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Ganglion cells (GCs) are fundamental to retinal neural circuitry,
processing photoreceptor signals for transmission to the brain via
their axons. However, much remains unknown about their role in
vision and their vulnerability to disease leading to blindness. A
major bottleneck has been our inability to observe GCs and their
degeneration in the living human eye. Despite two decades of
development of optical technologies to image cells in the living
human retina, GCs remain elusive due to their high optical trans-
lucency. Failure of conventional imaging—using predominately sin-
gly scattered light—to reveal GCs has led to a focus on multiply-
scattered, fluorescence, two-photon, and phase imaging techniques
to enhance GC contrast. Here, we show that singly scattered light
actually carries substantial information that reveals GC somas,
axons, and other retinal neurons and permits their quantitative
analysis. We perform morphometry on GC layer somas, including
projection of GCs onto photoreceptors and identification of the
primary GC subtypes, even beneath nerve fibers. We obtained sin-
gly scattered images by: (/) marrying adaptive optics to optical
coherence tomography to avoid optical blurring of the eye; (ii) per-
forming 3D subcellular image registration to avoid motion blur; and
(iii) using organelle motility inside somas as an intrinsic contrast
agent. Moreover, through-focus imaging offers the potential to
spatially map individual GCs to underlying amacrine, bipolar, hori-
zontal, photoreceptor, and retinal pigment epithelium cells, thus
exposing the anatomical substrate for neural processing of visual
information. This imaging modality is also a tool for improving
clinical diagnosis and assessing treatment of retinal disease.
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he retina is an inverted stack of neurons requiring light to
traverse its full thickness before being absorbed by photore-
ceptors to initiate vision (1). Retinal neurons anterior to photo-
receptors—including ganglion cells (GCs)—are therefore nearly
transparent and well index matched to surrounding cells. These
properties, combined with tight packing of the GCs, ocular blur,
and retina motion, make these neurons extremely challenging to
image in the living human eye (2-4). Ex vivo studies overcome
these by removing the retina and using stains and fluorescent
markers (5-7), two-photon excitation (8, 9), differential in-
terference contrast optics (10), and extreme 3D resolution (11) to
enhance contrast. Recently, some of these powerful methods have
been applied successfully to animals in vivo as, for example, two-
photon excitation (12), but work remains to translate them to
human. However, standard methods of imaging the human retina
in vivo—including fundus photography, scanning laser ophthal-
moscopy (SLO), and optical coherence tomography (OCT)—fail
to visualize GCs and the other transparent neurons due to in-
sufficient resolution, axial sectioning, cell contrast, and correction
of eye motion artifacts. Indirect methods of inferring neuron
populations from bulk measures of retinal layer thicknesses and
clinical visual field testing can circumvent these problems, but
concerns about reliability remain (13).
Two recent advances in SLO have shown promise for ob-
serving GCs in the living human eye. One used SLO to detect
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apoptotic GCs tagged with an intravenously administered fluores-
cent marker (14), thus providing direct monitoring of GC loss. The
second incorporated adaptive optics (AO)—which corrects ocular
aberrations—into SLO sensitive to multiply-scattered light (12).
This clever combination permitted imaging of a monolayer of GC
layer (GCL) somas in areas with little or no overlying nerve fiber
layer (NFL) (see figure 5, human result of Rossi et al.; ref. 12). By
contrast, our approach uses singly scattered light and produces
images of unprecedented clarity of translucent retinal tissue. This
permits morphometry of GCL somas across the living human ret-
ina. We overcome the aforementioned obstacles by combining AO
and OCT (AO-OCT) (15) to achieve high lateral and axial reso-
lution and high sensitivity, using 3D subcellular image registration
to correct eye motion, and using organelle motility inside GCL
somas to increase cell contrast (16, 17). This imaging modality
enables light microscopy of the living human retina, a tool for
fundamental studies linking anatomical structure with visual func-
tion (18-21). High-resolution images of retinal neurons in living
eyes also promise improved diagnosis and treatment monitoring of
GC and axonal loss in diseases of the optic nerve such as glaucoma
(3, 4, 22, 23) and other neurodegenerative disorders such as Alz-
heimer’s disease, Parkinson’s disease, and multiple sclerosis (24).

