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Periodic points of algebraic functions and

Deuring’s class number formula

Patrick Morton

Abstract

The exact set of periodic points in Q of the algebraic function F̂ (z) = (−1±
√
1− z4)/z2 is

shown to consist of the coordinates of certain solutions (x, y) = (π, ξ) of the Fermat equation
x4+y4 = 1 in ring class fields Ωf over imaginary quadratic fieldsK = Q(

√
−d) of odd conductor

f , where −d = dKf2 ≡ 1 (mod 8). This is shown to result from the fact that the 2-adic function
F (z) = (−1 +

√
1− z4)/z2 is a lift of the Frobenius automorphism on the coordinates π for

which |π|2 < 1, for any d ≡ 7 (mod 8), when considered as elements of the maximal unramified
extension K2 of the 2-adic field Q2. This gives an interpretation of the case p = 2 of a class
number formula of Deuring. An algebraic method of computing these periodic points and
the corresponding class equations H

−d(x) is given that is applicable for small periods. The
pre-periodic points of F̂ (z) in Q are also determined.

1 Introduction.

In the papers [4] and [5] Deuring noted the following class number formulas.

Deuring’s Class Number Formulas.

∑

d
pf

h(dpf ) + hp = pf , for even f = 2, 4, 6 · · · ,

∑

d
pf

h(dpf ) + 2tp − hp = pf , for odd f = 1, 3, 5, · · · ;

where h(d) is the class number of primitive quadratic forms of discriminant −d; dpf runs over all
positive integers, for which the principal form of discriminant −dpf properly represents pf ; hp is
the class number of the quaternion algebra Dp = Q∞,p which is ramified only at p and the infinite
prime p∞; and tp is the type number of Dp.

In these formulas, hp is the total number of j-invariants of supersingular elliptic curves in
characteristic p, and 2tp − hp is the number of supersingular j-invariants which lie in the prime
field Fp (see [5] and [1], p. 97). When these two numbers are the same, i.e. when all supersingular
j-invariants lie in Fp, then these formulas may be combined and “inverted” to give that

∑

d
pf

′ h(dpf ) =
∑

k|f
µ(f/k)(pk − hp) =

∑

k|f
µ(f/k)pk, for f > 1, (1)
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where the primed sum is now taken over the positive integers, for which the principal form of
discriminant −dpf properly represents pf and no smaller power of p.

In [11] the formula (1) was reinterpreted (replacing f with n) for the prime p = 3 in the following

form: Let D
(3)
n be the set of discriminants −d ≡ 1 (mod 3) of orders in imaginary quadratic fields

K = Q(
√
−d), for which the Frobenius automorphism τd =

(
Ωf/K

℘3

)
, for a prime divisor ℘3 of 3

in K, has order n in the Galois group G = G(Ωf/K) of the ring class field Ωf of conductor f over
K, where −d = dKf

2 and dK is the discriminant of K. If h(−d) is the class number of the order
R−d of discriminant −d in K, then

∑

−d∈D
(3)
n

h(−d) =
∑

k|n
µ(n/k)3k, for n > 1.

An independent proof of this formula was given, by interpreting the sum on either side as the
number of periodic points of least period n of a specific 3-adic algebraic function defined and single-
valued in a certain domain of the field K3, the maximal unramified algebraic extension of the 3-adic

field Q3. From the Artin reciprocity law we know that D
(3)
n is the set of negative discriminants

−d ≡ 1 (mod 3) for which a prime ideal divisor ℘3 of 3 in the ring of integers RK of K has order
n in the ring class group (mod f).

A similar interpretation for the prime p = 2 was given in [12], except that in formula (1) the
prime p was replaced by 22:

∑

−d∈D′

n

h(−d) =
∑

k|n
µ(n/k)22k, for n > 1; (2)

this is equivalent to the first half of the Deuring class number formula for the prime p = 2. Here
D′
n is the set of discriminants −d ≡ 1 (mod 8), for which the square of the Frobenius automorphism

τd =

(
Ωf/K

℘2

)
has order n in the Galois group G(Ωf/K) over K = Q(

√
−d), where −d = dKf

2.

Once again, the number on either side of (2) was interpreted as the number of periodic points
of least period n of a specific 2-adic algebraic function in a certain domain of K2, the maximal
unramified algebraic extension of Q2.

In this note I show how the full formula (1) may be interpreted for the prime p = 2 and n > 1.
This arises from the fact that for ring class fields of a specific family of imaginary quadratic fields,
the Frobenius automorphism τd can be represented by a single power series, independent of d,
evaluated at one of a family of related generators for the fields Ωf .

Before stating the precise result we recall the following definitions and results from [10](Section
10) and [12]. The Schläfli functions f(τ), f1(τ), f2(τ) (see [13], p. 148, or [3], p. 256) can be defined
by the infinite products

f(τ) = q−
1
48

∞∏

n=1

(1 + qn−
1
2 ), f1(τ) = q−

1
48

∞∏

n=1

(1 − qn−
1
2 ),

f2(τ) =
√
2 q

1
24

∞∏

n=1

(1 + qn), q = e2πiτ ,
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for τ in the upper half-plane H. LetK = Q(
√
−d) be an imaginary quadratic field, for which −d ≡ 1

(mod 8) is the discriminant of the order R−d inK, with conductor f , satisfying−d = dKf
2. Further,

let w ∈ K be given by

w =
v +

√
−d

2
, v2 ≡ −d (mod 16), v = 1 or 3, (3)

and set

a ≡
{

−3d+5
16 (mod 4), if v = 3 and d ≡ 7 (mod 16),

−d+31
16 (mod 4), if v = 1 and d ≡ 15 (mod 16).

Then the numbers

πd = ia
f2(w/2)

2

f(w/2)2
, ξd =

β

2
= i−v

f1(w/2)
2

f(w/2)2
(4)

lie in the ring class field Ωf of conductor f over K, and satisfy

π4
d + ξ4d = 1.

The quantities πd and ξd are conjugate algebraic integers over Q and Ωf = Q(πd) = Q(ξd). Fur-
thermore, if ℘2 = (2, w) is a prime ideal divisor of 2 in K, then (2) = 2RK = ℘2℘

′
2 in K, and we

have
(πd) = πdRΩf

= ℘2RΩf
, (ξd) = ξdRΩf

= ℘′
2RΩf

, in Ωf ,

where RL denotes the ring of algebraic integers in the field L. In addition, we will need the fact that
there is an automorphism ψ ∈ Gal(Ωf/Q) of order 2 which interchanges πd and ξd and therefore
also interchanges the ideals ℘2 and ℘′

2. If τ ∈ Gal(Ωf/K), then τ−1ψτ is an automorphism of order
2 which interchanges π = πτd and ξ = ξτd .

Let bd(x) be the minimal polynomial over Q of the numbers πd and ξd. Then bd(x) is a normal
polynomial over Q (meaning that one of its roots generates a normal extension of Q) and

deg(bd(x)) = 2h(−d),

where h(−d) is the class number of the order R−d, i.e. the number of elements of the ideal class
group of R−d. Recall from [10] that half of the roots of bd(x) are generators of the ideal ℘2RΩf

and
half are generators of ℘′

2RΩf
.

With these definitions the following theorem holds.

Theorem 1. Let K = Q(
√
−d), where −d ≡ 1 (mod 8), and let dK denote the discriminant of

K/Q. Set −d = dKf
2, τd =

(
Ωf/K

℘2

)
, and let π be any root of the polynomial bd(x) for which

(π) = ℘2 in the ring of integers RΩf
of the ring class field Ωf = Q(πd) = Q(π) over K. Further,

let F (z) be the algebraic function

F (z) =
−1 +

√
1− z4

z2
=

∞∑

n=1

(−1)n
(1

2

n

)
z4n−2, (5)

defined for z in the disc D = {z : |z|2 < 1}, a subset of the maximal unramified extension K2 of the
2-adic field Q2. Then for any such integer d,

πτd = F (π) in K2,

3



if Ωf → (Ωf )p is embedded in K2 by completing at a prime divisor p of ℘2.

This is an improvement and simplification over what I was able to show in [12], since there I
was only able to represent the action of τ2d by a power series evaluated at a generator of Ωf . Note
that Theorem 1 is analogous to the action of the polynomial P (z) = zk on cyclotomic fields Q(ζn),
where ζn = e2πi/n and (n, k) = 1, since ζn → P (ζn) represents an automorphism for this family of
abelian fields.

Theorem 1 leads to the following result, with a substantially simpler proof than the proof that
was given for the corresponding theorem in [12].

