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Periodic points of algebraic functions and
Deuring’s class number formula

Patrick Morton

Abstract

The exact set of periodic points in Q@ of the algebraic function F'(z) = (=141 — 2%) /2% is
shown to consist of the coordinates of certain solutions (z,y) = (7, &) of the Fermat equation
z*+y* = 1 in ring class fields Q 7 over imaginary quadratic fields K = Q(v/—d) of odd conductor
f, where —d = dx f> = 1 (mod 8). This is shown to result from the fact that the 2-adic function
F(2) = (=1 4+ /1 —2%) /2% is a lift of the Frobenius automorphism on the coordinates 7 for
which |7|2 < 1, for any d = 7 (mod 8), when considered as elements of the maximal unramified
extension Kg of the 2-adic field Q2. This gives an interpretation of the case p = 2 of a class
number formula of Deuring. An algebraic method of computing these periodic points and
the corresponding class equations H_4(z) is given that is applicable for small periods. The
pre-periodic points of F(z) in Q are also determined.

1 Introduction.

In the papers [4] and [5] Deuring noted the following class number formulas.

Deuring’s Class Number Formulas.

Zh(dpf)—l—hp:pf, for even f =2,4,6---,
dpf

SO R(dyr) + 2t — by = p!, forodd f=1,3,5,-;
dpf

where h(d) is the class number of primitive quadratic forms of discriminant —d; d,s rTuns over all
positive integers, for which the principal form of discriminant —d,s properly represents p?; hy, is
the class number of the quaternion algebra D, = Qo , which is ramified only at p and the infinite
pPrime poo; and ty is the type number of D,.

In these formulas, h, is the total number of j-invariants of supersingular elliptic curves in
characteristic p, and 2t, — h, is the number of supersingular j-invariants which lie in the prime
field F,, (see [0] and [I], p. 97). When these two numbers are the same, i.e. when all supersingular
j-invariants lie in I, then these formulas may be combined and “inverted” to give that

D hldys) =Y u(f /R —hy) =D ulf/k)p*, for f>1, (1)

d,s kIS kIS
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where the primed sum is now taken over the positive integers, for which the principal form of
discriminant —d,,; properly represents p! and no smaller power of p.

In [IT] the formula (1) was reinterpreted (replacing f with n) for the prime p = 3 in the following
form: Let 33%3) be the set of discriminants —d = 1 (mod 3) of orders in imaginary quadratic fields

Qp/K
K = Q(v/—d), for which the Frobenius automorphism 74 = i/

3
in K, has order n in the Galois group G = G(€2s/K) of the ring class field Q of conductor f over
K, where —d = dk f? and dk is the discriminant of K. If h(—d) is the class number of the order
R_g4 of discriminant —d in K, then

Z h(—d) = Zu(n/k)?)k, for n > 1.

—deo® k|n

, for a prime divisor g3 of 3

An independent proof of this formula was given, by interpreting the sum on either side as the
number of periodic points of least period n of a specific 3-adic algebraic function defined and single-
valued in a certain domain of the field K3, the maximal unramified algebraic extension of the 3-adic
field Q3. From the Artin reciprocity law we know that @513) is the set of negative discriminants
—d =1 (mod 3) for which a prime ideal divisor ps of 3 in the ring of integers Rk of K has order
n in the ring class group (mod f).

A similar interpretation for the prime p = 2 was given in [12], except that in formula (1) the
prime p was replaced by 22:

> h(=d) =Y pu(n/k)2*, forn > 1; (2)

—deD’, kln

this is equivalent to the first half of the Deuring class number formula for the prime p = 2. Here

D’ is the set of discriminants —d = 1 (mod 8), for which the square of the Frobenius automorphism
Qr /K

= (L) has order n in the Galois group G(Qs/K) over K = Q(v/—d), where —d = dk f>.

£2
Once again, the number on either side of (2) was interpreted as the number of periodic points

of least period n of a specific 2-adic algebraic function in a certain domain of Kg, the maximal
unramified algebraic extension of Q.

In this note I show how the full formula (1) may be interpreted for the prime p = 2 and n > 1.
This arises from the fact that for ring class fields of a specific family of imaginary quadratic fields,
the Frobenius automorphism 7; can be represented by a single power series, independent of d,
evaluated at one of a family of related generators for the fields 2.

Before stating the precise result we recall the following definitions and results from [I0](Section
10) and [I2]. The Schlafli functions f(7), f1(7), f2(7) (see [13], p. 148, or [3], p. 256) can be defined
by the infinite products

(r) = —fH (1+¢""%), h(r)= —%H L—q"" %),

o0
fo(7) = 2_14]_[ (1+4¢"), g=¢e"7,



for 7 in the upper half-plane H. Let K = Q(+/—d) be an imaginary quadratic field, for which —d = 1
(mod 8) is the discriminant of the order R_; in K, with conductor f, satisfying —d = dx f?. Further,
let w € K be given by

v+ vV—d

5 v? = —d (mod 16), v =1 or 3, (3)

and set

16

—31 (mod 4), if v=1and d =15 (mod 16).

B {3d+5 (mod 4), ifv=3and d=7 (mod 16),
a =

Then the numbers Fa(w/2)? 3 f1(w/2)?
q J2(W _P_ W
~U w2 YT w2 Y

lie in the ring class field {2¢ of conductor f over K, and satisfy

Td

T+ &1 =1

The quantities 74 and &; are conjugate algebraic integers over Q and Qf = Q(mq) = Q(&4). Fur-
thermore, if o = (2,w) is a prime ideal divisor of 2 in K, then (2) = 2Rx = poph in K, and we
have
(ma) = TaRa, = p2Ra;, (L) = &aRa, = pyRa,, in Qy,

where Ry, denotes the ring of algebraic integers in the field L. In addition, we will need the fact that
there is an automorphism ¢ € Gal(2;/Q) of order 2 which interchanges w4 and &; and therefore
also interchanges the ideals po and ph. If 7 € Gal(Qs/K), then 77197 is an automorphism of order
2 which interchanges 7 = 7}, and { = &.

Let bg(z) be the minimal polynomial over Q of the numbers 74 and &;. Then bg(x) is a normal
polynomial over Q (meaning that one of its roots generates a normal extension of Q) and

deg(ba()) = 2h(—d),

where h(—d) is the class number of the order R_g4, i.e. the number of elements of the ideal class
group of R_4. Recall from [10] that half of the roots of by(x) are generators of the ideal psRq, and
half are generators of p5Rg,.

With these definitions the following theorem holds.