The 3D resolution of our AO-OCT method was 2.4 x 2.4 x 4.7 ym>
(width x length x depth), sufficient to resolve GCL somas in any
dimension. We acquired 1.5° X 1.5° AO-OCT volume images along
the horizontal meridian of the macula from four subjects free of ocular
disease. AO-OCT videos were acquired at each retinal location with
the system focused precisely at the GCL. In postprocessing, volumes
were registered and averaged, and GCL somas were identified.

This report is based on a total count of over 42,000 GCL
somas at 26 different locations in the four subjects. The 3D
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spatial coordinates of the GCL soma centers were marked and
used to quantify: soma stack thickness, diameter, reflectance,
density, and distribution of primary GC subtypes and GC pro-
jection onto cone photoreceptors (Materials and Methods).

Results and Discussion

Averaging and Registering AO-OCT Volumes. Imaging with coherent
light produces speckle that contains both noise and object in-
formation (e.g., soma shape) (25), the former preventing observa-
tion of the latter (see example in Fig. 1; n = 1). Organelle motion in
the soma causes the noise to change from image to image, while the
object information (soma) remains constant from image to image,
assuming the images are registered to each other with an accuracy
better than the size of individual somas. Therefore, averaging of
images reduces speckle noise while retaining soma information. We
found empirically that averaging 100-160 registered AO-OCT
volumes of the same retinal patch improved signal-to-noise ratio
and image contrast, dramatically improving the clarity of individual
GCL somas (see example in Fig. 1; n = 137). We quantified the
image enhancement due to motion of organelles inside somas and
our ability to register to subcellular accuracy using a soma contrast
metric (Materials and Methods). As expected from the theory of
independent noise realizations (25), soma contrast increased as the
square root of the number of images averaged, experimentally in-
creasing by a factor of 11 times with 137 volumes (Fig. 1 plot).

Three-Dimensional Imaging of the Inner Retina. Fig. 2 and corre-
sponding Movie S1 illustrate the detailed views obtainable by our
method of the 3D mosaic of GCL somas, the adjacent ganglion
axon bundles, the retinal vasculature, and cellular structures at
the inner limiting membrane (ILM) and inner plexiform layer
(IPL). After imaging the retinal tissue at a selected location, the
resulting volume can be dissected digitally to show how a single,
identified neuron is positioned in depth (cross-sectional view,
Fig. 2C) and laterally (transverse slice, Fig. 2F). Transverse slices
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Fig. 1. Averaging registered AO-OCT images improves clarity of GCL somas.
Magnified view of the same small patch of retina is shown with different
amounts of averaging (n = 1, 30, and 137 images). Images are from 12-13.5°
temporal to the fovea in subject S3. Plot shows the contrast-to-noise ratio
(CNR) of 120 individual GCL somas computed as a function of images aver-
aged (Materials and Methods). Error bars denote +1 SD. CNR increase follows
the square root of the number of images (dashed curve).
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provide detailed views of many retinal features of interest, such as
presumptive astrocytes or microglia at the ILM (Fig. 2D), GC axon
bundles of various calibers (Fig. 2E), the mosaic of GCL somas of
different characteristic sizes indicating different functional classes
(Fig. 2F), and the dense mesh of dendrites and synapses between
GCs, amacrine cells, and bipolar cells in the IPL (Fig. 2G). To-
gether, these images provide a glimpse of the rich tapestry of
neurons, glia, and blood vessels that can be appreciated by in-
teractive inspection of the imaged volume.

GCL Soma Size and Stack Thickness. We inspected the GCL of
recorded retinal volumes to estimate the size and layering of GCL
somas at different retinal eccentricities. Example images (Fig. 3
and Fig. S1) clearly reveal the retinal gradient of soma size for all
four subjects. The high axial resolution of our AO-OCT enables
visualization of the layering of GCL somas in depth, necessary for
measurements of cell density and observations of the arrangement
of somas in gaps between nerve fiber bundles and around blood
vessels extending through the entire GCL (Figs. S2 and S3 and
Movie S2). Stack thickness reached a maximum of 4-5 somas at 3—
4.5° retinal eccentricity, decreasing rapidly toward the fovea and
slowly away from it to a minimum thickness of 1. A thickness
of >2 somas was observed up to 9.5° eccentric (Fig. S3). Note that
counting the number of somas in stack required some judgment
due to the varied spacing and size of the somas. Soma size is a
distinguishing property of GCs related to their function and cen-
tral projection (5, 6, 26). In our images, somas near the fovea are
small and homogeneous, possibly due to packing constraints for
achieving high visual acuity (26). In contrast, the patches 12-13.5°
eccentric contain the largest and most varied sizes (5, 6, 26).
Central tendency and variability of soma size are captured by the
frequency distributions plotted in Fig. 44 and Fig. S4. For the four
subjects, the distribution of soma diameter is 11.4 + 1.8 pm
(average + SD) at 1.5-3° and 13.9 + 3.1 pm at 12-13.5°, a 22%
and 72% increase in size and variation.