Theorem 2. (a) The periodic points of the 2-adic function F (z) in the disc D = {z : |z|2 < 1} ⊂ K2

are z = 0 and the roots π of the polynomials bd(x) which lie in D, as d runs over all positive integers
d ≡ 7 (mod 8).

(b) The periodic points of the multivalued function

F̂ (z) =
−1±

√
1− z4

z2
,

satisfying g(F̂ (z), z) = 0, with g(x, y) = y2x2 + 2x+ y2, are 0,−1, and the roots of the polynomials
bd(z) = 0, as d ranges over all positive integers d ≡ 7 (mod 8). This statement holds in any of the
fields Q2,Q,C.

As in [12], a periodic point of the multivalued algebraic function F̂ (z) is defined to be a value a
(in an algebraically closed field k) for which there exist n ∈ N and a1, . . . , an−1 ∈ k, for which the
minimal polynomial g(x, z) of x = F (z) over k(z) satisfies

g(a, a1) = g(a1, a2) = · · · = g(ai, ai+1) = · · · = g(an−1, a) = 0.

Theorem 2 shows again, as in [12], that all ring class fields of odd conductor f over fields
K = Q(

√
−d) with −d ≡ 1 (mod 8) can be generated over Q by individual periodic points of the

algebraic function F̂ (z); moreover, that all periodic points of F̂ (z), with the exception of z = 0,−1,
generate ring class fields over fields K in this same family.

Corollary. If Dn = D
(2)
n is the set of negative discriminants −d ≡ 1 (mod 8) for which the

Frobenius automorphism τ =
(

Ωf/K
℘2

)
has order n in Gal(Ωf/K), with K = Q(

√
−d), −d = dKf

2

and 2 ∼= ℘2℘
′
2 in RK , then for any n > 1 we have the class number formula

∑

−d∈Dn

h(−d) =
∑

k|n
µ(n/k)2k. (6)

This corollary is a consequence of Theorem 2(a) and the fact that the period n of a periodic
point π ∈ D of F (z) is the order of the automorphism τd, by Theorem 1. Thus, the sum in the
corollary is the number of periodic points of F (z) in D with primitive (i.e., minimal) period n.
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In [12] the analogue of Theorem 2 was proved for the algebraic function

F1(z) = −1 + 4
√
1− z4

1− 4
√
1− z4

= − (1 + 4
√
1− z4)2(1 +

√
1− z4)

z4
.

Thus, the discussion here proves that F (z) = −z−2+
(
F1(z)+1
zF1(z)−z

)2
and F1(z) have the same periodic

points.

The function F (z) is closely related to the function T (z) which is defined as follows. There is
an isogeny

φ : Eλ → Eλ1

of degree 2 from the Legendre normal form

Eλ : Y 2 = X(X − 1)(X − λ)

for the parameter λ to the Legendre normal form for the parameter λ1, and the formula for λ1 =
T (λ) is

λ1 =
(1−

√
1− λ)4

λ2
.

The function T (z) defined by

T (z) =
(1−

√
1− z)4

z2
=

1

z2



∑

n≥1

(1
2

n

)
(−1)n+1zn




4

,

for z in the disc D = {z : |z|2 < 1} ⊂ K2, is related to F (z) by the formula

T (z4) = F (z)4.

This yields the following theorem for the periodic points of the multivalued function T̂ (z) =
(1±

√
1−z)4
z2 .

Theorem 3. The periodic points of the multivalued algebraic function y = T̂ (z) = (1±
√
1−z)4
z2

defined by the equation

C : g̃(z, y) = z2y2 − 2(z2 − 8z + 8)y + z2 = 0

are the numbers in the set

S = {0, 1} ∪ {ξ4 : ∃d > 0, d ≡ 7 (mod 8) s.t. bd(ξ) = 0}.

These are the numbers

ξ4 =
f1(w/2)

8

f(w/2)8
= 1− λ

(w
2

)
, π4 =

f2(w/2)
8

f(w/2)8
= λ

(w
2

)

and their conjugates over Q, where the number w has the form

w =
v +

√
−d

2
, v2 ≡ −d (mod 16), d ≡ 7 (mod 8).

5



The function λ(z) in this theorem is the classical λ-function, which is a modular function for
the principal congruence group Γ[2]. (See [2] and [14].) Theorems 2 and 3 give two examples of
algebraic functions, whose periodic points are values of modular functions.

In Section 3 I show how to use the simple polynomial g(x, y) = x2y2 + 2x + y2 and iterated
resultants to compute the minimal polynomials bd(x) in a purely algebraic way. I show in Sections
3 and 4 that the particular polynomials bd(x), for which d ∈ Dk and k | n, together with x and
x+1, make up the exact set of irreducible factors of an (n− 1)-fold iterated resultant defined using
g(x, y). It seems quite remarkable that the minimal polynomials of values of modular functions
can be found in this way. In particular, this gives an algebraic method for computing generators of
the ring class fields Ωf of fields of the type K = Q(

√
−d), with −d ≡ 1 (mod 8), and therefore a

purely algebraic method for computing the corresponding class equations H−d(x). See Theorem 9
and Tables 1, 2, and 3 at the end of the paper.

The periodic points (6= 0, 1) of the function T̂ in Theorem 3 generate ring class fields of odd
conductor over the quadratic fields of the form K = Q(

√
−d), −d ≡ 1 (mod 8), as was proved in

[10]. In Section 4 I use an identity for the modular function λ(z) to show that the pre-periodic
points of T̂ (of level r ≥ 2, see Section 5) generate ring class fields of even conductor over fields
K in the same family; and conversely, every ring class field of even conductor over such a field K
is generated over K by a pre-periodic point of T̂ . This result, summarized in Theorem 13, proves
Conjecture 2 in the paper [12] for the prime p = 2. The discussion here also gives an alternate proof
of Conjecture 1 (for p = 2) in that paper. Similar results holds for the periodic and pre-periodic
points of F̂ , as we show in Theorems 14 and 15. In particular, the collection of ring class fields over
fields K in this family coincides with the collection of normal closures over Q of fields generated by
individual periodic or pre-periodic points of the algebraic function F̂ .

2 Lifting the Frobenius automorphism on roots of bd(x).

In this section π = πσd will be any root of bd(x) = 0 which is conjugate to πd over K = Q(
√
−d),

and ξ = ξσd will be the root of bd(x) = 0 for which π4+ξ4 = 1. See equations (3) and (4). Changing
notation slightly, we let ψ ∈ Gal(Ωf/Q) be the automorphism of order 2 for which

πψ = ξ, ℘ψ2 = ℘′
2.

We recall the following ideal factorizations from [10](Theorem 8.6 and proof).

Lemma 4. If ∼= denotes divisor equality; 2 ∼= ℘2℘
′
2 in the ring of integers RK of K = Q(

√
−d);

and β = 2ξ; then β ∼= ℘2℘
′2
2 and

β − 2 ∼= ℘2
2℘

′
2, β + 2 ∼= ℘3

2℘
′
2, β2 + 4 ∼= ℘3

2℘
′2
2

in the ring RΩf
.

Lemma 5. Using the notation of Theorem 1, we have

1 + π2 ∼= ℘′
2 and 1− π2 ∼= ℘′3

2 ,

6



so that
(1 − π2)2

(1 + π2)2
∼= ℘′4

2 .

Proof. From [10] we have
(1 + π2)(1− π2) = 1− π4 = ξ4 ∼= ℘′4

2 .

Furthermore, using Lemma 4, we have

1− ξ2 = (1− ξ)(1 + ξ) =
(2 − β)(2 + β)

4
∼= ℘2

2℘
′
2℘

3
2℘

′
2

℘2
2℘

′2
2

= ℘3
2.

Now apply the automorphism ψ ∈ G(Ωf/K) which switches the numbers π and ξ and the ideals
℘2 and ℘′

2: this gives 1− π2 = (1− ξ2)ψ ∼= ℘′3
2 and verifies the assertions. �

Theorem 6. If τ =
(

Ωf/K
℘2

)
, we have

ξ4τ
−1

= (ξτ
−1

)4 =
(1 − π2)2

(1 + π2)2
.

Proof. Letting α denote a solution of 16α4 + 16β4 = α4β4, we have as in [10] (pp. 1967-68), for a
suitable basis quotient w of an ideal a (prime to f), that

j
(w
2

)
=

(α8 − 16α4 + 256)3

α8(α4 − 16)2
=

(β8 − 16β4 + 256)3

β8(β4 − 16)2
=

256(ξ8 − ξ4 + 1)3

ξ8(ξ4 − 1)2
= J(ξ4),

where

J(x) =
256(x2 − x+ 1)3

x2(x− 1)2
.

Since j(w/2)τ
−1

= j(w/4), we find that

j
(w
4

)
= j

(w
2

)τ−1

= J(ξ4τ
−1

).