Theorem 1. Let K = Q(v/—d), where —d = 1 (mod 8), and let dx denote the discriminant of

Q/K
K/Q. Set —d = dk f?, 14 = <—{p/
2
(m) = g2 in the ring of integers Rq, of the ring class field Qy = Q(ng) = Q(7) over K. Further,
let F(z) be the algebraic function

e D SIS () R o)

22
n=1

), and let m be any root of the polynomial by(x) for which

defined for z in the disc D = {z : |z]a < 1}, a subset of the mazimal unramified extension Ko of the
2-adic field Q2. Then for any such integer d,

77 = F(m) in Ky,



if Qp — (Qf)p is embedded in Ky by completing at a prime divisor p of po.

This is an improvement and simplification over what I was able to show in [12], since there I
was only able to represent the action of 77 by a power series evaluated at a generator of Q. Note
that Theorem 1 is analogous to the action of the polynomial P(z) = z* on cyclotomic fields Q(,),
where ¢, = ¢*™/™ and (n, k) = 1, since ¢,, — P((,) represents an automorphism for this family of
abelian fields.

Theorem 1 leads to the following result, with a substantially simpler proof than the proof that
was given for the corresponding theorem in [12].

Theorem 2. (a) The periodic points of the 2-adic function F(z) in the disc D= {z : |z|]a < 1} C Ky
are z =0 and the roots w of the polynomials by(x) which lie in D, as d runs over all positive integers
d=7 (mod8).

(b) The periodic points of the multivalued function

A —1+v1-—24
F(z) = 2

satisfying g(F(2),z) = 0, with g(x,y) = y?22 + 22 +y2, are 0,—1, and the roots of the polynomials
ba(z) = 0, as d ranges over all positive integers d =7 (mod 8). This statement holds in any of the
ﬁEst Q27 Qa C.

As in [12], a periodic point of the multivalued algebraic function F/(z) is defined to be a value a
(in an algebraically closed field k) for which there exist n € N and aq,...,a,-1 € k, for which the
minimal polynomial g(x, z) of x = F(z) over k(z) satisfies

gla,a1) = g(ar,a2) = --- = glai,aiy1) = - - = g(an—1,a) = 0.

Theorem 2 shows again, as in [12], that all ring class fields of odd conductor f over fields
K = Q(v/—d) with —d = 1 (mod 8) can be generated over Q by individual periodic points of the
algebraic function a (z); moreover, that all periodic points of F (z), with the exception of z = 0, —1,
generate ring class fields over fields K in this same family.

Corollary. If ®, = @512) is the set of negative discriminants —d = 1 (mod 8) for which the
Frobenius automorphism T = (pri) has order n in Gal(Qy/K), with K = Q(v/—d), —d = dk f?

2
and 2 = poph in Rk, then for any n > 1 we have the class number formula

S h(—d) =3 nln/k)2*, (6)

—deD, k|n

This corollary is a consequence of Theorem 2(a) and the fact that the period n of a periodic
point m € D of F(z) is the order of the automorphism 74, by Theorem 1. Thus, the sum in the
corollary is the number of periodic points of F(z) in D with primitive (i.e., minimal) period n.



In [I2] the analogue of Theorem 2 was proved for the algebraic function

1+ VT—A  (1L+ YT AP+ VI )

F1(z):—1_41_z4_ i .

Fy (Z)Jrl
zF1(z)—z

2
Thus, the discussion here proves that F(z) = —z72+ ( ) and F}(z) have the same periodic

points.

The function F(z) is closely related to the function T'(z) which is defined as follows. There is
an isogeny
¢ : E>\ — E>\1

of degree 2 from the Legendre normal form
Ey: Y2=X(X-1)(X—-))
for the parameter A to the Legendre normal form for the parameter \;, and the formula for A\; =

T()) is
(1—+v1-X)*

A= 2
The function T'(z) defined by

4

T(z) = G=vizz7 vize) . Z (i)(—l)"ﬂz" ;

22 22
n>1

for z in the disc D = {z : |z|]2 < 1} C Kg, is related to F(z) by the formula

This yields the following theorem for the periodic points of the multivalued function T(z) =
(1+vI—2)*

22 '

Theorem 3. The periodic points of the multivalued algebraic function y = T(z) = (Evi-z) vzﬁ“‘)‘l

defined by the equation
C: glz,y) =222 —2(2> —824+8)y+22=0
are the numbers in the set
S =1{0,1}U{€*:3d > 0,d =7 (mod 8) s.t. bg(£) = 0}.
These are the numbers
€= ffl((;u//;))sg “1-A(3) 7= f;((;u//;))sg =2(3)
and their conjugates over Q, where the number w has the form

v+ vV—d )2
2 b

= —d (mod 16), d =7 (mod 8).



The function A(z) in this theorem is the classical A-function, which is a modular function for
the principal congruence group I'[2]. (See [2] and [I4].) Theorems 2 and 3 give two examples of
algebraic functions, whose periodic points are values of modular functions.

In Section 3 I show how to use the simple polynomial g(z,y) = x?y? + 2z + y? and iterated
resultants to compute the minimal polynomials bs(z) in a purely algebraic way. I show in Sections
3 and 4 that the particular polynomials bg(x), for which d € Dy, and k | n, together with z and
x + 1, make up the exact set of irreducible factors of an (n — 1)-fold iterated resultant defined using
g(z,y). It seems quite remarkable that the minimal polynomials of values of modular functions
can be found in this way. In particular, this gives an algebraic method for computing generators of
the ring class fields € of fields of the type K = Q(v/—d), with —d = 1 (mod 8), and therefore a
purely algebraic method for computing the corresponding class equations H_4(z). See Theorem 9
and Tables 1, 2, and 3 at the end of the paper.

The periodic points (# 0,1) of the function T in Theorem 3 generate ring class fields of odd
conductor over the quadratic fields of the form K = Q(v/—d), —d = 1 (mod 8), as was proved in
[10]. In Section 4 I use an identity for the modular function A(z) to show that the pre-periodic
points of T (of level > 2, see Section 5) generate ring class fields of even conductor over fields
K in the same family; and conversely, every ring class field of even conductor over such a field K
is generated over K by a pre-periodic point of T. This result, summarized in Theorem 13, proves
Conjecture 2 in the paper [12] for the prime p = 2. The discussion here also gives an alternate proof
of Conjecture 1 (for p = 2) in that paper. Similar results holds for the periodic and pre-periodic
points of F', as we show in Theorems 14 and 15. In particular, the collection of ring class fields over
fields K in this family coincides with the collection of normal closures over Q of fields generated by
individual periodic or pre-periodic points of the algebraic function F.

