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ABSTRACT

Understanding the molecular principles governing
interactions between transcription factors (TFs) and
DNA targets is one of the main subjects for tran-
scriptional regulation. Recently, emerging evidence
demonstrated that some TFs could bind to DNA mo-
tifs containing highly methylated CpGs both in vitro
and in vivo. Identification of such TFs and elucidation
of their physiological roles now become an impor-
tant stepping-stone toward understanding the mech-
anisms underlying the methylation-mediated biolog-
ical processes, which have crucial implications for
human disease and disease development. Hence,
we constructed a database, named as MeDReaders,
to collect information about methylated DNA bind-
ing activities. A total of 731 TFs, which could bind
to methylated DNA sequences, were manually cu-
rated in human and mouse studies reported in the
literature. In silico approaches were applied to pre-
dict methylated and unmethylated motifs of 292 TFs
by integrating whole genome bisulfite sequencing
(WGBS) and ChIP-Seq datasets in six human cell
lines and one mouse cell line extracted from ENCODE
and GEO database. MeDReaders database will pro-
vide a comprehensive resource for further studies
and aid related experiment designs. The database
implemented unified access for users to most TFs
involved in such methylation-associated binding ac-
tives. The website is available at http://medreader.
org/.

INTRODUCTION

In the process of gene transcription cooperative interac-
tions between transcription factors (TFs) and DNA methy-
lation play an important role in regulating gene expression.
The classical view of TF–DNA interaction is that TFs usu-
ally bind to non-methylated DNA motifs in open chro-
matin regions, whereas high level of methylation at CpG
dinucleotides (mCpG) in the cis-regulatory elements pro-
hibits recruitment of TFs, except only a few proteins with a
mCpG-binding domain (MBD), including MeCP2, MBD1,
MBD2 and MBD4. These MBD proteins are known to rec-
ognize methylated DNA in a sequence-independent man-
ner (1,2). However, several TFs without MBDs were found
to interact with methylated DNA in sporadic studies previ-
ously. For example, transcription factor KLF4 (3), Kaiso
(4), ZFP57 (5) and CEBP� (6) were identified with high
affinity to distinct methylated DNA sequences. More re-
cently, systematic efforts have revealed that hundreds of TFs
could specifically bind to methylated DNA by means of tan-
dem mass spectrometry (7), functional protein microarray
(3), DNA microarray (8), systematic evolution of ligands
by exponential enrichment (SELEX) (9) and ChIP-BS-seq
(10). Identification of such TFs and elucidation of their
functions become important stepping stones towards un-
derstanding the mechanism underlying these methylation-
mediated biological processes, leading to crucial implica-
tions for human diseases and cancer.

Over the past 30 years, many databases have been con-
structed to archive information of TF binding sites, pro-
viding invaluable resources for the transcription commu-
nity and beyond. For instance, TRANSFAC (11), JASPAR
(12) and UniPROBE (13) are the most common open-access
databases containing hundreds of transcription factor posi-
tion weight matrices (PWMs) constructed from DNA bind-
ing sequences. The PWMs can help search and predict
potential TF binding sites in the whole genome. Mean-
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Table 1. Transcription factors summarized from published literatures

Species No. of TFs No. of cells/tissues

Human 601 4
Mouse 130 4

Table 2. Transcription factors inferred by WGBS and ChIP-Seq datasets

Species Cell/tissue No. of TFs

Human GM12878 44
Human H1-hESC 33
Human HepG2 89
Human HCT116 5
Human IMR-90 6
Human K562 110
Mouse E14 5

while, TF regulatory activity has been known as biolog-
ical species-dependent. Hence, lots of species-specific TF
databases were created, such as PlantTFDB for plant (14),
AnimalTFDB for Animal (15) and ITFP for human, mouse
and rat (16). Some databases such as TFBSshape (17) not
only contain extensive nucleotide sequences of TFs, but
also calculate DNA structural features from nucleotide se-
quences provided by motif databases. Unfortunately, none
of these databases records methylated DNA binding sites
for TFs.

With the advance of next generation sequencing tech-
nologies, DNA methylation sites can be determined at the
single base pair resolution. A number of systematical DNA
methylation databases have been developed for epigenetic
studies. As the first DNA methylation database, MethDB
stores DNA methylation data and gene expression informa-
tion (18). NGSMethDB archives DNA methylation profiles
generated from bisulfite sequencing technique (19). Meth-
Bank (20), MethyCancer (21) and MENT (22) focus on
DNA methylation status of some specific biological prob-
lems, such as embryonic development and multifarious can-
cers. MethSMRT hosts the DNA N6-methyladenine and
N4-methylcytosine methylomes (23). ENCODE database
also contains many datasets of Whole Genome Bisulfite Se-
quencing (WGBS) and ChIP-Seq datasets obtained from
many cell lines. These databases provide us with a large
amount of profiles including TFs binding sequences and
corresponding DNA methylation status. However, none of
the existing databases systematically documents the inter-
actions between TFs and methylated DNA sequences.