On the other hand, straightforward calculation shows that

J

(
(1− π2)2

(1 + π2)2

)
=

16(π8 + 14π4 + 1)3

π4(π4 − 1)4
.

Replacing π4 by 1− ξ4 in the last expression yields

J

(
(1− π2)2

(1 + π2)2

)
=

16(ξ8 − 16ξ4 + 16)3

ξ16(1− ξ4)
.

Using ξ = β/2, this and [10](eq. (6.2)) yield

J

(
(1− π2)2

(1 + π2)2

)
=

(β8 − 256β + 4096)3

β16(16− β4)
= j

(w
4

)
,

7



which gives that

J(ξ4τ
−1

) = J

(
(1− π2)2

(1 + π2)2

)
.

Setting z1 = ξ4τ
−1

and z2 = (1−π2)2

(1+π2)2 , this implies that z1 and z2 are related by an element of the

anharmonic group:

z2 ∈ { 1

z1
,

z1
z1 − 1

,
z1 − 1

z1
,

1

1− z1
, 1− z1, z1}.

Now, z2 cannot be equal to any of the first four elements, since z1 ∼= z2 ∼= ℘′4
2 and 1 − z1 ∼= ℘4

2

imply that these four elements are not integral. Similarly, z2 6= 1− z1, forcing z2 = z1. This proves
the theorem. �

Applying the automorphism τ−1 to the equation π4 + ξ4 = 1 gives

π4τ−1

+
(1− π2)2

(1 + π2)2
= 1;

hence, the points (x, y) = (π, πτ
−1

) and (x, y) = (πτ , π) satisfy the equation

y4 +
(1− x2)2

(1 + x2)2
− 1 =

(x2y2 + 2x+ y2)(x2y2 − 2x+ y2)

(x2 + 1)2
= 0. (7)

Note that the first factor in the numerator is the polynomial g(x, y) = x2y2 + 2x + y2 defined in
Theorem 2 above, and that the function F (z) defined in (5) satisfies g(F (z), z) = 0.

We expand F (z) = −1+
√
1−z4

z2 in a 2-adic series in the field K2:

F (z) =

∞∑

n=1

(−1)n
(1

2

n

)
z4n−2.

If |z|2 < 1, then z = 2z1, with |z1|2 ≤ 1, so that

F (z) = F (2z1) =

∞∑

n=1

(−1)n24n−2

(1
2

n

)
z4n−2
1

= −
∞∑

n=1

22n−1Cn−1z
4n−2
1 = −2z21 − 8z61 − · · · ,

where Cn−1 = (−1)n−122n−1
( 1

2
n

)
∈ Z is the Catalan number. Hence, the series converges for z in

the disc D = {z : |z|2 < 1}, and maps this disc into itself. This allows us to iterate the function
F (z) on D. For the proof of Theorem 1 we also need the relation

πτ
2

=
ξ + 1

ξ − 1
(8)

from [10](Prop. 8.5).

Proof of Theorem 1.

8



We would like to see that πτ = F (π). From (7) we know that the point (x, y) = (πτ , π) lies
either on the curve x2y2 + 2x + y2 = 0 or on x2y2 − 2x + y2 = 0. Suppose this point lies on the
latter curve; then

π2τπ2 − 2πτ + π2 = 0

implies that

πτ =
1−

√
1− π4

π2
=

1− ξ2

π2
,

since the expression 1+ξ2

π2
∼= ℘−1

2 is not integral. This makes use of the calculations in Lemma 4,
according to which 1 + ξ2 ∼= ℘2

∼= π. Applying τ to the last displayed equation and using (8) gives

ξ + 1

ξ − 1
= πτ

2

=
1− ξ2τ

π2τ
=

1− ξ2τ

(1 − ξ2)2/π4
,

so that
(ξ + 1)3(ξ − 1)

π4
= 1− ξ2τ .

Using π4 = 1− ξ4 in the last relation yields

1− ξ2τ =
(ξ + 1)3(ξ − 1)

1− ξ4
= − (ξ + 1)2

1 + ξ2

and

ξ2τ = 1 +
(ξ + 1)2

1 + ξ2
=

2(1 + ξ + ξ2)

1 + ξ2
.

Since 1 + ξ2 ∼= ℘2 and ξ ∼= ℘′
2, it follows that (1 + ξ + ξ2, 2) = 1. Thus, the right hand side in

the last displayed equation is a℘′
2, where (a, 2) = 1. However, the left side is ξ2τ ∼= ℘′2

2 , giving a
contradiction. This proves that

πτ =
−1 +

√
1− π4

π2
=

−1 + ξ2

π2
= F (π). (9)

�

This proves Theorem 1. Iterating equation (9), and noting that τ can be viewed as an automor-
phism of the local extension Q2(π)/Q2, we find that

πτ
n

= Fn(π), for n ≥ 1.

Therefore, we have the following result.

Theorem 7. The roots π of the polynomials bd(x), for which π ∼= πd ∼= ℘2, are all periodic points
in D ⊂ K2 of the algebraic function F (z). The period n of such a number π is the order of τd in
the Galois group of the ring class field Ωf over Q.

Since half of the roots of bd(x) = 0 are conjugate to πd ∼= ℘2 over K = Q(
√
−d) and half are

conjugate to ξd ∼= ℘′
2, this shows that there are h(−d) periodic points of F (z) in the disk D coming

from the roots of bd(x) = 0, for a given d.

9



Applying the automorphism ψ to (9) and using τψ = ψτ−1 implies

ξτ
−1

=
−1 + π2

ξ2
. (10)

This agrees with the result of Theorem 1, since

(−1 + π2)4

ξ8
=

(π2 − 1)4

(π4 − 1)2
=

(1− π2)2

(1 + π2)2
.

Moreover, (ξ, ξτ ) is also a point on the curve x2y2 + 2x + y2 = 0, as can be seen by applying the
automorphism ψτ to the point (πτ , π):

(πτ , π)ψτ = (πτψτ , πψτ ) = (πψτ
−1τ , ξτ ) = (ξ, ξτ ).

It follows that ξ is a periodic point of the inverse algebraic function F−1(z), for which g(z, F−1(z)) =
0. Hence, the remaining h(−d) roots ξ of bd(x) = 0 are all periodic points of F−1(z). See equation
(14) below.

3 Iterated resultants.

We turn now to the proof that the roots of the polynomials bd(x), together with 0 and −1, are the
only periodic points of the multivalued function F̂ (z). We let

g(x, y) = x2y2 + 2x+ y2

as before, and define

R(1)(x, x1) = g(x, x1),

R(2)(x, x2) = Resx1(g(x, x1), g(x1, x2));

and inductively,

R(n)(x, xn) = Resxn−1(R
(n−1)(x, xn−1), g(xn−1, xn)), n ≥ 2.

Putting xn = x gives the polynomial

Rn(x) = R(n)(x, x), n ≥ 1.

The roots of Rn(x) are exactly the elements a ∈ A2 = Q2 for which there are a1, . . . , an−1 ∈ A2

satisfying the simultaneous equations

g(a, a1) = g(a2, a3) = · · · = g(an−1, a) = 0; (11)

i.e. the a’s are exactly the periodic points of F̂ (z) with period n.

The same arguments as in [12] lead to the factorizations

Rn(x) =
∏

k|n
Pk(x),

10



Pn(x) =
∏

k|n
Rk(x)

µ(n/k). (12)

where µ(n) is the Möbius µ-function. This is done by relating the polynomials Rn(x) and Pn(x)

to the corresponding polynomials R̃n(x) and P̃n(x) obtained by replacing g(x, y) in the above
definitions by the polynomial

g1(x, y) =
g(2x, 2y)

4
= 4x2y2 + x+ y2, g(x, y) = x2y2 + 2x+ y2.

Note that
g1(x, y) ≡ y2 + x (mod 2).

It follows easily by induction that

R̃(n)(x, xn) ≡ x2
n

n + x (mod 2), n ≥ 1,

and therefore
R̃n(x) ≡ x2

n

+ x (mod 2), n ≥ 1.

Hensel’s Lemma implies that R̃n(x) has at least 2
n distinct roots in K2, of which 2n − 1 are units

in K2. It can also be checked that
Rn(2x) = 22

n

R̃n(x),

which implies that Rn(x) also has at least 2n distinct roots in K2, of which 2n−1 are prime elements
in K2. Note that x = 0 is certainly a root of Rn(x) for any n.

