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Highlights 

 Acute dietary NO3
- intake increased VO2peak in patients with HF by 8±2% (P<0.05).

 Time to fatigue during exercise improved by 7±3 % (P<0.05).

 Dietary NO3
- may be a means of enhancing exercise capacity in patients with HF.

Abstract 

Background: Patients with heart failure with reduced ejection fraction (HFrEF) exhibit lower efficiency, 

dyspnea, and diminished peak O2 uptake (VO2peak) during exercise. Dietary nitrate (NO3
-), a source of 

nitric oxide (NO), has improved these measures in some studies of other populations. We determined 

the effects of acute NO3
- ingestion on exercise responses in eight patients with HFrEF using a 

randomized, double-blind, placebo-controlled, crossover design. Methods and Results: Plasma NO3
-, 

nitrite (NO2
-), and breath NO were measured at multiple time points and respiratory gas exchange was 

determined during exercise after ingestion of beetroot juice containing or devoid of 11.2 mmol of NO3
-. 

NO3
- intake increased (P<0.05-0.001) plasma NO3

- and NO2
- and breath NO by 1469±245, 105±34, and 

60±18%, respectively. Efficiency and ventilation during exercise were unchanged. However, NO3
- 

ingestion increased (P<0.05) VO2peak by 8±2%, i.e., from 21.4±2.1 to 23.0±2.3 mL.min-1.kg-1. Time to 

fatigue improved (P<0.05) by 7±3 %, i.e., from 582±84 to 612±81 s. Conclusions: Acute dietary NO3
- 

intake increases VO2peak and performance in patients with HFrEF. These data, in conjunction with our 

recent data demonstrating that dietary NO3
- also improves muscle contractile function, suggest that 

dietary NO3
- supplementation may be a valuable means of enhancing exercise capacity in this 

population. 
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Introduction 

Tens of millions of men and women around the world suffer from heart failure (HF), a disabling and 

often deadly affliction (2). In approximately half of all such individuals, the ejection fraction (EF) of the 

heart is reduced (2). However, regardless of the precise nature or etiology of the disease, i.e., HF with 

reduced EF (HFrEF) or HF with preserved EF (HFpEF), patients with HF exhibit dyspnea and diminished 

peak oxygen (O2) uptake (VO2peak) during exercise (18,19). Along with declines in maximal muscle 

speed and power (12), these abnormalities in aerobic exercise responses play a major role in the 

disability, loss of independence, and reduced quality of life that accompany HF. Perhaps more 

importantly, elevations in ventilatory demand and decreases in VO2peak (and in skeletal muscle 

contractile function (22)) are highly predictive of mortality in patients with HF (3,13,26,40). 

 One factor contributing to the exercise intolerance of HF – especially HFrEF - may be a reduction 

in nitric oxide (NO) signaling. Along with its well-recognized role as a vasodilator, NO modulates 

numerous other physiological functions relevant to exercise performance, e.g., muscle contractility 

(10,11,12,41). There is considerable evidence, however, that NO bioavailability is diminished in HFrEF, as 

a result of both reduced NO production via the NO synthase (NOS) pathway (45) and more rapid 

destruction of NO due to increased oxidative stress (33). For example, endothelial dysfunction is 

common in HFrEF (48), indicative of blunted NO activity. Breath NO levels, a biomarker of whole-body 

NO production, are also lower in patients with HFrEF (1,8,9), as are the circulating concentrations of 

nitrite (NO2
-) (31,46), the immediate degradation product of NO. The conversion of 15N-labeled arginine 

to 15N-labeled nitrate (NO3
-) has also been shown to be diminished in patients with HFrEF (24), 

demonstrating directly that NOS-mediated NO production is impaired. Finally, increasing NO 

bioavaiability via L-arginine supplementation has been shown to improve 6 min walk distance in patients 

with HFrEF (39). Collectively, these data suggest that reduced NO signaling in HFrEF may contribute to 

the altered exercise responses described above. 
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 Although most of the NO in the body is produced via the NOS pathway, it is now recognized 

that production of NO from dietary NO3
- is an important source as well (28). In this enterosalivary 

pathway, ingested NO3
- is reduced to NO2

- with aid of the mouth microbiota and then to NO in the 

tissues via a number of endogenous catalysts (43). This last step is enhanced at low pO2 and low pH, 

conditions that regularly exist in exercising muscle. A number of studies have therefore examined the 

effects of dietary NO3
- supplementation, often in the form of beetroot juice (BRJ), on physiological 

responses and performance during exercise (23). Many, but not all, of these studies have reported that 

NO3
- ingestion can enhance efficiency, reduce ventilatory demands, and/or increase performance during 

exercise in at least some populations, including patients with HFpEF (15,50,51). On the other hand, 

results of previous studies of patients with HFrEF (20,25) have been equivocal. 