To fill this gap for the researchers to better understand
the interactions between DNA methylation and TFs, we
collected information about methylated DNA–TF interac-
tions from two major public sources: published literatures
and ENCODE database. We developed a database, dubbed
as MeDReaders, where 753 methylated DNA–TF interac-
tions involving 731 TFs were manually curated from the lit-
erature. A total of 292 TFs were predicted to bind to dis-
tinct methylated and unmethylated DNA motifs based on
integration of WGBS data and ChIP-Seq data in six human
cell lines and one mouse cell line extracted from ENCODE
and GEO database. MeDReaders can help the scientists to
compare methylated DNA binding activities between differ-
ent species and datasets, and further understand the biolog-

ical processes that are mediated by DNA methylation. The
MeDReaders is publicly available at http://medreader.org/
without use restriction.

MATERIALS AND METHODS

Data sources

To extract experimentally confirmed methylated DNA–
TF interactions from the published literatures, we first
searched all relevant papers from the PubMed literature
database. CEBP� (3,6), ZFP57/KAP1 (5,24), ZBTB33 (4),
CEBPB/ATF4 (25) were found to interact with methylated
DNA using EMSA or ChIP-BS-seq experiments. Hun-
dreds of TFs were identified to prefer CpG-methylated se-
quences by high-throughput technology, such as Tandem
mass spectrometry (MS/MS) (26,27), protein microarray
(3), methylation-sensitive SELEX (9). In total we manu-
ally curated 753 methylated DNA–TF interactions involv-
ing 731 TFs from 4 human cell lines/tissues and 4 mouse cell
lines/tissues (Table 1). However, the retrieved records are
different due to diverse methods in individual experiments.
For example, using SELEX in vitro, we only got TF binding
motifs instead of binding sequences. But we obtained some
protein binding DNA sequences from protein arrays, where
methylated binding motif logos for only a few specific TFs
can be retrieved.

Another way to access the interaction between TFs and
methylated DNA sequences is to re-analyze the datasets
from the ENCODE Consortium and NCBI GEO by fo-
cusing on the methylation levels of TF binding regions.
We downloaded WGBS data for four human cell lines,
ChIP-Seq data for six human and one mouse cell lines
from the ENCODE, and WGBS data of ES-E14, IMR-
90 and HCT116 cell lines and ChIP-Seq of ES-E14 cell
from the GEO with accession numbers GSM1027571,
GSM2210597, GSM1465024 and GSM699165 (Table 2).
All datasets were re-processed using the ENCODE stan-
dard pipeline. In summary, Bismark (28) was used for the
WGBS data analysis to align sequencing reads then call
methylation levels, while the Irreproducible Discovery Rate
method (29) was employed for ChIP-Seq data to call the TF
binding peaks.

Sequence motifs containing methylated sites

The same computational method described in our pub-
lished paper (30) was adopted to predicted methylated
and unmethylated motifs of TFs by integrating WGBS
and ChIP-Seq data. DNA sequences within each ChIP-
Seq peak were extracted and grouped based on their av-
erage methylation level. The MEME (31) algorithm was
used to predict significantly enriched sequence motifs in
each group. The predicted motif was then utilized to scan
the ChIP-Seq peak region. We recorded the DNA seg-
ment with highest match score to the motif, while examin-
ing the methylation level on the CpG within the identified
DNA segment. At last, the high and low methylation mo-
tifs were reconstructed according to the DNA methylation
levels (cutoff 0.6) of CpG sites in the predicted TF binding
segment. We introduced a new letter ‘E’ to represent highly
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Figure 1. Functionality of MeDReaders.

methylated-C within TF binding sequences. Many interac-
tions between TFs and methylated DNA were predicted by
computational method, which provide the starting point for
further in vivo characterization of TF binding patterns and
high-resolution DNA methylation analyses.

Database implementation

The website was built using Spring boot framework. The
database was organized by H2 database and queried
through the Hibernate DAO layer. The web pages were con-
structed using HTML5 and rendered using Thymeleaf tem-
plate. Jquery library was used with Semantic UI framework
to provide a responsive user friendly front-end interface.

RESULTS

Usage and access

User-friendly web interface was developed to facilitate users
to browse, search and download the methylated DNA–TF
interactions data, and upload new experiemntially verified
methylated DNA–TF interactions to the database. Once re-
viewed and approved by the managers of the database, the
newly submitted data will be included in the database, and
made available to the public in the coming release. The main
functionality of MeDReaders is shown in Figure 1.