2 Lifting the Frobenius automorphism on roots of b,;(z).
In this section 7 = 7 will be any root of bg(x) = 0 which is conjugate to 74 over K = Q(v/—d),

and & = £ will be the root of by(x) = 0 for which 74 + &% = 1. See equations (3) and (4). Changing
notation slightly, we let ¢ € Gal(Q2;/Q) be the automorphism of order 2 for which

A
We recall the following ideal factorizations from [10](Theorem 8.6 and proof).

Lemma 4. If & denotes divisor equality; 2 = poph in the ring of integers R of K = Q(v/—d);
and B = 2¢; then B = pop and

B-22030) B+22 030y B°+42 007
in the ring R, .
Lemma 5. Using the notation of Theorem 1, we have

1+7% =g, and 1 —72 =



so that oo
(1_7T) ~ 14

(1+m22 2
Proof. From [I0] we have
A+ -7 =1—n" =t =it

Furthermore, using Lemma 4, we have

_ 2,0 .3/
1 = (-gare - CDEEA & ey

Now apply the automorphism ¢ € G(Q;/K) which switches the numbers 7 and ¢ and the ideals
@2 and @h: this gives 1 — 72 = (1 — £2)¥ = o and verifies the assertions. [J

Theorem 6. If 7 = (préK>, we have

-1 -1 1—71'2 2
547 :(é-‘r )4_ﬁ

Proof. Letting a denote a solution of 16a* + 168 = a4, we have as in [10] (pp. 1967-68), for a
suitable basis quotient w of an ideal a (prime to f), that

j (g) _ (a® —16a* +256)° (8% —168* +256)%  256(&% — ¢* +1)3

2 oS(at —16)2 BB —16)2 g8t —1)2 = J(&Y),

where ( ) )3
256(x° —x +1
o) = x?(x —1)2

Since j(w/2)™ = j(w/4), we find that

()-8 e

On the other hand, straightforward calculation shows that

(1—7%)2\  16(7® 4 147* +1)3
I (tramr) = e

Replacing 7 by 1 — &% in the last expression yields

(1—72)2\  16(6% — 166* + 16)°
J(u+ﬁﬁ)‘ e g

Using & = §/2, this and [10](eq. (6.2)) yield

_ 12)2 8 _ 3w
(555) - - )




which gives that
ar—ty _ (1 — 7T2)2
S )_J<(1—|—7T2)2 '

Setting z; = 54771 and zo = Elfﬂzgz, this implies that z; and zy are related by an element of the

1472
anharmonic group:
zZ1 zZ1 — 1 1

1
22 € {_7

1—21 Z1f-
Z1 251—17 Z1 71— ’ ’ }

Now, 2z cannot be equal to any of the first four elements, since 23 & 29 = E4' and 1 — 2z & pé
imply that these four elements are not integral. Similarly, zo # 1 — 21, forcing zo = z1. This proves
the theorem. [J

Applying the automorphism 77! to the equation 7% + £* = 1 gives

a7t (1 — 7T2)2

7:1.
AT i

hence, the points (z,y) = (7,77 ) and (,y) = (7", ) satisfy the equation

gy A=P @yt )@ty -2ty 7)
(1+2%)? (@? +1)? '

Note that the first factor in the numerator is the polynomial g(z,y) = z2y? + 2z + y? defined in
Theorem 2 above, and that the function F'(z) defined in (5) satisfies g(F(z), z) = 0.

We expand F(z) = =1tyl== VI==% in a 2-adic series in the field Kj:
.- 3 n—2
F(z) =3 (1) 2)s42,
=21 (2)-

If |z|2 < 1, then z = 221, with |21]2 < 1, so that

F(z) = F(22) = nil (—1)ngin-2 <i> Jin2

o0
=— E 2L, 2t = 222 820 -
n=1

where C,,_; = (—1)""122n~1 (é) € Z is the Catalan number. Hence, the series converges for z in
the disc D = {z : |z]2 < 1}, and maps this disc into itself. This allows us to iterate the function
F(z) on D. For the proof of Theorem 1 we also need the relation

e E41
™ =i (8)
from [I0](Prop. 8.5).

Proof of Theorem 1.



We would like to see that 77 = F(x
either on the curve 2y + 2z + 4> =0
latter curve; then

) ( ) we know that the point (z,y) = (77, ) lies
or 22y? — 2z + y? = 0. Suppose this point hes on the

7w T+ 12 =0

implies that

11— 1-¢
mw = =
2 w2’

since the expression +—5 =N !is not integral. This makes use of the calculations in Lemma 4,

according to which 1 + §2 > oo = 7. Applying 7 to the last displayed equation and using (8) gives

5_}_1_ 2 1_527’ 1_527’
-1 T e T a-epm
so that (6417 - 1)
+ — T
T = 1 — 52 .

Using 7 = 1 — €% in the last relation yields

e DD (€41
1—¢&t 1+¢&2

and

(€+1D% _20+¢+&)

1+& 1+

Since 1 + €2 = oy and & = @b, it follows that (1 + & + £2,2) = 1. Thus, the right hand side in
the last displayed equation is agph, where (a,2) = 1. However, the left side is €27 = o2 giving a
contradiction. This proves that

B RV, e S P
nl = + = —’2—5 = F(r). 9)

§QT:1+

2 T
O
This proves Theorem 1. Iterating equation (9), and noting that 7 can be viewed as an automor-
phism of the local extension Qa(7)/Q2, we find that
™ = F"(x), forn>1.

Therefore, we have the following result.

Theorem 7. The roots m of the polynomials by(x), for which ™ = w4 = oo, are all periodic points
in D C Ky of the algebraic function F(z). The period n of such a number 7 is the order of T4 in
the Galois group of the ring class field ¢ over Q.

Since half of the roots of bg(x) = 0 are conjugate to mq = o over K = Q(v/—d) and half are
conjugate to £ = @), this shows that there are h(—d) periodic points of F(z) in the disk D coming
from the roots of bg(x) = 0, for a given d.



Applying the automorphism % to (9) and using 71 = 7! implies

1 —14+72
=T
3

This agrees with the result of Theorem 1, since

(-1475)* (@2 -1 (1—7?)?