A very small fraction of GCL cells (21 of 32,469 counted) at
1.5-3°, 3-4.5°, 6-7.5°, 8-9.5°, and 12-13.5° temporal to the fovea
in the four subjects had giant somas (J cells), defined as a di-
ameter greater than 26 pm (27). All but one of the giant somas
were observed at the two largest retinal eccentricities, consistent
with the reported distribution of giant cells whose frequency
begins near this eccentricity range and peaks in the mid-
peripheral retina (27). The largest had a diameter of 30.8 um,
almost exact in size to the 31-pm “giant” monkey GC Polyak
used from his histology to illustrate this class (28).

GCL Soma Reflectance. We know of no reports on the reflectance
properties of individual GCL somas. In this study, we discovered
that larger somas are generally more reflective (amplitude/pixel
measured at soma center) than the smaller ones, a significant
difference (P < 0.001) in all subjects at all locations. This
property is illustrated in the reflectance scatterplot in Fig. 4C
that shows an average increase of 70% over the soma size range.
Variation in reflectance must point to underlying differences in
soma composition as measurements were made internal to
somas that were selected from the same volume and narrow
depth plane (14 pm). The latter avoided the influence of focus
and other optical variations. Note that this approach parallels
that commonly used to quantify reflectance variations of cone
photoreceptors imaged with AO-flood, AO-SLO, and AO-OCT.
Our measured variation in soma reflectance suggests a method
for distinguishing GC subtypes based on soma composition.
Reflectance may prove especially useful in studying central retina
where GC subtype is difficult to establish based on soma size.

GC Soma Subtypes. From histology of excised tissue, it is known
that parasol GCs generally exhibit larger somas than midget GCs
(mGC), and this size difference increases with distance from the
fovea (5, 29, 30). Our study confirms and extends that observa-
tion in living eyes by showing that the size distribution exhibits an
increasingly positive skewness with retinal eccentricity (Pearson’s
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Fig. 2. Cellular structures of the inner layers of the retina using AO-OCT. (A) Yellow square at 12-13.5° temporal to the fovea in subject S3 denotes location
imaged with AO-OCT. (B) Three-dimensional perspective of registered and averaged AO-OCT volume with green dashed line denoting cross-section of inner
retina shown in C. Yellow arrow indicates same GCL soma in C and F. Images shown in D-G were extracted at depths of 0, 13, 22, and 46 pm below ILM. Scale
bar in G also applies to D—F. (D) Surface of ILM. Bright, irregular star-like structures sparsely cover the surface of the ILM and are consistent in appearance with
individual astrocyte or microglial cells. (E) A complex web of nerve fiber bundles of varying size disperse across the NFL. Some have a diameter as large as
30 pm (blue arrow), which compares to our previous AO-OCT observations (48). Others are as small as 3 um, which matches the caliper of a single large GC
axon. An arteriole/venule branches on the left. GCL somas appear between the overlying bundles near the image bottom (green arrow). (F) A mosaic of GCL
somas of varying size tile the layer. Red arrow points to a large soma. Caliper of arteriole/venule in E is sufficiently large that it extends into the GCL. Note the
distinct edges of the vessel walls (blue and white arrows) and the tight abutment of GCL somas. (G) The dense synaptic connections between axons of bipolar
cells and dendrites of ganglion and amacrine cells present as a uniform mesh of high spatial frequency irregularities in the IPL. COST, cone outer segment tip;

IS/0S, inner segment/outer segment junction; ONL, outer nuclear layer; OPL, outer plexiform layer (Movie S1).