It follows from the identity

(x− 1)2(y − 1)2g

(
x+ 1

x− 1
,
y + 1

y − 1

)
= 4g(y, x) (13)

that for every root a ∈ K2 of Rn(x) the quantity b = a+1
a−1 ∈ K2 is also a root. This is because

g(a, a1) = g(a1, a2) = · · · = g(an−1, a) = 0 and bi =
ai+1
ai−1 imply that

g(b, bn−1) = · · · = g(b2, b1) = g(b1, b) = 0.

The roots b are distinct from all the roots a, since the b’s are all units. Hence, Rn(x) has 2n+1

distinct roots in K2. It is not hard to see that deg(Rn(x)) = 2n+1, so this accounts for all the roots.
(See the proof of the Lemma in [12], pp.727-728.) Furthermore, if k | n, then roots of Rk(x) are
also roots of Rn(x). It follows that the expression Pn(x) defined in (12) is a polynomial. This gives
that

deg(Rn(x)) = 2n+1, deg(Pn(x)) = 2
∑

k|n
µ(n/k)2k.

The roots of the polynomial Pn(x) are exactly the periodic points of F̂ (z) of minimal period n.

This discussion proves:

Theorem 8. All the periodic points of the multivalued algebraic function F̂ lie in the maximal
unramified, algebraic extension K2 of the 2-adic field Q2.

11



Irreducible factors of the polynomials Pn(x) are listed in Tables 1, 2, and 3 for small values of
n.

The identity (13) also implies

g

(
z + 1

z − 1
,
F (z) + 1

F (z)− 1

)
= 0,

so that

F−1

(
z + 1

z − 1

)
=
F (z) + 1

F (z)− 1
, (14)

where F−1(z) is defined by

F−1(z) = −
√
−2z(z2 + 1)

z2 + 1
.

Equation (14) shows that F−1(z) can be defined as a single valued function on the image of the
disc D under the map φ(z) = z+1

z−1 . This image is the set

φ(D) = {z : |z + 1|2 ≤ 2−2} = {z : z = 4w − 1, w ∈ o2},

where o2 is ring of integers in K2.

From the preceding discussion we also see that

P̃n(x) ≡
∏

k|n
(x2

k

+ x)µ(n/k) (mod 2), (15)

where the right side is the product of the irreducible polynomials of degree n in F2[x]. This implies

that over Q2, the irreducible factors of P̃n(x), and hence also of Pn(x), have degree n. If a is a
periodic point of F̂ and a1, . . . , an−1 are the associated elements of K2 satisfying (11), then the ai are
also roots of Rn(x), as can be seen by cyclically permuting the equations in (11). Hence, the roots of
Rn(x) consist of complete orbits under F̂ . The same holds for the polynomial R̃n(x) = 2−2nRn(2x)

under the conjugate map F̃ (z) = F (2z)
2 . Since

F (2z)

2
= −z2 − 4z6 + · · · ≡ z2 (mod 2), for |z|2 ≤ 1, (16)

and the Frobenius map z → z2 fixes the irreducible factors of degree n over F2, it follows that the
roots of an irreducible factor of Pn(x) over Q2 consist of: a complete orbit under the map F (z), if
those roots lie in D; and a complete orbit under F−1(z), if those roots lie in φ(D).

Finally, note that Theorem 7 implies that bd(x) | Pn(x) whenever ord(τd) = n. In the next
section we show that the polynomials bd(x), together with x and x + 1, are the only irreducible
factors of Pn(x). See Theorem 9 below.
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4 Elliptic curves and periodic points.

Consider the isogeny φ1 of degree 2 on the elliptic curve

Eλ : y2 = x(x − 1)(x− λ)

which is induced by the translation map

(x, y)ρ = (x, y)− (1, 0) =

(
x− λ

x− 1
,
λ− 1

(x− 1)2
y

)
;

namely
φ1(x, y) = (u, v),

where

u = x+ xρ = x+
x− λ

x− 1
=
x2 − λ

x− 1
,

v = y + yρ = y +
λ− 1

(x− 1)2
y =

x2 − 2x+ λ

(x− 1)2
y.

The image of Eλ under this isogeny is the curve

E1 : v2 = (u− λ)(u2 − 4u+ 4λ).

Replacing u by u1 + λ gives the equation

v2 = u1(u
2
1 + (2λ− 4)u1 + λ2) = u1(u1 − γ)(u1 − γ′),

where the roots of the quadratic are

γ, γ′ = −λ+ 2± 2
√
1− λ = (1±

√
1− λ)2.

Now setting X = u1

γ and Y = v
γ3/2 yields the curve

Eλ1 : Y 2 = X(X − 1)(X − γ′

γ
),

where

λ1 =
γ′

γ
=

(1−
√
1− λ)2

(1 +
√
1− λ)2

=
(1−

√
1− λ)4

λ2
.

These transformations yield an isogeny φ : Eλ → Eλ1 , with

λ1 =
γ′

γ
=

(1−
√
1− λ)4

λ2
= T (λ),

for which φ(0, 0) = (0, 0). The functions T (z) = (1−
√
1−z)4
z2 and F (z) satisfy the relationship

T (z4) =
(1−

√
1− z4)4

z8
= F (z)4, (17)
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which implies that
T n(z4) = Fn(z)4, n ≥ 1, |z|2 < 1.

If π is any periodic point of F (z) in the disk D, with period n, then

T n(π4) = Fn(π)4 = π4

shows that π4 is a periodic point of T of period n in D. Conversely, if π4 ∈ D is a periodic point
of T (z), then π ∈ D and T n(π4) = π4 = Fn(π)4 implies that Fn(π) = ±π, since

√
−1 /∈ K2. If

Fn(π) = −π, then F (−z) = F (z) implies that −π is a periodic point of F (z). If π were also a
periodic point of F (z), with period m, then Fm(π) = π implies

π = F ◦mn(π) = (F ◦n)◦m(−π) = −π,

giving π = 0. (The composition symbol ◦ is included here to emphasize that the powers are
compositions.) Thus, periodic points π4 of T (z) in D are in 1-1 correspondence with the periodic
points π of F (z) in D.

Proof of Theorem 2. Let a be any periodic point of F̂ (z) in K2 with primitive period n > 1;
then the discussion in Section 3 shows that a ∈ D∪φ(D). By replacing a by φ(a) we assume a ∈ D.
Then g(a1, a) = 0 implies that a1 ∈ D, so that a1 = F (a). Let F i(a) = ai for 1 ≤ i ≤ n − 1, and
Fn(a) = a = a0 = an with n smallest. Each of the quantities ai is a periodic point of F (z), so each
a4i is a periodic point of T (z) in D. Moreover,

T (a4i ) = a4i+1, 0 ≤ i ≤ n− 1.

Thus, for each i with 0 ≤ i ≤ n− 1 there is an isogeny

φi : Ea4i → Ea4i+1
.

Hence, ι = φn−1 ◦ φn−2 ◦ · · · ◦ φ1 ◦ φ0 is an isogeny from Ea4 to itself. Moreover, by the above
discussion, each φi takes (0, 0) to (0, 0), so that ι fixes (0, 0) ∈ Ea4 . This implies that ι is a cyclic
isogeny of degree 2n, and therefore the j-invariant of Ea4 , namely

j(Ea4) = 28
(a8 − a4 + 1)3

a8(a4 − 1)2
,

is a root of the modular equation

Φ2n(x, x) = cn
∏

−d
H−d(x)

r(d,2n),

where the product is over orders R−d of discriminant −d in imaginary quadratic fields, H−d(x) is
the class polynomial of discriminant −d, and

r(d,m) = |{λ ∈ R−d : λ primitive, N(λ) = m}/R×
−d|.

See [3]. Therefore, x = a4 is a root of the polynomial

Ld(x) = (x2 − x)2h(−d)H−d

(
28(x2 − x+ 1)3

x2(x− 1)2

)
.
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Now the argument of [12], pp. 736-737, applies word for word (with ξ replaced by a), and shows
that a is a root of a polynomial bd(x), where d ≡ 7 (mod 8) and −d ∈ Dn. This proves Theorem
2(a). Theorem 2(b) is immediate from the fact that the irreducible factors of the polynomial Rn(x)
are the bd(x), independent of which field Q2,Q,C we are working in. �

The above arguments imply the following result concerning the polynomial Pn(x) in (12).

Theorem 9. The polynomial Pn(x) is given by the formula

Pn(x) =
∏

−d∈Dn

bd(x), for n > 1,

where Dn is defined (as in the Corollary to Theorem 2) as the set of negative discriminants −d ≡ 1

(mod 8) for which τd =
(

Ωf/K
℘2

)
has order n in Gal(Ωf/K). In particular, equating degrees yields

2
∑

k|n
µ(n/k)2k = 2

∑

−d∈Dn

h(−d), for n > 1. (18)

For n = 1 we have

P1(x) = R1(x) = g(x, x) = x(x + 1)(x2 − x+ 2) = x(x+ 1)b7(x). (19)

Theorem 9 shows that the polynomials bd(x) may be computed as the irreducible factors of the
iterated resultants Rn(x) in Section 3. Factoring Rn(x) for a fixed n yields the complete set of
polynomials bd(x), for d ∈ Dn. See Tables 1, 2, and 3. (In Table 3, there are two factors of Pn(x)
which are not listed, both of which have degree 42.) Formula (18) implies the Corollary to Theorem
2.