58 - (71.4 _ 1)2 (1 4 71.2)2'

Moreover, (£,£7) is also a point on the curve z2y? + 2z + y? = 0, as can be seen by applying the
automorphism 7 to the point (77, 7):

(ﬂ_‘rjﬂ_)dn’ _ (ﬂ_‘rdrr’ﬂ_dm’) _ (7_‘_#)7'717',57) _ (5757)

It follows that ¢ is a periodic point of the inverse algebraic function F'~!(z), for which g(z, F~1(2)) =
0. Hence, the remaining h(—d) roots & of by(z) = 0 are all periodic points of F~1(z). See equation
(14) below.

3 Iterated resultants.

We turn now to the proof that the roots of the polynomials ba(x), together with 0 and —1, are the
only periodic points of the multivalued function F(z). We let

gz, y) = 2%y + 22 + 3

as before, and define

RO (z,21) = g(,21),

R®) (2, 25) = Resy, (g(x, 1), (1, 22));
and inductively,

R (z,2,) = Resg,_, (R™" ™ (2,20-1), g(Tn-1,2n)), 1> 2.
Putting x,, = x gives the polynomial
Rp(z) = R™(z,2), n>1.

The roots of R, (z) are exactly the elements a € Ay = Q. for which there are aj,...,a,_1 € Ao
satisfying the simultaneous equations

g9(a,a1) = g(ag, a3) = -+ = g(an-1,a) = 0; (11)
i.e. the a’s are exactly the periodic points of F'(z) with period n.

The same arguments as in [I2] lead to the factorizations

Ru(z) = [ [ Pr(2),

k|n

10



P.(x) = HRk(:C)“("/k). (12)
k|n

where p(n) is the Mobius p-function. This is done by relating the polynomials R, (x) and P, (x)

to the corresponding polynomials R, (z) and P,(z) obtained by replacing g(z,y) in the above
definitions by the polynomial

9(2z,2y)

T =t et y? glry) =2ty 20+

g1z, y) =
Note that
gi(z,y) = y* + 2 (mod 2).

It follows easily by induction that
R™ (z,2,) =22 + 2 (mod 2), n>1,

and therefore B
Ry(z) =2 + 2 (mod 2), n>1.

Hensel’s Lemma implies that R, (x) has at least 2™ distinct roots in Kg, of which 2™ — 1 are units
in Ko. It can also be checked that R
R, (22) = 2* R, (z),

which implies that R, (x) also has at least 2™ distinct roots in Ko, of which 2™ —1 are prime elements
in K. Note that x = 0 is certainly a root of R, (z) for any n.

It follows from the identity

z+1 y+1

(o= 020 1% (25, U5 ) = dgt0) (13)

that for every root a € Ky of R, (z) the quantity b = Zif € Ky is also a root. This is because

1
g(a,a1) = g(ay,az) = - = g(an—1,a) =0 and b; = ‘“J_r} imply that

ajg

g(b,bp—1) =--- = g(b2,b1) = g(b1,b) = 0.

The roots b are distinct from all the roots a, since the b’s are all units. Hence, R, (z) has 27*1
distinct roots in Ka. It is not hard to see that deg(R,(x)) = 2"+, so this accounts for all the roots.
(See the proof of the Lemma in [12], pp.727-728.) Furthermore, if k | n, then roots of Ry (z) are
also roots of R, (z). It follows that the expression P, (z) defined in (12) is a polynomial. This gives
that

deg(Ru(2)) = 21, dea(Pu(x) =23 u(n/h)2".
k|n

The roots of the polynomial P,,(z) are exactly the periodic points of F (2) of minimal period n.

This discussion proves:

Theorem 8. All the periodic points of the multivalued algebraic function F' lie in the mazimal
unramified, algebraic extension Ky of the 2-adic field Qs.

11



Irreducible factors of the polynomials P, (x) are listed in Tables 1, 2, and 3 for small values of

n.
The identity (13) also implies
1 F 1
o[ @+
z—1" F(z)—1
so that ) F(o) 41
z+ z)+
Pt = 14
(z—l) F(z) -1’ (14)
where F~1(z) is defined by
—22(22+1)
Fl) =Y 77
(2) T

Equation (14) shows that F~!(z) can be defined as a single valued function on the image of the
disc D under the map ¢(z) = j—ﬂ This image is the set

gb(D):{z:|z+1|2§272}:{z:z:4w—1,w602},

where 02 is ring of integers in Ka.

From the preceding discussion we also see that

Pa(z) =[] (& +2)/% (mod 2), (15)
k|n

where the right side is the product of the irreducible polynomials of degree n in Fa[x]. This implies
that over Qs, the irreducible factors of P, (), and hence also of P, (z), have degree n. If a is a
periodic point of F and ai,...,a,—1 are the associated elements of Ko satisfying (11), then the a; are
also roots of R, (), as can be seen by cyclically permuting the equations in (11). Hence, the roots of
R, (z) consist of complete orbits under E'. The same holds for the polynomial Rn(:v) =2"2"R,(2z)

under the conjugate map F(z) = @ Since
F(2
(2Z> =22 4204 ... =2 (mod 2), for |z]; <1, (16)

and the Frobenius map z — 22 fixes the irreducible factors of degree n over Fy, it follows that the
roots of an irreducible factor of P,,(z) over Q2 consist of: a complete orbit under the map F(z), if
those roots lie in D; and a complete orbit under F~1(z), if those roots lie in ¢(D).

Finally, note that Theorem 7 implies that by(z) | P, (2) whenever ord(7y) = n. In the next
section we show that the polynomials by(z), together with « and x + 1, are the only irreducible
factors of P, (z). See Theorem 9 below.

12



4 Elliptic curves and periodic points.
Consider the isogeny ¢, of degree 2 on the elliptic curve
Ey: vP=z(x—1)(z -\

which is induced by the translation map

z—A A-1
P — —(1.0) =
(e = () - (10 = (223, 25
namely
¢1(‘T7y) = (u,v),
where
- =)
u=z+zf =x+ = —
z—1 z—1
A—1 22— 22+ A

v=y+y”=y+(x_1)2y= @—12 ¥

The image of E under this isogeny is the curve
By vt = (u—\)(u? —4u+4)\).
Replacing u by u; + A gives the equation
v? =y (u? + 2\ — Duy + A2 = ug (ug — ) (u1 —7'),
where the roots of the quadratic are

7,7 = -A+2+2VT - A= (1£V1-))%

Now setting X = % and Y = # yields the curve
,y/
By, :Y’=XX-1)(X-21),
Y
where
\ Y (0=VI=A)? A =VI=N
YTy T a+vioNn? A2 '
These transformations yield an isogeny ¢ : E\ — E\,, with
7Y (I=VI-M)!
AM=—=—--"—""—=T(A
1 v 22 ( )a
for which ¢(0,0) = (0,0). The functions T'(z) = U=¥Y1=2" ;12_2)4 and F'(z) satisfy the relationship
1— V1= 24
1 = L= ey,
z
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which implies that
T"(2*) = F™(2)*, n>1, |z]s <1.