moment coefficient increased from 0.53 to 1.45) and becomes
bimodal for retinal eccentricities greater than 6°. To test whether
these two modes represent the two primary subtypes of GCs in the
macula (midget and parasol), we simultaneously fit two Gaussians
to the bimodal distributions and subtracted the expected contri-
bution of displaced amacrine cells (10) from the lower-diameter
mode (Materials and Methods). When averaged across all subjects,
the fractions of cells falling into the lower-diameter mode were
91%, 85%, and 86% for eccentricities of 6-7.5°, 8-9.5°, and 12—
13.5°, respectively. These estimates fall between the fractional
estimates of mGCs by Dacey (7) and Drasdo et al. (20) (Fig. S5),
and the size distributions of our data fall within the range reported
for midget and parasol somas in the human literature (Fig. 4B).
We conclude from these observations that single-scatter imaging is
capable of resolving and distinguishing the two primary subtypes
of GCs that form parallel visual pathways through the optic nerve
to visual centers of the brain (31) based on three fundamental
soma features: size, density, and reflectance.

GC Soma Density. Histologic studies show that the spatial density of
GC somas varies markedly across the retina—characterized by an
elevated ring of densely packed, stacked somas surrounding the
fovea—and across subjects (6, 7, 9, 10, 32-34). To determine the
density in our subjects, we used soma counts (41,506) from 24 of
26 imaged locations and, as before, subtracted amacrine pop-
ulation estimates from the literature (10). Fig. 3 plot shows that
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the soma density distribution parallels that from histology, peak-
ing at 3-4.5° with a sharp monotonic decrease toward the fovea
and a gradual one away from it. Higher densities were found in
nasal retina (S4), also consistent with histologic studies (10, 34).
No significant difference was found for retinal eccentricities
greater than 6° (P = 0.11-0.89). At lower retinal eccentricities, our
peak densities were smaller than histologic estimates (10) with
means and SDs of 19,162 + 2,087 somas per mm? and 26,895 +
4,899 somas per mm?, respectively, a significant difference (P =
0.011). While part of this difference can be attributed to our
coarse 1.5° X 1.5° sampling window, repeating the analysis using a
smaller 0.17° x 0.1° window and a counting protocol consistent
with that of Curcio and Allen (10) still yielded lower densities. We
found no evidence of a scaling discrepancy nor that obstructions
such as vasculature or other cellular structures within the GCL
masked the underlying somas and caused undercounting. Somas
were evident across the entire GCL thickness, and the 790-nm
wavelength of our AO-OCT is minimally absorbed by retinal tis-
sue. Thus, the discrepancy between our density results and those
from histology remains an open question, compounded by the
small sample sizes in both studies.

GC Projection onto Cone Photoreceptors. Single-scatter imaging
with AO-OCT enables the measurement of physical parameters
in the living human retina that are fundamental to the structure
and function of GCs. As an example of elucidating GC function
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Fig. 3. En face images extracted from GCL at increasing retinal eccentricity
of subject S4. A mosaic of GCL somas is observed at each eccentricity. (Bot-
tom Right) GC soma density is plotted along the horizontal meridian of the
macula. Retinal eccentricity is converted to millimeters to compare with
histology data (10). AO-OCT temporal data are the average from four sub-
jects and nasal is from S4. Error bars denote +1 SD.