The class equation H−d(x) for the discriminant −d ≡ 1 (mod 8) may be computed using the
resultant

cH−d(x)
2 = Resy(bd(y), y

16(1− y4)x− 16(y8 − 16y4 + 16)3), c ∈ Z+, (20)

at least for small values of the period n = ord(τd) (see the proof of Theorem 6). This gives a purely
algebraic method for calculating H−d(x).

We now prove Theorem 3.

Proof of Theorem 3.

The above proof shows that the elements π4, where π runs through the roots of bd(x) for which
π ∼= πd, are all periodic points of the function T (z) in D, and therefore also periodic points of the
multivalued function T̂ (z). We consider the iterated resultants defined in Section 3, but with the
polynomial g(x, y) replaced by the polynomial g̃(x, y) = x2y2 − 2(x2 − 8x + 8)y + x2. This gives
us a set of polynomials R̂n(x) ∈ Z[x], whose roots are the periodic points of T̂ (z) in Q2. Since the
elements π4, for d ∈ Dn, are all periodic points of T̂ (z), we know that their minimal polynomials
divide R̂n(x), for any n ≥ 1. (Any algebraic conjugate over Q of a periodic point is also a periodic
point.) Moreover, Q(π4) = Ωf , for each such d, by [10], Proposition 8.1, so that the degree of the
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Table 1: Polynomials Pn(x), 1 ≤ n ≤ 5.

n Pn(x) =
∏
d∈Dn

bd(x)

1 x(x + 1)(x2 − x+ 2) (d = 7)

2 (x4 − 4x3 + 5x2 − 2x+ 4) (d = 15)

3 (x6 + x5 + 9x4 − 13x3 + 18x2 − 16x+ 8)(x6 + 7x5 + 11x4 − 15x3 + 16x2 − 20x+ 8)
(d = 23, 31)

4 (x8 − 6x7 + 42x6 − 60x5 + 53x4 − 54x3 + 24x2 + 16)
×(x8 + 6x7 + 78x6 − 84x5 + 53x4 − 66x3 − 12x2 + 24x+ 16)

×(x8 + 20x7 + 110x6 − 100x5 + 49x4 − 80x3 − 40x2 + 40x+ 16)
(d = 39, 55, 63)

5 (x10 − 15x9 + 74x8 − 90x7 + 93x6 − 187x5 + 160x4 − 156x3 + 168x2 − 48x+ 32)
×(x10 − 31x9 + 290x8 − 186x7 + 5x6 − 251x5 − 56x4 − 60x3 + 256x2 + 32x+ 32)

×(x10 − 21x9 + 732x8 − 290x7 − 191x6 − 369x5 − 502x4 + 40x3 + 456x2 + 144x+ 32)
×(x10 + 77x9 + 1730x8 − 366x7 − 643x6 − 647x5 − 1496x4 + 120x3 + 904x2 + 320x+ 32)
×(x20 + 22x19 + 1177x18 − 7012x17 + 27294x16 − 72516x15 + 149882x14 − 227360x13

+282149x12 − 253514x11 + 152221x10 − 21772x9 − 74372x8 + 82952x7 − 49328x6

−11392x5 + 26304x4 − 18816x3 + 8448x2 + 5632x+ 1024)
(d = 47, 79, 103, 127, 119)
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minimal polynomial of π4 is just deg(bd(x)) = [Ωf : Q]. Noting (19), and that z = 0 and z = 1 are

fixed points of T̂ (z), this shows that T̂ (z) has at least

2 +
∑

k,d

deg(bd(x)) (the sum is over k | n and − d ∈ Dk)

periodic points in Q2 whose periods divide n. However, similar arguments as in the Lemma of
[12](pp. 727-728), show that deg(R̂n(x)) = 2n+1. Since

2 +
∑

k,d

deg(bd(x)) = deg(Rn(x)) = 2n+1,

it follows that every root of R̂n(x) is π
4 or ξ4, for some root π or ξ of a suitable bd(x). This proves

Theorem 3. �.

Now we put forward the following theorem and conjecture concerning the discriminants of the
polynomials bd(x).

Theorem 10. Let d be any positive integer with d ≡ 7 (mod 8).

(a) If d > 7, the odd prime factors of disc(bd(x)) also divide disc(H−d(x)), where H−d(x) is the
corresponding class equation.

(b) Any odd prime p which divides disc(bd(x)) satisfies
(

−d
p

)
6= 1.

(c) If h = h(−d), then 23h(h−1) | disc(bd(x)).

Proof. From the proof of Theorem 6, the function

J(x) = 28
(x2 − x+ 1)3

x2(x− 1)2

satisfies J(ξ4) = j(w/2), for some ideal basis quotient w. Since J(x) is the j-invariant of an elliptic
curve in Legendre normal form, we know that J(x) = J(1− x), so

J(π4) = J(1− ξ4) = J(ξ4) = j(w/2).

Conjugating by automorphisms of Ωf/K shows that the roots ji of H−d(x) are given as ji =
J(π4

i ) = J(ξ4i ) for two roots πi, ξi of bd(x) related by π4
i + ξ4i = 1, for 1 ≤ i ≤ h(−d). If an odd

prime p divides disc(bd(x)), then there is a prime divisor p of p in RΩf
and either: (i) two roots

ξ1 6= ξ2 of bd(x), for which
ξ1 ≡ ξ2 (mod p);

(ii) two roots ξ1, π2 of bd(x) for which

ξ1 ≡ π2 (mod p);

or (iii) ξ1 ≡ π1 (mod p). Since p is odd, the quantities ξ8i (ξ
4
i − 1)2 = (ξiπi)

8 ∼= 28 are relatively
prime to p. It follows that for the corresponding roots j1 6= j2 of H−d(x), we have

j1 = J(ξ41) ≡ J(ξ42) = j2 (mod p)
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in case (i); and
j1 = J(ξ41) ≡ J(π4

2) = j2 (mod p),

in case (ii), implying in either case that p divides the discriminant of H−d(x). In case (iii) we have
from above that ξ1, π1 6≡ 1 (mod p), since ξ41 , π

4
1 6≡ 1 (mod p). Hence, (8) implies that

πτ
2

1 =
ξ1 + 1

ξ1 − 1
≡ π1 + 1

π1 − 1
= ξτ

−2

1 (mod p).

If τ2 6= τ−2, this gives

ξ2 = ξτ
−2

1 ≡ πτ
2

1 = π3 (mod p),

where j2 6= j3, and we are in case (ii). If τ2 = τ−2, then τ4 = 1 and the period of the roots of bd(x)
with respect to F̂ (z) is n = 1, 2, or 4. Using (20) and the polynomials in Table 1, we can check the
assertion of (a) directly in the cases d = 15, 39, 55, 63. This proves (a). Part (b) follows from the

fact that prime factors of disc(H−d(x)) satisfy
(

−d
p

)
6= 1. See [6], p. 78. Part (c) follows easily

from the fact that

disc(bd(x)) =
∏

i<j

(ξi − ξj)
2
∏

i<j

(πi − πj)
2
∏

i,j

(ξi − πj)
2,

as follows. Note that ℘′
2 | (ξi − ξj) for i 6= j. Also, Lemma 4 implies that ξi + 1 = βi+2

2
∼= ℘2

2 for
all i, so that ℘2

2℘
′
2 | (ξi − ξj) and ℘

3
2℘

′3
2
∼= 23 | (ξi − ξj)(πi − πj). Therefore, the first two terms in

the above product are divisible by 23h(h−1), as claimed, while the third term is relatively prime to
2. �

Conjecture.

(a) If h = h(−d), then the exact power of 2 dividing disc(bd(x)) is 23h(h−1).

(b) If p is an odd prime dividing disc(bd(x)), then p ≤ d.

(c) If d is not prime, the largest prime factor of disc(bd(x)) has the form q = d−2k for some k ≥ 1.

It would be interesting to know if the precise set of primes dividing disc(bd(x)) can be determined,
as in Deuring’s paper [6], or in the conjectures of Yui and Zagier in [15]. Also see [7] and [9]; the
former paper is the starting point for the conjectures in [15].