If 7 is any periodic point of F(z) in the disk D, with period n, then
Tn(7T4) _ Fn(ﬂ)4 _ 7_‘_4
shows that 7% is a periodic point of T' of period n in D. Conversely, if 7 € D is a periodic point
of T(z), then m € D and T"(7*) = 7* = F"(m)* implies that F"(7) = £, since /—1 ¢ Kq. If
F"(mw) = —m, then F(—z) = F(z) implies that —7 is a periodic point of F(z). If = were also a
periodic point of F(z), with period m, then F™(7) = 7 implies
T = Fomn(ﬂ_) — (Fon)om(_ﬂ_) — _7_‘_7

giving 7 = 0. (The composition symbol o is included here to emphasize that the powers are
compositions.) Thus, periodic points 7* of T'(z) in D are in 1-1 correspondence with the periodic
points 7 of F(z) in D.

Proof of Theorem 2. Let a be any periodic point of F'(z) in Ky with primitive period n > 1;
then the discussion in Section 3 shows that a € DU¢(D). By replacing a by ¢(a) we assume a € D.
Then g(a1,a) = 0 implies that a; € D, so that a; = F(a). Let Fi(a) = a; for 1 <i <n — 1, and
F"(a) = a = ap = ay, with n smallest. Each of the quantities a; is a periodic point of F'(z), so each
a} is a periodic point of T'(z) in D. Moreover,

T(a})=a},;, 0<i<n-—1.
Thus, for each ¢ with 0 <7 < n — 1 there is an isogeny
oi Ea% — Ea;lﬂ.

Hence, ¢ = ¢p—1 0 ¢ppp_20---0 1 0 g is an isogeny from FE 4 to itself. Moreover, by the above
discussion, each ¢; takes (0,0) to (0,0), so that ¢ fixes (0,0) € E,s. This implies that ¢ is a cyclic
isogeny of degree 2", and therefore the j-invariant of F,4, namely

(a® —a* +1)3

(Bga) = 28—

is a root of the modular equation

Don(z,2) = Cp H H_g(z)" (2"
—d

where the product is over orders R_4 of discriminant —d in imaginary quadratic fields, H_4(z) is
the class polynomial of discriminant —d, and

r(d,m) = [{\ € R_4 : A primitive, N(\) = m}/R*,|.

4 is a root of the polynomial

La(w) = (a* — )" CVH_, (M) |

See [3]. Therefore, x = a



Now the argument of [12], pp. 736-737, applies word for word (with & replaced by a), and shows
that a is a root of a polynomial bg(x), where d = 7 (mod 8) and —d € ©,,. This proves Theorem
2(a). Theorem 2(b) is immediate from the fact that the irreducible factors of the polynomial R, (z)
are the bg(z), independent of which field Q,, Q, C we are working in. [

The above arguments imply the following result concerning the polynomial P, (z) in (12).

Theorem 9. The polynomial P, (x) is given by the formula

P.(x) = H ba(x), form >1,

—deD,

where Dy, is defined (as in the Corollary to Theorem 2) as the set of negative discriminants —d = 1

(mod 8) for which T4 = (%) has order n in Gal(Qy/K). In particular, equating degrees yields

23 p(n/k)2* =2 " h(-d), forn>1. (18)

k|n —de®,
For n =1 we have
Pi(z) = Ry(z) = g(z,2) = x(z + 1)(2* — 2 +2) = 2(z + 1)bs(z). (19)

Theorem 9 shows that the polynomials by(2) may be computed as the irreducible factors of the
iterated resultants R, (z) in Section 3. Factoring R, (x) for a fixed n yields the complete set of
polynomials bg(x), for d € ©,,. See Tables 1, 2, and 3. (In Table 3, there are two factors of P, (x)
which are not listed, both of which have degree 42.) Formula (18) implies the Corollary to Theorem
2.

The class equation H_g4(x) for the discriminant —d = 1 (mod 8) may be computed using the
resultant
cH_4(x)* = Res, (ba(y),y'° (1 — y*)z — 16(y® — 16y* + 16)*), ce ZT, (20)

at least for small values of the period n = ord(74) (see the proof of Theorem 6). This gives a purely
algebraic method for calculating H_4(z).

We now prove Theorem 3.

Proof of Theorem 3.

The above proof shows that the elements 74, where 7 runs through the roots of by(x) for which
T = 7y, are all periodic points of the function T'(z) in D, and therefore also periodic points of the
multivalued function T'(z). We consider the iterated resultants defined in Section 3, but with the
polynomial g(z,y) replaced by the polynomial g(x,y) = 2%y? — 2(2* — 8z + 8)y + x2. This gives
us a set of polynomials R, (z) € Z[z], whose roots are the periodic points of T'(z) in Q,. Since the
elements 7, for d € ®,,, are all periodic points of T(z), we know that their minimal polynomials
divide R, (z), for any n > 1. (Any algebraic conjugate over Q of a periodic point is also a periodic
point.) Moreover, Q(7*) = §Qy, for each such d, by [10], Proposition 8.1, so that the degree of the

15



Table 1: Polynomials P,,(z), 1 <n <5.

Pun(z) = Hde@n ba(z)

zz+1)(@®—z+2) (d=7)
(z* — 42 + 522 — 2z +4) (d=15)

(25 + 2% + 92* — 1323 + 1822 — 162 + 8)(25 + 72 + 112* — 1523 + 1622 — 20z + 8)
(d = 23,31)

(28 — 627 + 4225 — 602° + 532* — 54a® + 2422 + 16)
X (2% + 627 + 7825 — 8425 + 53z — 6623 — 1222 + 247 + 16)
% (2% + 2027 + 1102 — 1002 + 492% — 8027 — 4022 + 40z + 16)
(d = 39,55,63)

(210 — 1529 + 742® — 9027 + 932° — 18725 + 1602* — 15623 + 1682 — 48x + 32)
x (210 — 312° 4 2902® — 18627 + 528 — 25125 — 562* — 6023 + 25622 + 322 + 32)

x (219 — 212° 4 7322°% — 29027 — 19125 — 3692° — 5022 + 4023 + 45622 + 144x + 32)
x (210 4+ 772° 4+ 17302% — 36627 — 64325 — 6472° — 14962 + 1202° + 90422 + 320z + 32)
X (220 + 22219 + 1177218 — 7012217 + 27294216 — 7251621° + 149882214 — 227360213
+28214921% — 25351421 + 152221210 — 217722% — 7437228 + 8295227 — 493282°
—1139225 + 26304z* — 1881627 + 844822 + 5632z + 1024)