in retinal neural circuitry, we used our density measurements to
derive individualized estimates of the pooling of cone signals by
GC dendritic fields. Pooling of cone signals via intermediate
bipolar cells is an anatomical necessity (because cones out-
number optic nerve fibers) that imposes fundamental limits on
vision. mGCs in particular are important in determining visual
acuity, yet histological estimates of the extent of their receptive
fields and the number of mGCs that service each cone vary
widely in the literature (20, 21). In the human fovea, the
reported range of mGC-to-cone ratio is large (0.9-3.4), requiring
profoundly different numbers of ON-center and OFF-center
mGCs to encode the foveal image. To derive an estimate of
this ratio from our in vivo AO-OCT data, we projected our
measured GC coordinates onto our measured cone photore-
ceptor coordinates for the same subject. GC retinal eccentricity
ranges of 1.5-3°, 3-4.5°, 6-7.5°, 8-9.5°, and 12-13.5° were esti-
mated to project to cone retinal eccentricities of 0.35-1.2°, 1.2
2.6°, 4.5-6.5° 7.1-8.9°, and 11.7-13.3° (21) (Materials and
Methods). Cone densities in these eccentricity ranges (52,882,
34,178, 12,375, 9,728, and 6,602 cells per mmz) were normal (35),
with only one location (0.35-1.2°) statically lower (P < 0.05) than
the histologic measurements of Curcio et al. (36). The average
mGC-to-cone ratios at these cone locations were 1.60, 1.12, 0.98,
0.72, and 0.52. As shown in Fig. 4D, our ratio measurements are
consistent with Watson’s recent histology-based model (21),
differing by 6%, 21%, 10%, 0.2%, and 4.1%, respectively. Our
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fovea ratio of 1.60 supports the view that the vertical pathway
through the fovea connects two mGCs to one cone, allowing one
to be ON center and the other OFF center (1). Individual dif-
ferences, however, are notable with ratios across the four sub-
jects varying by 9-70% [(max — min)/avg] depending on retinal
location. This variation should affect visual resolution in these
eyes as fundamental limits are imposed by the sampling of cone
photoreceptors and mGCs (19). We can now test these limits by
accounting for both.

Observing GCL Somas Under Thick NFL and at Foveal Rim. As shown
in cross section and en face of Fig. S6 (also see Movie S3), the NFL.
at 8-9.5° nasal (50 pm thick) approaches the thickest in the macula
(37). It densely covers the entire volume image, and its peak am-
plitude reflectance is 6.5 times greater than that of the underlying
GCL somas, a difference that is best appreciated by the cross-
sectional image displayed in the figure on a linear, as opposed to
logarithmic, scale. Despite this thick, brightly reflecting layer that
lies immediately above the somas, the soma mosaic can be
extracted as evident in the en face GCL image in the same figure.

In contrast, close to the foveal center where the NFL is absent,
the 0.35-1.85° retinal patch of S1 (Fig. S7 and Movie S4) reveals
that GCL somas extend all of the way to the foveal rim of the
GCL where they abut the ILM. Presumably, these somas are most
critical for visual acuity as they are thought to project to photo-
receptors at the foveal center. Prominent in the en face image is
the extension of the soma mosaic into the foveal avascular zone,
defined by the innermost ring of retinal capillaries encircling the
fovea. In both subjects imaged at this location (S1 and S4), GCL
somas did not extend more than 100 pum, consistent with the
general rule for mammals that metabolically active cells should
not be more than this distance to preserve molecular exchange via
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Fig. 4. Properties of soma size, reflectance, and pooling of cone signals.
(A) Representative GCL soma size distribution (54) is color coded by retinal
eccentricity. (B) Average GC soma diameter obtained by Gaussian fits to the
four subjects in temporal retina with measurements reported in the literature
for humans (5, 10, 12, 26, 29, 34). Error bars denote +1 SD unless labeled with
an r to denote minimum-to-maximum range. M and P denote midget and
parasol cells. Labels along x axis report retinal location of measurement. fm,
foveal margin; pm, papillomacular; pr, peripheral retina. (C) Representative
reflectance of 637 GCL somas at 12-13.5° temporal to the fovea in subject S4.
Blue line shows linear regression curve. (D) mRGC-to-cone ratio for four
subjects is plotted with Watson’s histology-based model for humans (figure
14 of ref. 21) and fovea ratios in table 1 of Drasdo et al. (20).
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diffusion (1). This suggests that capillary dropout along the in-
nermost ring, as for example occurs in diabetic retinopathy (38), is
likely detrimental to these critical GCs, which we can now monitor
in these patients as the disease progresses.