The purpose of the present proof-of-concept study was to test the hypothesis that acute dietary 

NO3
- intake would reduce ventilatory demands, increase VO2peak, and improve exercise performance in 

patients with HFrEF. We chose to study patients with HFrEF instead of HFpEF because evidence of 

reduced NO bioavailability is strongest in this population (vida supra). We focused specifically on 

ventilatory responses and VO2peak because of their importance as determinants of exercise capacity 

and predictors of survival in patients with HFrEF (3,13,26,40). Furthermore, since improvements in 

economy or efficiency are believed to be an important mechanism by which dietary NO3
- enhances 

performance in other subject groups (5,36), we designed our study to carefully quantify not only gross 

but also delta efficiency during exercise, as the latter is a more direct indicator of muscle contractile 

efficiency (41). 

Materials and Methods 

Subjects: The subjects in this study were patients ≥18 y of age with HFrEF (i.e., EF <45%) who were on 

stable medical therapy (i.e., no addition, removal, or change in medication dose of >100% in the last 

3 mo). Each underwent a physical exam, medical history, and blood tests for fasting chemistries. In 
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addition, to document the presence of HFrEF a resting echocardiogram was obtained from those who 

had not undergone cardiac imaging for clinical purposes in the last 12 mo.  Subjects were excluded if 

they had major organ system disease or dysfunction other than HF, were pregnant, smoked, or had 

significant orthopedic limitations or other contraindications to exercise. In addition, subjects using 

antacids or proton pump, xanthine oxidase, or phosphodiesterase inhibitors (e.g., sildenafil) were 

excluded, as these can affect reduction of NO3
- and NO2

- to NO (30). Finally, subjects treated with 

organic nitrates (e.g., trinitroglycerin) were also excluded. After screening of 33 subjects, 10 subjects 

were enrolled in the study, with eight completing the entire protocol as planned (Fig. 1). One subject 

was unable to achieve a steady-state at even 20 W, such that their gross and delta efficiency and VT 

could not be determined. Data from another subject were excluded when subsequent analysis of their 

plasma samples demonstrated that they inadvertently received NO3
- during both trials. Approval for the 

study was obtained from the Human Subjects Office at Indiana University and the Human Research 

Protection Office at Washington University School of Medicine, and all subjects provided written, 

informed consent. 

Experimental design and protocol: Upon enrollment, each patient was studied using a randomized, 

double-blind, placebo-controlled, crossover design (Fig. 2, top panel). During one trial, they were tested 

2 h after ingesting 140 mL of a concentrated BRJ supplement (Beet It Sport®, James White Drinks, 

Ipswich, UK) containing 11.2 mmol of NO3
-. During another trial, they were tested after ingesting the 

same volume of NO3
--depleted BRJ. This placebo is prepared by the manufacturer by extracting NO3

- 

from BRJ using an ion exchange resin and is indistinguishable from the standard product in packaging, 

color, texture, taste, and smell, and does not alter plasma NO3
- or NO2

- concentrations or breath NO 

levels. There was a minimum 1 wk washout period between trials. To limit variation in baseline NO3
-, 

NO2
-, and NO levels, subjects were instructed to avoid high NO3

- foods for 10 d prior to intervention and 

throughout the study. Subjects were also instructed to avoid food, caffeine, alcohol, and exercise for 12 
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h prior to each trial, and to not chew gum or use mouthwash on study days, as these products can block 

conversion of NO3
- to NO2

- and hence to NO via the enterosalivary pathway (17). 