(d = 47,79,103,127,119)
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minimal polynomial of 74 is just deg(ba(z)) = [2f : Q]. Noting (19), and that 2 =0 and z = 1 are
fixed points of 7'(z), this shows that T'(z) has at least

2+ Zdeg(bd(:v)) (the sum is over k | n and —d € Dy)
k.d

periodic points in Q, whose periods divide n. However, similar arguments as in the Lemma of
[12)(pp. 727-728), show that deg(R, (x)) = 2"*L. Since

2+ ) deg(ba(x)) = deg(Ry (x)) = 2",
k,d

it follows that every root of R, (z) is 7* or £*, for some root 7 or £ of a suitable bg(x). This proves
Theorem 3. [O.

Now we put forward the following theorem and conjecture concerning the discriminants of the
polynomials bg(x).
Theorem 10. Let d be any positive integer with d =7 (mod 8).
(a) If d > 7, the odd prime factors of disc(bg(x)) also divide disc(H_4(x)), where H_g(x) is the

corresponding class equation.
(b) Any odd prime p which divides disc(bg(x)) satisfies (_Td) # 1.

(¢) If h = h(—d), then 23" | disc(bg(z)).
Proof. From the proof of Theorem 6, the function

s(@® —a+1)°

M= ey

satisfies J(£%) = j(w/2), for some ideal basis quotient w. Since J(z) is the j-invariant of an elliptic
curve in Legendre normal form, we know that J(z) = J(1 — ), so

J(rt)y =J(1 =&Y = J(EY) = j(w/2).

Conjugating by automorphisms of Q;/K shows that the roots j; of H_4(z) are given as j; =
J(m}) = J(€&}) for two roots m;, &; of by(x) related by 7f + &F = 1, for 1 < i < h(—d). If an odd
prime p divides disc(bs()), then there is a prime divisor p of p in Rg, and either: (i) two roots
&1 # & of by(x), for which

&1 = & (mod p);

(ii) two roots &, m of by(x) for which
§1 =2 (mod p);

or (iii) & = m (mod p). Since p is odd, the quantities £3(&} — 1)2 = (&m;)® = 28 are relatively
prime to p. It follows that for the corresponding roots ji # jo of H_4(x), we have

i =J(&) = J(&) = j2 (mod p)

17



in case (i); and

Ju=J(&) = J(m3) = j2 (mod p),
in case (ii), implying in either case that p divides the discriminant of H_4(x). In case (iii) we have
from above that &1, # 1 (mod p), since &, 7F #Z 1 (mod p). Hence, (8) implies that

2 §1+177T1+1
o -

1 —51_1=7T1_1:§1 (mod p).

If 72 772, this gives
-2 2
& =¢  =a] =m3 (mod p),

where jy # js, and we are in case (ii). If 72 = 772, then 7% = 1 and the period of the roots of ba(x)
with respect to F'(z) is n = 1,2, or 4. Using (20) and the polynomials in Table 1, we can check the
assertion of (a) directly in the cases d = 15,39, 55,63. This proves (a). Part (b) follows from the

fact that prime factors of disc(H_4(z)) satisfy (’7‘1) # 1. See [6], p. 78. Part (c) follows easily
from the fact that

disc(ba(@) = [[ & = &) ][] (7 — 7)) H (& —m5)%,

1<j 1<y

as follows. Note that @) | (§ —&;) for ¢ # j. Also, Lemma 4 implies that § + 1 = % =~ 2 for
all 4, so that p3p5 | (& — &) and p3p5 =2 23 | (& — &;)(m; — ;). Therefore, the first two terms in
the above product are divisible by 23*("=1) as claimed, while the third term is relatively prime to
2.

Conjecture.

(a) If h = h(—d), then the exact power of 2 dividing disc(bq(x)) is 231,

(b) If p is an odd prime dividing disc(by(x)), then p < d.

(c) If d is not prime, the largest prime factor of disc(bq(x)) has the form q = d—2F for some k > 1.

It would be interesting to know if the precise set of primes dividing disc(by(z)) can be determined,
as in Deuring’s paper [6], or in the conjectures of Yui and Zagier in [I5]. Also see [7] and [9]; the
former paper is the starting point for the conjectures in [15].

5 Pre-periodic points of 7(z) and F(z).
Lemma 11. The function A(z) = ;28 satisfies the identity

M (2)(M(22) — 1)* = —=16A(22)(\(z) — 1), for I(2) > 0. (21)

Proof. We will show that

A(2z2) —1)2
flz)= % = —16)\27(2) =g(z), z€H. (22)

18



Table 2: Irreducible factors bg(x) of Pg(x).

bd(I)

87

135

175

207

247

231

255

212 + 1621 + 395219 + 39829 — 35728 — 31627 — 15528
—10582° 4+ 13322* — 70423 + 80022 — 352x + 64

212 — 36211 + 2271210 + 158627 — 16892% — 180027 — 25278
—23102° + 2664z + 83223 + 129622 — 288z + 64

22 — 166211 + 8027210 + 520027 — 55652° — 644627 — 965925
—61722° + 65402* + 56002° 4+ 267222 — 32z + 64

212 — 26221 + 20035210 + 1309622 — 133972% — 1587827 — 2443520
—145162° + 14372z* + 1512822 + 544022 + 416z + 64

21?2 + 1842 4 57491210 + 3920627 — 366692° — 4426027 — 7006725
—416902° + 376442 4 4307223 + 1361622 + 1472x + 64

2?4 — 160223 + 39806222 — 40418822 + 1735295220 — 4082916217
+65910162'8 — 7995792217 + 7025423x16 — 364695215 — 298628214
+8218276x' — 741012722 + 8124428z — 59081210 — 473759227
+2208800x° — 5462688z + 6449922% + 6727682° + 631808z
+8750082° + 49664022 + 53248z + 4096

22 4+ 484223 + 67682222 — 31550022t + 1778351220 — 3320880z
4758047628 — 12603888217 + 15479855216 — 14728444215 + 422697814
+12258548z13 — 20944063212 + 2256925621 — 11161888210 — 58599921

4924128028 — 949449627 + 27735042° + 22272002 — 13642242*

+7808002° + 70860822 + 100352z + 4096
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Table 3: Irreducible factors by(z) of P7(z) with h(—d) =7, 14.