5 Pre-periodic points of T̂ (z) and F̂ (z).

Lemma 11. The function λ(z) =
f82(z)
f8(z) satisfies the identity

λ2(z)(λ(2z)− 1)2 = −16λ(2z)(λ(z)− 1), for ℑ(z) > 0. (21)

Proof. We will show that

f(z) =
(λ(2z)− 1)2

λ(2z)
= −16

λ(z)− 1

λ2(z)
= g(z), z ∈ H. (22)
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Table 2: Irreducible factors bd(x) of P6(x).

d bd(x)

87 x12 + 16x11 + 395x10 + 398x9 − 357x8 − 316x7 − 155x6

−1058x5 + 1332x4 − 704x3 + 800x2 − 352x+ 64

135 x12 − 36x11 + 2271x10 + 1586x9 − 1689x8 − 1800x7 − 2527x6

−2310x5 + 2664x4 + 832x3 + 1296x2 − 288x+ 64

175 x12 − 166x11 + 8027x10 + 5200x9 − 5565x8 − 6446x7 − 9659x6

−6172x5 + 6540x4 + 5600x3 + 2672x2 − 32x+ 64

207 x12 − 262x11 + 20035x10 + 13096x9 − 13397x8 − 15878x7 − 24435x6

−14516x5 + 14372x4 + 15128x3 + 5440x2 + 416x+ 64

247 x12 + 184x11 + 57491x10 + 39206x9 − 36669x8 − 44260x7 − 70067x6

−41690x5 + 37644x4 + 43072x3 + 13616x2 + 1472x+ 64

231 x24 − 160x23 + 39806x22 − 404188x21 + 1735295x20 − 4082916x19

+6591016x18 − 7995792x17 + 7025423x16 − 3646952x15 − 2986282x14

+8218276x13 − 7410127x12 + 8124428x11 − 590812x10 − 4737592x9

+2208800x8 − 5462688x7 + 644992x6 + 672768x5 + 631808x4

+875008x3 + 496640x2 + 53248x+ 4096

255 x24 + 484x23 + 67682x22 − 315500x21 + 1778351x20 − 3320880x19

+7580476x18 − 12603888x17 + 15479855x16 − 14728444x15 + 4226978x14

+12258548x13 − 20944063x12 + 22569256x11 − 11161888x10 − 5859992x9

+9241280x8 − 9494496x7 + 2773504x6 + 2227200x5 − 1364224x4

+780800x3 + 708608x2 + 100352x+ 4096
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Table 3: Irreducible factors bd(x) of P7(x) with h(−d) = 7, 14.

d bd(x)

71 x14 − 11x13 + 195x12 − 127x11 + 473x10 − 593x9 + 489x8 − 1285x7 + 1858x6

−2880x5 + 3320x4 − 2656x3 + 1792x2 − 576x+ 128

151 x14 + 49x13 + 3947x12 + 5049x11 + 1257x10 − 3585x9 − 9591x8 − 3357x7 − 2286x6

+756x5 + 9648x4 − 5760x3 + 5152x2 − 1280x+ 128

223 x14 + 327x13 + 31533x12 + 49475x11 + 3971x10 − 38331x9 − 67753x8 − 48623x7 − 10688x6

+36240x5 + 40216x4 − 4912x3 + 10848x2 − 2304x+ 128

343= 73 x14 + 553x13 + 519827x12 + 864297x11 + 22281x10 − 724017x9 − 1048551x8 − 982269x7

−51534x6 + 722988x5 + 532728x4 + 113904x3 + 33376x2 − 3584x+ 128

463 x14 − 4317x13 + 5455509x12 + 9135083x11 + 165107x10 − 7744779x9 − 10913545x8

−10577543x7 − 330800x6 + 7742148x5 + 5462032x4 + 1438400x3 + 169824x2 + 2880x+ 128

487 x14 − 2219x13 + 8414699x12 + 14095377x11 + 268377x10 − 11932257x9 − 16807911x8

−16325397x7 − 513342x6 + 11923632x5 + 8397216x4 + 2225952x3 + 249088x2 + 6784x+ 128

287 x28 + 718x27 + 151595x26 + 302396x25 − 1969799x24 + 13310626x23 + 49478315x22

−92763048x21 + 15572619x20 − 55567582x19 − 49236615x18 + 258472956x17

−25184053x16 + 97253374x15 − 160085295x14 − 143847472x13 − 97023632x12

+31900208x11 + 170255840x10 − 28494624x9 + 144550336x8 − 146641664x7

+52719360x6 − 60307968x5 + 31151104x4 − 7360512x3 + 3829760x2 − 466944x+ 16384

391 x28 − 910x27 + 1396079x26 − 11190416x25 + 45948277x24 − 124180050x23 + 235719087x22

−328250004x21 + 304829895x20 − 37280970x19 − 363512763x18 + 751810392x17

−807755041x16 + 585000802x15 + 57581533x14 − 421649716x13 + 537990116x12

−439254264x11 − 53209920x10 − 5224128x9 − 124251648x8 − 70235136x7

+180393984x6 − 52199424x5 + 110334976x4 + 18845696x3 + 8744960x2 − 401408x+ 16384

511 x28 + 6614x27 + 12795083x26 − 81961412x25 + 295814809x24 − 919556958x23 + 2515624107x22

−3835223880x21 + 2741257515x20 − 318564558x19 − 3878860743x18 + 9526335516x17

−6276227797x16 + 3048095422x15 + 1197209809x14 − 7865407120x13 + 4568895824x12

−2187610536x11 + 217110912x10 + 2125718976x9 − 1951319616x8 + 601344x7

−39389184x6 + 61917696x5 + 688675840x4 + 309923840x3 + 42622976x2 + 1515520x+ 16384
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We use the fact that λ(z) generates the field of modular functions for the subgroup G of Γ = SL2(Z)
which is generated by the substitutions z → z + 2 and z → z

1−2z . It is clear that f(z + 1) = f(z).
Furthermore,

λ

(
z

1− z

)
= 1− λ

(
z − 1

z

)
= 1− (λ(z)− 1)

λ(z)
=

1

λ(z)

implies that

f

(
z

1− 2z

)
=

(
1

λ(2z) − 1
)2

1
λ(2z)

= f(z).

Hence, f(z) is a rational function of λ(z). From [2], p. 116, we take the relations

limz→∞λ(zi) = 0, limz→0+λ(zi) = 1, limz→0+λ(1 + zi) = −∞.

These facts, together with f(z + 1) = f(z), imply that f(z) is analytic and nonzero in H (since
λ(z) 6= 0, 1 in H) and has finite limits at z = 0, z = 1, while f(z) becomes infinite at z = ∞i.
Moreover,

λ(z) =
24q2/3

∏∞
n=1 (1 + q2n)8

q−1/3
∏∞
n=1 (1 + q2n−1)8

= 16qu1(q)

= 16q(1− 8q + 44q2 − 192q3 + 718q4 − 2400q5 + · · · ), q = eπiz,

where u1(q) ∈ 1 + qZ[[q]] and similarly for u2(q) below. It follows that the q-expansion of f(z) at
∞i is

f(z) =
(−1 + 16q2 + · · · )2

16q2 + · · · =
1

16
q−2u2(q)

=
1

16
q−2 − 3

2
+

69

4
q2 − 128q4 +

5601

8
q6 − 3072q8 +

23003

2
q10 − 38400q12 + · · · .

Therefore,

f(z) =
16

λ2(z)
+ b

1

λ(z)
+ c

is at most a quadratic polynomial in 1/λ(z). Then limz→0+f(zi) = 0 implies that 0 = 16 + b + c.
Finally, using the fact that limz→0+λ(1 + zi) = −∞, we have that

0 = limz→0+f(zi) = limz→0+f(1 + zi) = c.

Hence, c = 0, b = −16, giving f(z) = g(z), as claimed. �.

Rewriting the identity (21) gives

λ2(z)λ2(2z)− 2(λ2(z)− 8λ(z) + 8)λ(2z) + λ2(z) = 0.

This shows that (x, y) = (λ(z), λ(2z)) parametrizes the curve

g̃(x, y) = x2y2 − 2(x2 − 8x+ 8)y + x2 = 0,
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defined by the minimal polynomial g̃(x, y) of y = T (x) over C(x). Hence, λ(2z) is one of the values
of T̂ (λ(z)). The form of the polynomial g̃(x, y) implies that the other root of g̃(λ(z), y) = 0 is

y = 1
λ(2z) = λ

(
2z

1−2z

)
. Hence, we have for z ∈ H that

T̂ (λ(z)) ∈ {λ(2z), 1

λ(2z)
} = {λ(2z), λ

(
2z

1− 2z

)
} = {λ(2z), λ

(
2z

2z + 1

)
}; (23)

note that λ
(

2z
1−2z

)
= λ

(
2z

2z+1

)
follows from the fact that s(z) = z

2z+1 ∈ G satisfies s( 2z
1−2z ) =

2z
2z+1 .