Visualizing GCs and Other Neurons Across the Retina. While our study
was confined to the horizontal meridian of the macula, our mea-
surements have broader significance given the common neural
layering of the retina across the posterior pole and radial symmetry of
the macula about the fovea. Given these commonalities, our method
should allow observation of GCL somas anywhere in the macula and
beyond, whether stacked on each other (Figs. S2 and S3 and Movie
S2), lying beneath a thick and highly scattering NFL (Fig. S6 and
Movie S3), or aggregated at the foveal rim where the smallest and
closest-packed GCL somas are found (Fig. S7 and Movie S4). Al-
though we emphasized GCL somas in this report, our images also
provide detailed views of nerve fiber bundles and GC axons that form
them. An exemplary example is Movie S5, which shows several fiber
bundles dissolving into an intricate labyrinth of axons. In general, our
AO-OCT method holds promise for visualizing cells across all retinal
layers and, thus, exposing the anatomical substrate for neural
processing of visual information. Fig. 5 illustrates this capability,
showing cells extracted from different depths [NFL to retinal
pigment epithelium (RPE)] in the same retinal patch. In these
images, we can discern the types and densities of cells that com-
pose each layer. Interestingly, the inner nuclear layer (INL) image
depicts a fine mesh of tightly packed, small (5-um diameter), faint
structures suggestive of bipolar somas (9) and sparse, large (18-pm
diameter), bright structures suggestive of displaced GC somas
(39). These await further study.

By imaging tens of thousands of GCL somas in four subjects, we
have demonstrated a path for visualizing and quantifying these
elusive cells as well as other transparent neurons and cellular
structures in the living human retina. While application of this
method to diseased eyes is apparent, there is also optimism that
the methodology can be improved further, for example, to char-
acterize the dendritic morphology and soma organelle pattern that
are more definitive cues of retinal cell type. Such characterization
might be possible using the complex field recorded by AO-OCT
(e.g., ref. 40) to map the physiological dynamics of these cellular
compartments. For now, our images are generating more ques-
tions than answers, reminiscent of what some of us experienced
two decades ago with the first photoreceptor images (41).

Materials and Methods

Subjects. Four subjects, ranging in age from 24to 50y (S1 =24, 52 =26, 53 =47,
and S4 = 50y old) and free of ocular disease, participated in the experiments.
All subjects had best corrected visual acuity of 20/20 or better and a spherical
equivalent refraction between 0 and —2.5 diopters. All had normal intraocular
pressure (IOP), performance on perimetry, and appearance of optic disk and
fundus, as determined by the Indiana University School of Optometry clinic.
The one exception was S4 who had a history of elevated IOP (range 20-22),
but normal otherwise. Eye lengths ranged from 23.27 to 25.40 mm as mea-
sured with the IOLMaster (Zeiss), and were used to scale the retinal images
from degrees to millimeters (42). All procedures on the subjects adhered to
the tenets of the Declaration of Helsinki and were approved by the In-
stitutional Review Board of Indiana University. Written consent was obtained
after the nature and possible risks of the study were explained.

Experimental Design. The subject’s eye was cyclopleged and dilated with
tropicamide 0.5%. The eye and head were aligned and stabilized using a
bite bar mounted to a motorized XYZ translation stage. Images were ac-
quired with the Indiana AO-OCT system (43, 44) with system focus placed
precisely at the GCL to maximize sharpness of GCL somas. Correct placement
was realized by optimizing brightness of the GCL using the real-time dis-
played B-scan (cross sectional) images and sharpness of the NFL vasculature
in the en face images. AO-OCT volumes were acquired on the subjects at
10 macular locations along the horizontal meridian that bisected the fovea.
The five locations (1.5-3°, 3-4.5°, 6-7.5°, 8-9.5°, and 12-13.5°) temporal to
the fovea were imaged in four subjects and the four (1.5-3°, 3-4.5°, 6-7.5°,
and 8-9.5°) nasal to it were imaged in one. An extreme foveal location at
0.35-1.85° temporal was imaged in two subjects. For each retinal location,
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Fig. 5. Cells at different depths in the same retinal patch of subject S4 as vi-
sualized with AO-OCT. (A) Three-dimensional perspective of registered and
averaged AO-OCT volume with colored lines denoting retinal depths at which
the en face images in B-F were extracted. Images depicting individual NF
bundles (B), GCL somas (19,162 cells per mm?) (C), suggestive somas of bipolar
(green arrow) and displaced GCs (white arrow) near the IPL interface (D), cone
photoreceptors (16,341 cells per mm?) (E), and RPE cells (4,893 cells per mm?)
(F). Black arrows in C—F indicate the same blood vessel and its shadow. The en face
images were extracted from volumes acquired at 3-4.5° retinal eccentricity with
system focus shifted axially to maximize sharpness of the cell layer of interest.