d bd(I)
71 14 — 11213 + 195212 — 12721 4 473210 — 59322 4 48928 — 128527 + 185826
—2880x° + 3320x* — 265623 + 179222 — 576z + 128
151 oM 4+ 49213 + 3947212 + 50492 + 1257210 — 358529 — 959128 — 335727 — 228628
+7562° + 9648z* — 576023 + 515222 — 1280z + 128
223 x4 + 327213 + 31533212 4+ 494752 4+ 3971219 — 3833129 — 6775328 — 4862327 — 106882°
+36240x° + 40216x* — 491223 + 108482 — 2304z + 128
343= 73 M 4+ 553213 + 519827212 + 864297211 4 22281210 — 7240172° — 104855128 — 98226927
—5153425 4+ 72298825 + 532728x* + 11390423 + 3337622 — 3584z + 128
463 ™ — 4317213 + 5455509212 + 91350832 + 165107210 — 77447792° — 1091354528
—1057754327 — 3308002° + 7742148x" + 5462032z* + 143840023 + 16982422 + 2880z + 128
487 ot — 2219213 + 8414699212 + 140953772 + 268377210 — 119322572 — 1680791128
—1632539727 — 51334228 + 1192363225 + 83972162 + 222595222 + 24908822 + 6784x + 128
287 228 4+ 718227 + 151595226 + 30239622° — 1969799224 + 13310626223 + 49478315222
—92763048221 + 15572619220 — 55567582219 — 49236615218 + 258472956217
—25184053z1% + 9725337421° — 16008529521* — 143847472213 — 97023632212
431900208z + 17025584020 — 284946242 + 14455033628 — 14664166427
+527193602° — 603079682° + 31151104x* — 736051223 + 382976022 — 4669442 + 16384
391 228 — 910227 + 1396079226 — 1119041622° + 45948277x2* — 124180050222 + 235719087222
—32825000422 + 304829895220 — 37280970219 — 363512763218 + 751810392217
—807755041216 + 585000802215 + 575815332 — 4216497162 + 537990116212
—439254264211 — 53209920210 — 522412822 — 12425164828 — 7023513627
+180393984 2% — 521994242° + 1103349762* + 1884569623 + 874496022 — 401408z + 16384
511 228 + 6614227 + 12795083220 — 8196141222° + 295814809224 — 919556958223 + 2515624107122

—383522388022! + 2741257515220 — 318564558z 19 — 387886074328 4 9526335516217
—627622779726 4 304809542221% + 119720980924 — 78654071203 + 4568895824212
—218761053621 + 217110912210 + 212571897622 — 19513196162° + 6013447
—39389184x5 + 619176962° + 688675840x* + 30992384023 + 4262297622 + 1515520z + 16384
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We use the fact that A\(z) generates the field of modular functions for the subgroup G of ' = SLy(Z)
which is generated by the substitutions z — 2+ 2 and z — 155-. It is clear that f(z + 1) = f(2).

Furthermore,
(129) 1)

()=,

1-—2z ©3)

2z
p- 116, we take the relations

implies that

)
Hence, f(z) is a rational function of A(z). From [2],
lim, oo A(2i) =0, lim, 04 A(2i) =1, lim, o+ A(1+ 2i) = —o0.

These facts, together with f(z + 1) = f(z), imply that f(z) is analytic and nonzero in H (since
A(z) # 0,1 in H) and has finite limits at z = 0,z = 1, while f(z) becomes infinite at z = ooi.
Moreover,

(2) = 2eP Ly (g ()
B, (1+ g2 1)8 quilg

= 16¢(1 — 8q + 44¢* — 192¢> 4 T18¢* — 2400¢° 4 ---), q = ™%,

where u1(q) € 1+ ¢Z[[g]] and similarly for us(g) below. It follows that the g-expansion of f(z) at
001 is

(-1+16¢*+---)> 1 _,

f(z) = oz 167 w2l
1, 369, . 5601 ¢ 23003 4, o
= 154 S+ dt —128¢" + =g~ 3072¢° + T — 384009 -
Therefore,
16 1
= — b—
T =Rm e e

is at most a quadratic polynomial in 1/A(z). Then lim, o4 f(24) = 0 implies that 0 = 16 + b + c.
Finally, using the fact that lim, o4 A(1 + 2zi) = —oo, we have that

0 = lim, o4 f(27) = lim, o4 f(1 + 2i) = c.
Hence, ¢ = 0,b = —16, giving f(z) = g(z), as claimed. .
Rewriting the identity (21) gives
M (2)A3(22) — 2(0%(2) — 8A(2) + 8)A(22) + A% (2) = 0.
This shows that (z,y) = (A(2), A\(22)) parametrizes the curve

Gz, y) = 2%y* — 2(2® — 8z + 8)y + 22 = 0,
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defined by the minimal polynomial j(z,y) of y = T'(z) over C(z). Hence, A(2z) is one of the values
of T(A\(2z)). The form of the polynomial g(x,y) implies that the other root of g(A(z),y) = 0 is

Y= Aéz) =A (IEZQz) Hence, we have for z € H that

1 2z

gt = e (P =nean () @)

T(A2)) € {A(22),

note that A (13‘;) =A (jSl) follows from the fact that s(z) = 577 € G satisfies s( ) = jSl.

Similarly, the inverse function 7! satisfies

et HAE 11 = G, 2E)
P0G € DG)AG D) = G g5 2B (21)
since © = A(2),A(z + 1) are the two roots of g(z,A(2z)) = 0. The two images A(5) and %

in (24) coincide exactly when A(5) = 2 (since A(z) never takes the value 0). The only root of
g(2,y) =0is y = —1, and the only root of g(z, —1) = 0 is & = 2, so that (23) and (24) also hold in
these cases.

A pre-periodic point of 7(z) is a number p; for which there exist p; = T797%(p;) satisfying

3(pj,pj—1) =+ =g(p1,p) =0,

where p = 0,1, or p = 7 and 7 is a root of by(z) for some d. If j is minimal, the number p; is a
pre-periodic point of level j. Since

§(x,0) = 2%, gz, 1) = 16(x — 1),

there are no pre-periodic points corresponding to the fixed points p = 0, 1. Let p4(z) be the minimal

polynomial of 74, for d = 7 (mod 8). A pre-periodic point of of T of level 1 is a number p; for

which §(p1, %) = 0, for some root 7 of py(x). Certainly p; = !