Similarly, the inverse function T̂−1 satisfies

T̂−1(λ(z)) ∈ {λ(z
2
), λ(

z

2
+ 1)} = {λ(z

2
),

λ( z2 )

λ( z2 )− 1
}, z ∈ H, (24)

since x = λ(z), λ(z + 1) are the two roots of g̃(x, λ(2z)) = 0. The two images λ( z2 ) and
λ( z

2 )

λ( z
2 )−1

in (24) coincide exactly when λ( z2 ) = 2 (since λ(z) never takes the value 0). The only root of
g̃(2, y) = 0 is y = −1, and the only root of g̃(x,−1) = 0 is x = 2, so that (23) and (24) also hold in
these cases.

A pre-periodic point of T̂ (z) is a number ρj for which there exist ρi = T̂ j−i(ρj) satisfying

g̃(ρj , ρj−1) = · · · = g̃(ρ1, ρ) = 0,

where ρ = 0, 1, or ρ = π4 and π is a root of bd(x) for some d. If j is minimal, the number ρj is a
pre-periodic point of level j. Since

g̃(x, 0) = x2, g̃(x, 1) = 16(x− 1),

there are no pre-periodic points corresponding to the fixed points ρ = 0, 1. Let pd(x) be the minimal
polynomial of π4

d, for d ≡ 7 (mod 8). A pre-periodic point of of T̂ of level 1 is a number ρ1 for

which g̃(ρ1, π
4) = 0, for some root π4 of pd(x). Certainly ρ1 = π4τ−1

is one solution, by (9) and
(17), if (π) = ℘2. By (24), the other solution of this equation is

ρ1 =
π4τ−1

π4τ−1 − 1
= −π

4τ−1

ξ4τ−1 , π4 + ξ4 = 1.

Similarly, the solutions of g̃(ρ1, ξ
4) = g̃(ρψ1 , π

4)ψ = 0 are

ρ1 = ξ4τ ,− ξ4τ

π4τ
= −

(
π4τ−1

ξ4τ−1

)ψ
.

The roots ρ1 which are not periodic points are roots of the polynomial

s
(1)
d (x) = (x− 1)2h(−d)pd

(
x

x− 1

)
.

Hence, the 2h(−d) roots of s
(1)
d (x), all lying in Ωf = Ω2f , are the pre-periodic points ρ1 of T̂ at

level 1 corresponding to roots of pd(x).
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Pre-periodic points of level 2 corresponding to pd(x) are numbers ρ2 for which

g̃(ρ2, ρ1) = 0, ρ1 = −π
4

ξ4
or − ξ4

π4
.

I claim that any solution of this equation is an algebraic integer lying in Ωf (i). Such a root is a
solution of

0 = ξ8g̃(x,−π
4

ξ4
) = π8x2 + 2(x2 − 8x+ 8)π4ξ4 + ξ8x2

= (π4 + ξ4)2x2 − 16π4ξ4x+ 16π4ξ4

= x2 − 16π4ξ4x+ 16π4ξ4

= π8g̃(x,− ξ4

π4
).

The discriminant of the above quadratic is

28π8ξ8 − 26π4ξ4 = 26π4ξ4(4π4(1− π4)− 1) = −26π4ξ4(2π4 − 1)2.

This proves the claim, and gives us the formula

ρ2 = 8π4ξ4 ± 4π2ξ2(2π4 − 1)i = 4π2ξ2(2π2ξ2 ± (2π4 − 1)i) ∈ Ωf (i) = Ω4f

for the pre-periodic points at level 2. Note that the norm to Ωf of the last quantity in this formula
is

NΩf
(2π2ξ2 ± (2π4 − 1)i) = 4π4ξ4 + 4π8 − 4π4 + 1 = 4π4(ξ4 + π4)− 4π4 + 1 = 1.

Hence, ρ2 ∼= 24. Since there are 2h(−d) numbers ρ1, and two values of ρ1 give two values of ρ2, by
the above displayed equations, there are in all 2h(−d) pre-periodic points ρ2 at level 2. Also, the
numbers ρ1 are all conjugate to each other over Q, and x2 − 16π4ξ4x + 16π4ξ4 is irreducible over
Ωf (i /∈ Ωf ), so the numbers ρ2 are conjugates over Q, as well.

As above, sd(x) = s
(1)
d (x) denotes the minimal polynomial over Q of the numbers ρ1 at level 1,

while s
(2)
d (x) is the minimal polynomial of the numbers ρ2 at level 2. We define the polynomials

s
(r)
d (x) inductively:

s
(r)
d (x) = Resy(g̃(x, y), s

(r−1)
d (y)), r ≥ 3.

Note that for r = 2, the corresponding resultant in this formula is actually c(s
(2)
d (x))2, which is

why we start the inductive definition with r = 3. The roots of s
(r)
d (x) are exactly the pre-periodic

points of T̂ at level r. We will prove the following proposition.

Proposition 12. The polynomials s
(r)
d (x) are irreducible over Q, for r ≥ 1. For r ≥ 1, any root

ρr of s
(r)
d (x) generates the ring class field K(ρr) = Ω2rf over K = Q(

√
−d).

Proof. We have proved the first assertion for r = 1, 2. The second assertion is also clear for r = 1,

since K(ρ1) = K( π4

π4−1) = K(π4) = Ωf = Ω2f . The remaining assertions of the proposition will be
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proved by induction on r. Let π4 = λ(w2 ), where w = v+
√
−d

2 is given in Theorem 3 and 16 | (v2+d).
One of the points ρ1 is given by

ρ1 =
π4

π4 − 1
= λ(

w

2
+ 1) = λ(

w + 2

2
),

by (24). Using (24) repeatedly, we see that

ρr = λ(
w + 2

2r
)

is a pre-periodic point of T̂ at level r.

Now, the minimal polynomial of the quadratic irrational w+2
2r = v+4+

√
−d

2r+1 is given by

mr(x) = 22r−1x2 − 2r−1(v + 4)x+
(v + 4)2 + d

8
,

with odd constant term, and

disc mr(x) = 22r−2(v + 4)2 − 22r−2((v + 4)2 + d) = −22r−2d = −(2r−1f)2dK .

It follows that j(w+2
2r ) generates Ω2r−1f over K. Furthermore, since j(z) is a rational function of

λ(z), it is clear that K(j(w+2
2r )) ⊆ K(λ(w+2

2r )).

Assume inductively that K(ρr) = Ω2rf , for some r ≥ 1. If we set s(z) = (λ(z)−1)2

λ(z) and t(z) =

λ(z)2

λ(z)−1 , then we have the identity

j(z) = 256
(s(z) + 1)3

s(z)
= 256

(t(z)− 1)3

t(z)
.

Setting sr =
(ρr−1)2

ρr
and tr =

ρ2r
ρr−1 therefore yields

j(
w + 2

2r
) = 256

(sr + 1)3

sr
= 256

(tr − 1)3

tr
. (25)

However, formula (22) gives that

sr =
(ρr − 1)2

ρr
= −16

ρr+1 − 1

ρ2r+1

=
−16

tr+1
. (26)

Putting (26) into (25) yields

j(
w + 2

2r+2
) = 256

(tr+2 − 1)3

tr+2
= 256

( −16
sr+1

− 1)3

−16
sr+1

= 16
(sr+1 + 16)3

s2r+1

.

This shows that j(w+2
2r+2 ) is a rational function of ρr+1, and therefore

Ω2rf = K(ρr) = K

(
j

(
w + 2

2r+1

))
⊂ K

(
j

(
w + 2

2r+2

))
⊆ K(ρr+1). (27)
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However, [Ω2r+1f : Ω2rf ] = 2, for r ≥ 1, while [K(ρr, ρr+1) : K(ρr)] ≤ 2. This forces K(ρr+1) =
K(j(w+2

2r+2 )) = Ω2r+1f in (27).

Finally, [Ω2rf : K] = 2r−1h(−d) and deg(s
(r)
d ) = 2r−1h(−d) (for r ≥ 2) imply that

deg(s
(r+1)
d ) = 2 · deg(s(r)d ) = 2rh(−d) = [Ω2r+1f : K] = [K(ρr+1) : K].

This shows that s
(r+1)
d (x) is irreducible over K (a fortiori over Q), and completes the proof. �

Theorem 3 and Proposition 12 yield the following result, which shows that Conjectures 1 and
2 of [12] are true for the prime p = 2 and the function T (z). (Conjecture 1 was proved for p = 2
already in [12], for a different algebraic function. The results of this paper give an alternate proof
of this conjecture.)