10-15 AO-OCT videos (each ~4 s in duration) were acquired over ~10 min.
Each video consisted of 11 volumes. The volumes covered a 1.5° x 1.5° field
of view of the retina, and A-scans were sampled at 1 pm per pixel in both
lateral dimensions. Fast A-scan and B-scan rates of 500 KHz and 1.1 KHz
reduced, but did not eliminate, eye motion artifacts.

Images were also acquired of other retinal cells by focusing the system to
the desired depth that maximized cell sharpness. This included imaging cone
photoreceptors along the horizontal meridian that projected to the GCs at
1.5-3°, 3-4.5°, 6-7.5°, 8-9.5°, and 12-13.5°. Commercial (Spectralis; Heidelberg
Engineering) spectral-domain OCT and SLO images were acquired on all sub-
jects and covered the retinal locations imaged with AO-OCT.

Postprocessing of AO-OCT Volumes. Volumes were reconstructed; dewarped to
correct nonlinearities in the fast-axis scan pattern; registered in three dimensions
to correct eye motion artifacts; and averaged to increase signal to noise. Images of
GCL somas are difficult to register with conventional 2D strip-wise registration
methods (15, 45) owing to the high translucency of these cells. We overcame this
obstacle by using a custom 3D strip-wise registration algorithm (46) that oper-
ates on individual fast B-scans, thus using all available information in the
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volumes and precluding the need of a GC signal. The registered and averaged
volumes were used for all further analyses. Displayed volumes are shown as log
intensity following the OCT literature, unless specified otherwise.

Quantifying Soma Size and Size Distribution. The diameter of each GCL soma
was computed based on an en face (XY) view of the soma and the 3D coordi-
nates of its center using software developed in MATLAB. The en face view was a
three-pixel (2.82 um) projection in depth of the reflectance distribution around
the soma center. A circumferential average about the soma center in the en face
view resulted in a 1D reflectance trace. Cell diameter was defined as twice the
distance between the cell center and the minimum in the reflectance trace.

For each subject and retinal eccentricity, a single Gaussian function was fit to
the soma size distribution where it appeared unimodal (for retinal locations up
to 6°) and two Gaussian functions where it appeared bimodal (for retinal
locations at and greater than 6°). The Gaussian fits were used to quantify the
peak and range of soma diameter and the fraction of each mode.

Quantifying Soma Density. GCL soma centers were projected onto an en face
plane from which soma densities were determined by two different methods.
The first used Voronoi mapping of the soma mosaic, a mathematical construct
widely used for quantifying cell association in retina tissue (47). For this method,
soma density was defined as the ratio of total number of Voronoi cells to total
area of the Voronoi cells. This approach avoided edge effects of the 1.5° x 1.5°
imaging window and blood vessels that can generate errors in the density count.
The second method followed traditional histologic approaches. Specifically, cell
centers were counted that fell within a small 0.17° x 0.1° sampling window free
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of vasculature. The window size, number of windows, and counting protocol
followed that of Curcio et al. (10), except we relied on cell centers as opposed to
nucleolus locations, which we could not detect in our images.

We did not distinguish GCs from displaced amacrine cells, which represent
1-22% of the soma population in the GCL from central fovea to 13.5° (10).
To facilitate comparison, we used displaced amacrine population values
from the literature (10) to offset our count.

Determine mGC-to-Cone Ratio. We projected the GC coordinates measured with
AO-OCT onto the cone photoreceptor coordinates, also measured with AO-OCT,
by applying the displacement function given by equation 5 of Watson (21) for
the horizontal meridian. This function accounts for the lateral displacement of
GGCs, which can exceed 600 pm (~2°) depending on retinal eccentricity and is
caused by the lateral extension of photoreceptor axons and connections of the
bipolar cells. Our projection took into account annular scaling between the GC
and cone layers, and was adjusted for the proportion of GCs that are midget.
For GCs at retinal eccentricities of 6-7.5°, 8-9.5°, and 12-13.5° where the GC
size distribution was bimodal, we used the lower-diameter mode to estimate
the mGC fraction. Nearer to the fovea where bimodality was not observed, we
used the fractional estimate (89.3%) by Drasdo et al. (20).
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