Subjects arrived at the Clinical Research Unit of Washington University School of Medicine in the 

morning after fasting overnight. Baseline heart rate and blood pressure were first measured, after which 

an antecubital venous catheter was inserted and a blood sample was obtained. Plasma was rapidly 

separated via centrifugation and frozen at -80° C for subsequent determination of NO3
- and NO2

- 

concentrations using a dedicated HPLC system (ENO-30, Eicom USA, San Diego, CA). Briefly, plasma was 

thawed on ice, mixed 1:1 with methanol, and centrifuged at 4° C for 10 min at 10,000 g. A 10 μL aliquot 

of the protein-poor supernatant was then injected into the HPLC, wherein NO3
- and NO2

- were isolated 

via a separation column, NO3
- reduced to NO2

- on a cadmium column, and both reacted with Griess 

reagent then detected spectrophotometrically at 540 nm. Plasma NO3
- and NO2

- concentrations were 

calculated based on integrated peak areas compared to those of authentic standards. This method was 

highly reproducible, with test-retest correlation coefficients of 0.99 and 0.98 for NO3
- and NO2

-, 

respectively. To further reduce variability, all samples from a single subject were analyzed together. 

Breath NO level, a biomarker of whole-body NO production (1,8,9,35), was also measured once at this 

time using a portable electrochemical analyzer (NIOX VERO, Circassia Pharmaceuticals Inc., Chicago, IL) 

following American Thoracic Society guidelines. These measurements were repeated 1 and 2 h after the 

subject had ingested the BRJ, and also 10 min after completion of all exercise testing (i.e., at ~3 h). The 

latter consisted of submaximal steady-state and maximal incremental exercise on a semi-recumbent 

cycle ergometer (Lode, Gronigen, The Netherlands) (Fig. 2, bottom panel). Semi-recumbent cycle 

ergometry was chosen to minimize use of upper body musculature, thus aiding interpretation of any 

observed changes in exercise efficiency. After adjustment of the seat position, subjects first pedaled the 

ergometer at 60 rpm for 6 min each at 20, 40, and 60 W while respiratory gas exchange was measured 

continuously using a ParvoMedics 2900 metabolic cart (ParvoMedics, Sandy, UT). Heart rate, blood 
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pressure, and perceived exertion (7) were determined during the last 30 s of each stage. Following 10 

min of rest, subjects resumed pedaling at 60 W for 1 min, after which the power output was 

incremented by 10 W/min (47) until volitional fatigue. Respiratory gas exchange and heart rate were 

monitored continuously and blood pressure was measured periodically throughout the test and also 

immediately following cessation of exercise.  

Data analyses: Respiratory gas exchange data collected during the final 2 min of each stage of the 

submaximal exercise test were averaged and used in all subsequent analyses. Gross efficiency was 

calculated as the ratio of external power to metabolic power (37), multiplied by 100%. Delta efficiency, 

i.e., the slope of the relationship between external and metabolic power, and the metabolic cost of 

unloaded cycling, i.e., the y intercept of this relationship, were determined by regression analysis (40). 

Similarly, during the maximal exercise test the oxygen uptake efficiency slope (OUES; Ref. 4) was 

calculated by regressing VO2 (in L/min) on the log of ventilation (Ve; also in L/min), both being measured 

at 15 s intervals. The Ve/VCO2 slope (3) was calculated in a similar fashion. Ventilatory threshold (VT) 

was determined using the V-slope method (6). Peak power was defined as the average power during the 

last 1 min of exercise. VO2peak was defined as the highest VO2 measured over any 1 min period.  

 Statistical analyses were performed using GraphPad Prism version 7.02 (GraphPad Software, La 

Jolla, CA). Normality of data distribution was first tested using the D’Agostino-Pearson omnibus test. 

Data were subsequently analyzed using two-way (treatment x order) ANOVA, with subject as a repeated 

measures factor within treatment. A P value of <0.05 was considered significant. Primary outcome 

variables were changes in ventilatory responses and VO2peak in response to dietary NO3
-. Secondary 

outcome variables were changes in exercise performance and efficiency; all other variables measured 

were considered tertiary.  

Results 
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Patient characteristics. Characteristics of the patients are shown in Table 1. All had mild-to-moderate 

nonischemic HFrEF (based on NYHA class, MLWHFQ score, and EF). All were under stable, standard-of-

care therapy, including use a β-blocker and, in six out of eight, treatment with an angiotensin converting 

enzyme inhibitor (ACEi) or an angiotensin receptor blocker (ARB). 