Theorem 13. As above, let pd(x) be the minimal polynomial over Q of the number π4
d, for d ≡ 7

(mod 8).

(a) Any periodic point, other than 0, 1, contained in Q ⊂ Q2, of the algebraic function T̂ generates
a ring class field of odd conductor over an imaginary quadratic field of the form K = Q(

√
−d),

where −d ≡ 1 (mod 8). Every ring class field of odd conductor over such a field K is generated
by an individual periodic point of T̂ . This point can be chosen to be a periodic point of the
single valued function T (z) contained in the domain D ⊂ K2.

(b) Any pre-periodic point of T̂ in Q ⊂ C whose level is at least 2 generates a ring class field of
even conductor over one of the fields K in (a). If the level of the pre-periodic point ρr is r ≥ 2,
and T̂ r(ρr) is a root of pd(x), then the conductor of K(ρr) = Ω2rf over K = Q(

√
−d) is exactly

divisible by 2r. Every ring class field of even conductor over such a field K is generated by an
individual pre-periodic point of T̂ .

The minimal polynomials pd(x) of the periodic points of T̂ are normal polynomials over Q (see

[10]), while the polynomials s
(r)
d (x) are typically not normal overQ, since deg s

(r)
d (x) = 2r−1h(−d) =

[Ω2rf : K] is only half of the degree of the ring class field Ω2rf over Q. Thus, the ring class fields
in question are the normal closures of the fields Q(ρr) they generate over Q, except when Q(ρr) is
normal (and therefore abelian) over Q. In the latter case, Ω2rf = K(ρr) = Q(

√
−d, ρr) is abelian

over Q, which implies that the discriminant −22rd = −4n, where n is an idoneal number. See [3],
pp. 59-62 and [8]. From [8] (see Theorem 3, Corollary 8, and Corollary 23 in that paper), this
situation arises only for 22r−2d = 28, 60, 112, 240; and in these cases Ω2rf = Q(ρr,

√
−d) = Q(ρr, i).

Note that the roots of s
(r)
d (x) are invariant under the map x→ x

x−1 , by (24).

The pre-periodic points of F̂ (z) can now be determined in terms of the pre-periodic points of
T̂ (z). Extending the relation (17) to the conjugate value and working in Q2, we have

T̂ (z4) = F̂ (z)4, z ∈ Q2,

meaning that each value of the left-hand side is a value of the right-hand side, and conversely. If
αr is a pre-periodic point of F̂ at level r ≥ 1, where F̂ r(αr) = π is a root of bd(x), then successive
values of T̂ can be chosen so that

T̂ r(α4
r) = F̂ r(αr)

4 = π4
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is a root of pd(x); hence, α
4
r is either periodic or pre-periodic of level at most r with respect to T̂ .

On the other hand, if ρr is pre-periodic at level r with respect to T̂ , and ρ
1/4
r is any fourth root of

ρr, then values of F̂ can be chosen so that

F̂ r(ρ1/4r )4 = T̂ r(ρr) = π4

is some root of pd(x), and therefore

F̂ r(ρ1/4r ) = επ, ε ∈ {±1,±i}.

Now note that −π is pre-periodic of level 1, since F (−π) = F (π) is a root of bd(x); and iπ is

pre-periodic of level 2, if we extend the definition of F (z) = −1+
√
1−z4

z2 to the domain D = {z ∈
K2(i) : |z|2 < 1} in the quadratic extension K2(i). This is because F (iπ) = −F (π). Hence, ρ

1/4
r is

either periodic or pre-periodic of level at most r + 2 with respect to F̂ . (Similar arguments apply
in case T r(ρr) = ξ4, for a root ξ which is a unit in K2.) Though we have worked 2-adically in this
argument, the conclusions are algebraic in nature, and apply equally in C. This gives the following.

Theorem 14. The pre-periodic points of the multivalued function F̂ (z) are the roots of the poly-
nomials

pd(x
4)

bd(x)
= bd(−x)bd(ix)bd(−ix), d ≡ 7 (mod 8),

together with the roots of the polynomials s
(r)
d (x4), for r ≥ 1. The latter roots coincide with the

values

λ(z)1/4 = ε
f2(z)

2

f(z)2
, z =

w + 2

2r
=
v + 4 +

√
−d

2r+1
, r ≥ 1, ε ∈ {±1,±i}, 16 | (v2 + d),

and their conjugates over Q. In particular, the periodic and pre-periodic points of F̂ (z) are given
by values of modular functions at imaginary quadratic arguments.

The roots of the polynomials s
(r)
d (x4) generate the same sequence of ring class fields over K =

Q(
√
−d) as do the roots of s

(r)
d (x), as we show in the following theorem.

Theorem 15. The polynomials s
(r)
d (x4) are irreducible over Q and K( 4

√
ρr) = Ω2r+2f , for r ≥ 1.

Proof. We start from the factorization

g̃(x, y2) = (xy2 − 2(x− 2)y + x)(xy2 + 2(x− 2)y + x).

Solving for x in this equation gives

x =
−4y

(−y + 1)2
or

4y

(y + 1)2
.

Since g̃(ρr+1, ρr) = 0, this gives

ρr+1 =
4
√
ρr

(
√
ρr + 1)2

, r ≥ 1, (28)
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for some choice of the square-root. This implies that K(ρr+1) ⊆ K(
√
ρr), for r ≥ 1. Taking the

square-root in (28) gives further that

±√
ρr+1 =

2 4
√
ρr√

ρr + 1
.

This implies that
Ω2r+2f = K(ρr+2) ⊆ K(

√
ρr+1) ⊆ K( 4

√
ρr), r ≥ 1.

Now [K( 4
√
ρr) : Ω2rf ] = [K( 4

√
ρr) : K(ρr)] ≤ 4 and [Ω2r+2f : Ω2rf ] = 4 give that K( 4

√
ρr) = Ω2r+2f .

Since deg(s
(r)
d (x4)) = 2r+1h(−d) = [Ω2r+2f : K], this proves that s

(r)
d (x4) is irreducible over K, and

therefore over Q. �

Corollary 16. (a) The ring class fields Ω2rf of even conductor over K = Q(
√
−d), where −d ≡ 1

(mod 8), are generated by individual pre-periodic points of the algebraic function F̂ (z). Every pre-
periodic point of F̂ (z) whose level is r ≥ 2 generates a ring class field whose conductor over K is
exactly divisible by 2r.

(b) All the pre-periodic points εr of F̂ at level r ≥ 1, for which F̂ r(εr) is a root of bd(x), are
conjugate over Q.

Proof. We note that the pre-periodic points ε1 of F̂ at level 1 are the roots of bd(−x) = 0, and the
pre-periodic points ε2 are the roots of bd(ix)bd(−ix) = 0. In the latter case, the quantities iπ and
iξ generate Ω4f over K, since K(π) = K(π4) = Ωf and Ωf (i) = Ω4f . The assertions for r ≥ 3 will

follow directly from the theorem, if we show that the roots εr = ρ
1/4
r of s

(r)
d (x4) are pre-periodic of

level r + 2 for the function F̂ , for r ≥ 1. We have shown above that the level of the pre-periodic

point ρ
1/4
r is at most r + 2. If it were strictly less than r + 2, then either F̂ r(ρ

1/4
r ) = π or ξ would

be a root of bd(x); or F̂
r(ρ

1/4
r ) = −π or −ξ. In the former case, F̂ r−1(ρ

1/4
r ) = −π′ or −ξ′ would be

pre-periodic of level 1. In the latter case, F̂ r−1(ρ
1/4
r ) = ±iπ′ or ±iξ′. In either case, ρr = (ρ

1/4
r )4

would be a pre-periodic point of T̂ of level ≤ r− 1. But this is impossible, since ρr is not a root of

s
(i)
d (x), for i ≤ r − 1. This argument holds for r ≥ 2, and also for r = 1, if we set s

(0)
d (x) = pd(x).

This implies all the assertions. �

These results show that Conjectures 1 and 2 of [12] (for p = 2) are true for both functions T̂

and F̂ . Since the normal closures of the fields Q(ρ
1/4
r ) contain the number i =

√
−1, the four cases

d = 28, 60, 112, 240 mentioned above are no longer exceptional in the following theorem.

Theorem 17. The collection of ring class fields over imaginary quadratic fields of the form K =
Q(

√
−d), with −d ≡ 1 (mod 8), coincides with the set of normal closures of the fields generated

over Q by individual periodic and pre-periodic points (different from 0,−1) of the algebraic function

F̂ (z) = −1±
√
1−z4

z2 .
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