n (n = 2 to 14) major cell clusters. If the rare cell cluster was perfectly detected with the

correct number of cells within the cluster, we considered that the algorithms recovered the

rare cell type. On the other hand, if cells from a major cluster were grouped into multiple clus-

ters and at least one of the sub-cluster had the size less than 10% of the major cluster, we con-

sidered that the algorithm generated a false positive rare cell type.

Animals

Timed pregnant mice (Charles River Laboratories, MA, USA) were housed in a climate-con-

trolled pathogen-free facility, on a 14 hour-10 hour light/dark cycle (07:00 lights on-19:00

lights off). All experimental procedures were pre-approved by the Institutional Animal Care

and Use Committee of the Johns Hopkins University School of Medicine.

Single-cell RNA-Seq library generation and analysis

Hypothalamic tissue dissected from embryonic day (E) 16.5 C57BL/6 mouse embryos under a

dissecting microscope in cold 1x HBSS (Thermo Fisher Scientific, MA, USA). A total of 6

embryos were dissected. Dissected tissues were incubated in papain solution (Worthington,

NJ, USA) at 37’C for 15 minutes. Papain activity was stopped as following manufacturer’s pro-

tocol, and fire-polished Pasteur pipette was used to gently pipette tissues up and down to disso-

ciate tissues into single cells. Dissociated cells were filtered through 40 uM strainer and washed

once in Neurobasal media (Thermo Fisher Scientific), and cells were resuspended in Neuroba-

sal media with 1% bovine serum albumin. Approximately 17,000 live cells were loaded per

sample in order to capture transcripts from roughly 10,000 cells. Estimations of cellular con-

centration and live cells in suspension was made through Trypan Blue staining and use of the

Countess II cell counter (ThermoFisher). Single cell RNA capture and library preparations

were performed according to manufacturer’s instructions. using 10x Genomics Chromium

Single Cell system (10x Genomics, CA, USA) using the v1 chemistry, following manufacturer’s

instructions and sequenced on Illumina MiSeq system (Illumina, CA, USA). Sequencing

results were processed through the Cell Ranger pipeline (10x Genomics) with default parame-

ters to generate count matrices for subsequent analysis. The total number of single cells is 959,

and the total number of reads is 15,365,879. The mean reads per cell is 16,022, and total genes

detected is 15,223. The median number of genes per cell is 617.

Software availability

PanoView is available as a Python module at https://github.com/mhu10/scPanoView. To run a

clustering analysis with default parameters in PanoView, we run two command lines,
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RunSearching(GeneLow = ‘default’, Zscore = ‘default’) and OutputResult(fclust_height =

‘default’). The complete user manual is provided at Github repository.

Supporting information

S1 Fig. The clustering results of different parameters in DBSCAN. Clustering results of

DBSCAN with different sets of parameters (epsilon and minPts). ARI value represents the simi-

larity between the DBSCAN result and the ground truth. The value of 1 would indicate the

clustering membership is the same as the ground truth.

(TIF)

S2 Fig. The similarity between the results of DBSCAN with different parameters. The pair-

wise comparison of clustering results from S1 Fig. Each value represents the ARI of the results

from two different parameter sets.

(TIF)

S3 Fig. The heuristic approach for estimating bin size in OLMC. (A) The result of OLMC

on 500 random 2D points analyzed using different bin sizes. (B): Optimal bin size is between

20 to 45 for this simulated data.

(TIF)

S4 Fig. The results of different clustering methods in Patel dataset. Comparison of different

clustering methods using the Patel dataset. Visualization of clusters was generated by t-SNE.

Panel A shows the original clustering results from the Patel et al publication. Panels B to I

show the clustering results with different methods.

(TIF)

S5 Fig. The statistical test of the performance of PanoView compared with other methods

in the published scRNA-seq datasets. (A) The result of t-test between PanoView and other

methods in 11 scRNA-seq datasets. Values in the figure are p-values that indicate the signifi-

cant difference between two methods. (B) The result of statistical t-test in the datasets that con-

tain more than 3,000 cells. (C): The result of the statistical test in the datasets that contain

fewer than 3,000 cells.

(TIF)

S1 Table. Key parameters in some computational methods for scRNA-seq. Key parameters

for some computational methods used in scRNA-seq

(DOCX)

S2 Table. scRNA-seq datasets used in this study. Published scRNA-seq datasets used in this

study. N is the total number of cells. K is the reported number of clusters in the original pub-

lished studies

(DOCX)

S3 Table. The clustering result of different computational methods in published scRNA-

seq datasets. The result of ARI calculation in scRNA-seq datasets

(XLSX)

S4 Table. The clustering result of PanoView with 500 random parameter sets in published

scRNA-seq datasets. 500 clustering results of PanoView that includes ARI, values of parame-

ters, and the computational cost.

(XLSX)
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