Plasma NO3
- and NO2

- and breath NO. No changes in plasma NO3
- or NO2

- concentration (Fig. 3, top and 

middle panels) or in breath NO levels (Fig. 3, bottom panel) occurred during the placebo trial. In 

contrast, ingestion of NO3
--containing BRJ elevated (P < 0.01) plasma NO3

- concentrations approximately 

10-fold after 1 h, with this increase being maintained for the remainder of the experiment (Fig. 3, top 

panel). Concentrations of the downstream metabolites of NO3
-, i.e., plasma NO2

- and breath NO, were 

also significantly elevated by NO3
-
 intake, albeit to a much lesser degree (Fig. 3, middle and bottom 

panels). The increase in plasma NO2
- also seemed to lag behind that of NO3

-, achieving statistical 

significance only after 2 h and peaking at 10 min post-exercise. These findings are consistent with the 

important rate-limiting role played by oral bacteria in the enterosalivary pathway of NO production (28).  

Responses to submaximal exercise. Despite the increase in NO bioavailability resulting from NO3
- 

ingestion, no differences were observed in VO2, ventilation, ventilatory equivalents (i.e., Ve/VO2 and 

Ve/VCO2), respiratory exchange ratio, or gross efficiency during submaximal steady-state exercise 

(Table 2). Delta efficiency was also unaffected by dietary NO3
- intake, averaging 26.2 ± 2.5 and 24.9 ± 

1.8% in the placebo and nitrate trials, respectively (P = NS). The metabolic cost of unloaded cycling was 

also unchanged, averaging 200 ± 27 W, or 1.87 ± 0.07 W/kg, in the placebo trial and 215 ± 27 W, or 2.06 

± 0.14 W/kg, in the nitrate trial (P = NS). Finally, no significant differences were observed in heart rate, 

systolic or diastolic blood pressures, or in perceived exertion (Table 2). 

Responses to maximal exercise. Ingestion of NO3
- did not alter ventilatory responses during the 

incremental exercise test, regardless of whether the data were analyzed to determine the OUES, 

Ve/VCO2 slope, or VT (Table 3). Respiratory exchange ratio, heart rate, and systolic and diastolic blood 
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pressures at peak exercise were also unchanged (Table 3). The patients were, however, able to achieve 

a higher (P<0.05) peak power (Table 3) and exercise longer (P<0.05; Fig. 4, top panel) following acute 

dietary NO3
- intake. This improvement in exercise performance was accompanied by a moderate, but 

potentially clinically-significant (see Discussion), increase in VO2peak, expressed in either L/min (P<0.05; 

Table 3) or in mL.min-1.kg-1 (P < 0.05; Fig. 4, bottom panel). Notably, NO3
- ingestion increased VO2peak in 

seven out of the eight patients, with individual increases ranging from 0.8 to 3.9 mL.min-1.kg-1, or 5 to 

19%. VO2peak in the remaining patient, who weighed the most and hence received the smallest dose of 

NO3
- per kilogram of body mass, was essentially unchanged. For the group as a whole, however, no 

statistically significant correlations were observed between the magnitude of the increase in VO2peak 

and the dose of NO3
- provided or the increase in plasma NO3

-/plasma NO2
-/breath NO. The highest 

correlation was between the relative increase in plasma NO2
- and the relative increase in VO2peak (r = 

0.64; P = 0.09). 

Discussion 

The purpose of the present study was to determine the effects of dietary NO3
- supplementation on the 

responses to aerobic exercise in patients with HFrEF. Using a double-blind, placebo-controlled, crossover 

design, we found that acute ingestion of 11.2 mmol of NO3
- resulted in significant increases in exercise 

duration, peak power, and VO2peak during an incremental cycle ergometer exercise test. Contrary to 

our initial hypothesis, however, this was not accompanied by any changes in the ventilatory response 

(i.e., ventilatory equivalents, OUES, Ve/VCO2 slope, or VT) during submaximal or maximal exercise. There 

were also no changes in either gross or delta efficiency during steady-state exercise.  

As stated above, we found that acute ingestion of NO3
- enabled patients with non-ischemic 

HFrEF to exercise longer and to achieve a higher peak power output during incremental exercise. This 

improvement in performance was accompanied by an increase in VO2peak. The former is in keeping 

with the results of Kerley et al. (25), who reported that acute NO3
- intake enhanced performance during 
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an incremental shuttle walk test in patients with non-ischemic cardiomyopathy. In contrast, Hirai et al. 

(20) found that repeated ingestion of NO3
- did not improve performance or VO2peak in patients with 

HFrEF primarily of ischemic origin. The reason for this discrepancy is not clear, but it may be due to this 

difference in disease etiology. On the other hand, it appears unrelated to disease severity, as even the 

three paients we studied with baseline VO2peak values of ~15 mL.min-1.kg-1, i.e., comparable to those 

studied by Hirai et al. (20), demonstrated increases in VO2peak and in performance following NO3
- 

ingestion.    