Browsing the database

Data in MeDReaders knowledge base can be browsed
by TF gene symbols. To browse the methylated DNA
binding TFs data from two major sources, users first
go into the ‘High-methyl(TFs)’ and ‘Methylome+CHIP-
Seq’ pages, respectively. For example, if a user wants to
know whether a human TF named ‘ATF6B’ is known to
bind to methylated DNA in the literature, s/he can go to
the ‘High-methyl(TFs)’ page and then select ‘human’ and
‘ATF6B(CREBL1)’. On this page, the basic information of
the selected TF is shown, such as the genomic location,
strand and Uniprot ID, Refseq Gene ID, Ensembl Gene
ID, to name a few. Dependent on the experimental meth-
ods, some DNA motifs are provided with the raw binding
sequences, but others not. When a user is interested in the

methylated DNA binding TFs predicted with the in silico
method via integrating WGBS and ChIP-Seq data, s/he can
go to the ‘Methylome+CHIP-Seq’ page and then select a
species, cell lines/tissues, and a TF-of-interest. For exam-
ple, in searching a TF named ‘ATF2(CREB2)’ in human
GM12878 cell line, ATF2’s motifs for methylated and un-
methylated DNA binding sites will be shown on this page.
Two examples on how to browse the database are shown in
the Figure 2A and B. We also provide a useful link to visual-
ize TF binding peaks with associated DNA methylation lev-
els underneath by adding custom tacks in UCSC Genome
Browser.

Searching the database

The MeDReaders database provides a ‘Search’ page for
users to search methylated DNA–TF interactions by TF
names, Ensemble gene IDs, RefSeq gene IDs or binding
DNA sequences. Users can obtain the TF basic information
and the TF binding DNA motif and sequences. For exam-
ple, if a user wants to query the ATF TF subfamily, they can
select a species and type in ‘ATF’. As a result, all records
about those TFs in the ATF subfamily collected from the
two resources will be shown. An example on how to retrieve
information about the ATF subfamily in humans is shown
Figure 3.

Submitting and downloading

It is our expectation that more interactions between TF
and methylated DNA will be found in future systematic
studies. To accommodate this demand, MeDReaders pro-
vides a submission page for users to upload new experi-
mentally verified methylated DNA–TF interactions. After
manual curation and computational analysis, the new in-
formation about methylated DNA binding TFs will be up-
loaded to our database. MeDReaders also provides a down-
load page for users to download the profiles. Each predicted
methylated-DNA binding TF file contained all peaks infor-
mation and TF binding sites information, including CpG
site loci, methylation levels, methylated read number and to-
tal read number in WGBS experiment.
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Figure 2. Screenshot of how to browser MeDReaders. (A) Screenshot of browsing the records retrieved from published literatures. (B) Screenshot of
browsing the methylated DNA–TF interactions predicted by integrating WGBS and ChIP-Seq data and visualizing the DNA methylation and TF binding
sites by using UCSC Genome Browser.
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Figure 3. Screenshot of how to search the data.

DISCUSSION

MeDReaders is the first resource focusing on the interac-
tions between methylated DNA and TFs. With more evi-
dences to demonstrate the importance of methylated DNA
binding TF binding activities in physiologically relevant
contexts, we foresee that more researchers will be focusing
on elucidating the biological consequences of the methy-
lated DNA–TF binding activities in the near future. With
the rapid accumulation of WGBS and ChIP-Seq experi-
ments, more methylated DNA–TF interactions would be
predicted in multiple model organisms. Researchers can
take advantage of such information from this database for
further epigenetic-associated TF regulation studies. People
also can perform specific validation on targets of their in-
terest based on our summarized predictions. Therefore, we
will continue to expand MeDReaders database with the new
publicly available datasets and keep improving the algo-
rithms for deep mining. We believe that our database will
become a valuable resource for methylated DNA binding
TF community.

In our previous study, we observed that many TFs bind to
both methylated and unmethylated DNA, but the sequence
of the methylated binding sites are often different to their
canonical unmethylated sequences (3). These observations
suggested that DNA methylation altered the binding speci-
ficity. Therefore, we considered these cases as methylation-
dependent binding. On the other hand, Taipale and col-
leagues (9) reported that some TFs could bind to methy-

lated and unmethylated DNA with the same binding sites.
In such cases, the TF-DNA interactions are methylation-
independent. The MeDReaders is likely to contain two
types of interactions. Further experiments are required to
distinguish the two situations.

We are fully aware that superimposing the independent
ChIP-seq and methylome data cannot prove that the TF
binding and methylation events are from the same cells
because both measurements are population-based. Ideally,
one should perform ChIP followed by bisulfite-sequencing
to confirm that a give TF indeed binds to the methy-
lated DNA. In our previous publication, we tested some
of methylated sites using this approach (3). However, since
this approach does not perform well on a genomic scale, we
are not able to find such genome-wide data. Nonetheless,
we believe our ‘predicted’ methylated binding sites are valu-
able to the community because such data provide a starting
point for the researchers to further investigate the methy-
lated DNA–TF interactions. Furthermore, we let users set
cutoff values for methylation level retrieved from the down-
loadable file to consider methylated binding sites. For exam-
ple, if a user sets methylation level of 1.0 to be considered
as a high methylation level, the TF ChIP-Seq sites will def-
initely co-occur with methylated sites in cells.
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