Regardless of the above, an increase in VO2peak of the magnitude that we observed, i.e., 

+1.6 ± 0.5 mL.min-1.kg-1, or +8 ± 2%, may prove to be clinically significant. In particular, in a previous 

cross-sectional study of patients with HFrEF one of us (LRP) found that for every 1 mL.min-1.kg-1 increase 

in VO2peak there was a 5% decrease in the annual risk of death or transplantation (38). A quantitatively-

similar relationship was observed between changes in VO2peak and disease outcome in the longitudinal 

HF-ACTION trial (44). At least theoretically, then, the acute dietary NO3
--induced increase in VO2peak 

observed in the present study would translate into almost a 10% reduction in annual risk. Additional 

research will be needed to test this hypothesis, especially in those at greatest risk (such as the three 

patients mentioned above).   

It is also worth noting that the magnitude of the improvement in VO2peak that we observed is 

comparable to that typically resulting from standard-of-care drug therapies or from endurance exercise 

training in patients with HF, both of which provide salutatory effects. Specifically, a number of previous 

studies have demonstrated that chronic treatment of HFrEF patients with a beta blocker or ACEi/ARB 

increases VO2peak by approximately 10% (e.g., 14,16,32). Improvements in VO2peak with exercise 

training are also similar (22). Intriguingly, the 8% enhancement of VO2peak that we found in response to 

acute dietary NO3
- intake occurred in patients with HFrEF already on optimal medical therapy, including 

use of a beta blocker and, in most cases, an ACEi/ARB, indicative of an additive effect. Future studies will 
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be required to determine whether the impact of dietary NO3
- on VO2peak is also additive (or perhaps 

even synergistic) to that of exercise training in patients with HF.    

Although the present results indicate that acute dietary NO3
- intake increases VO2peak in 

patients with HFrEF, the specific mechanisms responsible for this beneficial response cannot be 

determined from the present data. From the perspective of the cardiovascular Fick equation, though, an 

increase in VO2peak could only result from an increase in heart rate, stroke volume (SV), and/or 

arteriovenous O2 difference (a-vO2diff) at peak exercise. Indeed, at peak exercise heart rate tended to 

be higher and diastolic blood pressure tended to be lower, suggesting that the dietary NO3
--induced 

increase in VO2peak we observed may have been the result of a greater cardiac output in a setting of 

reduced total peripheral resistance. Given the direct effects of NO on arteriolar smooth muscle, the 

latter response might be expected. In addition, recent data indicate that dietary NO3
- intake also 

enhances vasodilation in contracting muscle by reducing sympathetic nerve activity (36). Again, 

however, in the absence of direct measurements the mechanism(s) responsible for the increase in 

VO2peak observed in the present study remain unknown.  

Although acute dietary NO3
- intake resulted in a significant increase in performance and 

VO2peak, there were no changes in the ventilatory response to exercise, quantified as either Ve/VO2 or 

Ve/VCO2 during steady-state exercise or as OUES, Ve/VCO2 slope, or VT during incremental exercise. The 

effects of dietary NO3
- on these parameters in patients with HFrEF have not been previously reported. 

The present results, however, are generally comparable to previous similar studies of patients with 

HFpEF (15,51), although Zamani et al. (50) found that dietary NO3
- supplementation resulted in a 

significant increase in VT. It should be noted, however, that the increase in VT in their study was only 0.5 

± 0.2 mL.min-1.kg-1, which is nearly identical to the 0.4 ± 0.5 mL.min-1.kg-1 difference (P=NS) that we 

observed. Thus, the effects of dietary NO3
- on ventilatory responses in patients with HFrEF or HFpEF 

would at best seem equivocal. 
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As indicated previously, studies of dietary NO3
- supplementation in healthy individuals have 

often, although not always, reported improvements in exercise economy or efficiency (36). The 

mechanism responsible for this O2-sparing effect is not clear, however, with some data suggesting that it 

results from direct inhibition of mitochondrial respiration (29) and other data implicating a decrease in 

ATP utilization by contracting muscle (5). In any case, given the compromised circulatory function of HF 

patients, any reduction in the demand for delivery of O2-carrying blood during exercise would seem 

beneficial. Hirai et al. (20), however, did not observe any dietary NO3
--induced changes in submaximal 

VO2 during exercise. Despite using a protocol carefully designed to account for the slower VO2 kinetics 

found in HF, minimize involvement of non-active tissues, and allow assessment of not only gross but also 

delta efficiency, we also found acute dietary NO3
- intake did not alter the energy requirements of 

submaximal exercise. As suggested by Zamani et al. (50), this may reflect differences between patients 

with HF and young, healthy control subjects in age or in the factors controlling mitochondrial respiration 

during exercise. Regardless, the present data demonstrate that, at least in patients with HFrEF, acute 

dietary NO3
- intake can increase performance and VO2peak even in the absence of any changes in energy 

demand at a given power output. 

There are a number of limitations to the present study. First, we studied a relatively small 

number of individuals, and therefore may have failed to detect some true effects of NO3
- 

supplementation, e.g., a decrease in blood pressure. However, our sample size was comparable to those 

of similar previous studies of dietary NO3
- intake on exercise responses in patients with HFrEF (20,25), 

and was adequate to detect changes in one of our primary outcomes, i.e., VO2peak. Second, as 

previously discussed we did not directly measure central or peripheral determinants of VO2peak, and 

therefore cannot determine the mechanisms responsible for the improvement that was observed. This 

does not, however, negate our primary finding that dietary NO3
- supplementation increases exercise 

capacity and VO2peak in patients with HFrEF. Finally, we studied only the effects of acute ingestion of 
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NO3
- at a single, fixed dose, and therefore cannot draw any conclusions on the effects of longer-term 

treatment and/or other doses. Answering such questions will therefore require additional research.  

 To summarize, the results of this proof-of-concept study demonstrate that acute ingestion of 

11.2 mmol of NO3
- (in the form of a concentrated BRJ supplement) increases aerobic exercise 

performance and VO2peak, but does not alter ventilatory responses or gross or delta efficiency during 

exercise, in patients with mild-to-moderate HFrEF. Along with our previous data demonstrating that 

acute dietary NO3
- intake results in comparable improvements in muscle contractile function in this 

population (10), these suggest that dietary NO3
- supplementation may be a valuable adjunctive 

treatment for exercise intolerance in this population. Larger, i.e., multi-center trials are needed to 

confirm the present findings and to determine whether longer-term dietary NO3
- treatment improves 

physical activity levels, quality of life, and perhaps even survival in patients with HFrEF.  
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Table 1. Patient characteristics. 

N (M/F) 8 (6/2) 

Age (y) 52 ± 5 

Height (m) 1.79 ± 0.03 

Body mass (kg) 107.6 ± 14.1 

BMI (m/kg2) 33.1 ± 3.5 

Duration of HF (y) 6 ± 3 

NYHA class (I/II/III/IV) 3/2/3/0 

MLWHFQ (score) 35 ± 8 

Ejection fraction (%) 34 ± 2 

Β-blocker 8/8 

ACEi/ARB 6/8 

Spironolactone 6/8 

Statin 2/8 

Values are mean±S.E. for n=8. NYHA, New York Heart Association. MLWHFQ, Minnesota Living with 

Heart Failure Questionaire. ACEi, angiotensin converting enzyme inhibitor. AR, angiotensin receptor 

blocker. 
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Table 2. Cardiorespiratory and perceptual responses to steady-state exercise. 
 

  Power output (W) 

 Trial 20 40 60 

VO2 

(L/min) 

Placebo 0.81 ± 0.09 1.00 ± 0.09 1.26 ± 0.12 

Nitrate 0.87 ± 0.10 1.08 ± 0.11 1.34 ± 0.13 

VO2 

(mL.min-1.kg-1) 

Placebo 7.8 ± 0.4 9.8 ± 0.7 12.3 ± 1.0 

Nitrate 8.4 ± 0.5 10.5 ± 0.7 13.1 ± 1.0 

% of VO2peak 
Placebo 38.5 ± 3.9 48.1 ± 5.0 60.6 ± 6.6 

Nitrate 38.0 ± 3.2 47.5 ± 4.0 59.1 ± 4.9 

Ve 

(L/min) 

Placebo 22.5 ± 2.7 26.8 ± 2.9 33.9 ± 4.1 

Nitrate 24.1 ± 3.6 29.5 ± 4.6 36.1 ± 5.3 

Ve/VO2 (L/L) 
Placebo 27.5 ± 1.0 26.5 ± 1.0 26.6 ± 1.3 

Nitrate 27.2 ± 1.5 26.6 ± 1.7 26.4 ± 1.7 

Ve/VCO2 (L/L) 
Placebo 33.9 ± 1.2 31.8 ± 1.3 30.6 ± 1.2 

Nitrate 33.5 ± 1.7 32.2 ± 1.6 30.9 ± 1.6 

Respiratory 

exchange ratio 

Placebo 0.81 ± 0.01 0.83 ± 0.01 0.87 ± 0.02 

Nitrate 0.81 ± 0.02 0.82 ± 0.02 0.85 ± 0.02 

Gross efficiency 

(%) 

Placebo 7.6 ± 0.8 12.1 ± 1.2 14.4 ± 1.4 

Nitrate 7.2 ± 0.6 11.3 ± 0.9 13.6 ± 1.1 

Heart rate 

(beats/min) 

Placebo 85 ± 3  98 ± 7 103 ± 5 

Nitrate 96 ± 5 101 ± 4 107 ± 9 

Systolic blood pressure 

(mmHg) 

Placebo 136 ± 7 141 ± 7 143 ± 8 

Nitrate 132 ± 9 137 ± 9 136 ± 8 

Diastolic blood pressure 

(mmHg) 

Placebo 76 ± 5 75 ± 5 76 ± 5 

Nitrate 84 ± 5 81 ± 4 78 ± 5 

Perceived exertion 

(units) 

Placebo 8 ± 1 9 ± 1 10 ± 1 

Nitrate 8 ± 1 10 ± 1 12 ± 1 

 

Values are mean±S.E. for n=8. VO2, oxygen uptake. Ve, ventilation. VCO2, carbon dioxide production.  
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Table 3. Responses to incremental exercise.  
 

 Placebo Nitrate 

OUES (L/log L) 2.73 ± 0.39 2.77 ± 0.39 

Ve/VCO2 slope (L/L) 25.6 ± 1.9 24.6 ± 2.5 

VT (L/min) 1.42 ± 0.15 1.49 ± 0.19 

VT (mL.min-1.kg-1) 14.4 ± 2.1 14.9 ± 1.8 

VT (% of VO2peak) 66.1 ± 3.7 64.1 ± 2.5 

Peak respiratory exchange ratio 1.05 ± 0.03 1.05 ± 0.02 

Peak heart rate (bts/min) 134 ± 6 139 ± 7 

Peak systolic blood pressure (mmHg) 158 ± 8 155 ± 10 

Peak diastolic blood pressure (mmHg) 90 ± 11 82 ± 6 

Peak power (W) 154 ± 14 160 ± 14* 

Peak power (Wkg) 1.53 ± 0.24 1.57 ± 0.23* 

VO2peak (L/min) 2.42 ± 0.34 2.60 ± 0.35* 

 

Values are mean±S.E. for n=8. OUES, oxygen uptake efficiency slope (Ref. 4). Ve, ventilation. VCO2, 

carbon dioxide production. VT, ventilatory threshold (Ref. 6). VO2peak, peak oxygen uptake. *P<0.05 vs. 

Placebo. 
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Figure legends 

 

Figure 1. CONSORT diagram illustrating flow of subjects through the study. 

 

Figure 2. Experimental design (top panel) and protocol (bottom panel). 

 

Figure 3. Effect of acute ingestion of beetroot juice either devoid of (Placebo; open bars) or containing 

(Nitrate; solid bars) 11.2 mmol of NO3
- on plasma NO3

- (top panel) and NO2
- (middle panel) 

concentrations and breath NO levels (bottom panel) in patients with heart failure with reduced ejection 

fraction. Values are mean ± SE for n=8. 10’ Post = 10 min post-exercise. Nitrate significantly higher than 

than Placebo at same time point: *P<0.05, †P<0.01, ‡P<0.001. 

 

Figure 4. Effect of acute ingestion of beetroot juice either devoid of (Placebo; open bar or symbols) or 

containing (Nitrate; solid bar or symbols) 11.2 mmol of NO3
- on time to fatigue (top panel) and peak O2 

consumption (VO2peak; bottom panel) during an incremental exercise test in patients with heart failure 

with reduced ejection fraction. Values are mean ± SE for n=8; individual results are also shown (circles, 

men; squares, women). *Nitrate significantly higher than Placebo: P<0.05. 
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