(17), if (7) = 2. By (24), the other solution of this equation is

is one solution, by (9) and

7.‘.47'71 471

™
P1 = :_547_715 7T4+€4:1'

St

Similarly, the solutions of §(p1, &%) = f](plf,w‘l)w =0 are

—1\ ¥
_ 547’ _i _ 7T4T '
P1= ! 7T-4T - 547’*1 :

The roots p; which are not periodic points are roots of the polynomial

s(0) = o= 020 (7).

r—1

Hence, the 2h(—d) roots of s((il)(:zr), all lying in Qy = Qof, are the pre-periodic points p; of T at
level 1 corresponding to roots of pg(x).
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Pre-periodic points of level 2 corresponding to p4(z) are numbers ps for which

4 4
~ s é‘
g(p2:p1) =0, 012—5—4 or ——.

I claim that any solution of this equation is an algebraic integer lying in Q(7). Such a root is a
solution of

4
0 =&%(x, —2—4) = 782? + 2(2? — 8z + )¢ + €822
= (7t + 122 — 167t s + 1672t
=22 — 167 s + 167%¢?
54

= 8g(x, - ).
The discriminant of the above quadratic is
9878¢8 _ 9bndeh = obnded (4nt(1 — %) — 1) = —26ntet(2nt — 1)2.
This proves the claim, and gives us the formula
p2 = 8¢t £ 4r?2E2 (21 — 1)i = Ar?E2(2m2€2 + (27" — 1)i) € Q4 (i) = Quy

for the pre-periodic points at level 2. Note that the norm to €1y of the last quantity in this formula
is

No, (27%&* £ (27" — 1)i) = dn*¢* +4n® —dn* + 1 =dn' (¢ +7Y) —dr' + 1 = 1.
Hence, py =2 2%, Since there are 2h(—d) numbers p;, and two values of p; give two values of pa, by
the above displayed equations, there are in all 2h(—d) pre-periodic points ps at level 2. Also, the

numbers p; are all conjugate to each other over Q, and z? — 167*¢4x + 167*¢* is irreducible over
Qy (i ¢ Qf), so the numbers p are conjugates over Q, as well.

As above, s4(x) = sfll)(x) denotes the minimal polynomial over Q of the numbers p; at level 1,

while s&z)(x) is the minimal polynomial of the numbers ps at level 2. We define the polynomials

sg) (2) inductively:
sy (@) = Resy (). 54 VW), 73

Note that for » = 2, the corresponding resultant in this formula is actually 0(3512) (7))?, which is
why we start the inductive definition with » = 3. The roots of sg) (x) are exactly the pre-periodic
points of T at level . We will prove the following proposition.

Proposition 12. The polynomials s((;)(x) are irreducible over Q, for r > 1. For r > 1, any root
pr of sl(ir)(x) generates the ring class field K(p,) = Qary over K = Q(v/—d).

Proof. We have proved the first assertion for r = 1,2. The second assertion is also clear for r =1,
4
since K (p1) = K(-F—=) = K(n*) = Q = Qzy. The remaining assertions of the proposition will be
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proved by induction on r. Let 7* = A(%), where w = ”+\2/jd is given in Theorem 3 and 16 | (v2+d).

One of the points p; is given by

7 w w+ 2
= — = — 1: _—
pr= = A5+ 1) = A(2),

by (24). Using (24) repeatedly, we see that
w+2

is a pre-periodic point of T at level r.

Now, the minimal polynomial of the quadratic irrational UJQ—JQQ = % v=d jg given by

(v+4)%+d

my(z) =22 1g? — 2" Yu + 4)a + 3 ,

with odd constant term, and

disc m,(z) = 222 (v +4)2 = 22 2((v +4)* + d) = =22 2d = — (2" f)%dk.

It follows that j(*552) generates Qyr—1; over K. Furthermore, since j(z) is a rational function of
A(2), it is clear that K (j(552)) C K(A(%E2)).

Assume inductively that K(p,) = Qary, for some r > 1. If we set s(z) = % and #(2) =

2
%, then we have the identity

1)3 t(z) —1)*
i) = 256 BB EL e tz) — 17
5(2) t(2)
Setting s, = (’)Tp;Tl)Q and t, = pff_‘l therefore yields
2 4+ 1)3 t, —1)3
G2y e or LT pggllr — 17 (25)
27 Sy t,
However, formula (22) gives that
s —1)2 1 — 1 —16
srzuz—lﬁp%z—. (26)
Pr Pr+1 trt1
Putting (26) into (25) yields
2 tyyo— 1)° (5 - 1° ri1+ 16)°
ey _oselr T DT gl T gl +16)7
2 r+2 i1 Sr+1

This shows that j(;ﬁ;g) is a rational function of p,11, and therefore

0 = 10) = K (i (g ) ) < 5 (3 (5 ) ) € Ko (27)
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However, [Q2T+lf : QQTf] = 27 for r 2 1, while [K(p’l‘ﬂpr-i-l) : K(p’r)] S 2. This forces K(pr-l,-l) _
K(j(252)) = Qgriay in (27).

Finally, [ : K] = 2" 'h(—d) and deg(s\)) = 2"~1h(—d) (for r > 2) imply that

deg(sy ™) = 2 deg(s)) = 27h(=d) = [y : K] = [K(pr11) : K].
This shows that sgﬂ)(:z:) is irreducible over K (a fortiori over ), and completes the proof. [J

Theorem 3 and Proposition 12 yield the following result, which shows that Conjectures 1 and
2 of [12] are true for the prime p = 2 and the function T'(z). (Conjecture 1 was proved for p = 2
already in [12], for a different algebraic function. The results of this paper give an alternate proof
of this conjecture.)

Theorem 13. As above, let pa(x) be the minimal polynomial over Q of the number 7T3, ford="7
(mod 8).

(a) Any periodic point, other than 0,1, contained in Q C Q,, of the algebraic function T generates
a ring class field of odd conductor over an imaginary quadratic field of the form K = Q(v/—d),
where —d =1 (mod 8). Every ring class field of odd conductor over such a field K is generated
by an individual periodic point of T. This point can be chosen to be a periodic point of the
single valued function T'(z) contained in the domain D C Ks.

(b) Any pre-periodic point ofT in Q C C whose level is at least 2 generates a ring class field of
even conductor over one of the fields K in (a). If the level of the pre-periodic point p, is T > 2,
and 17 (p,) is a root of pa(z), then the conductor of K (p,) = Qary over K = Q(v/—d) is exactly
divisible by 2". Every ring class field of even conductor over such a field K is generated by an
individual pre-periodic point of T.

The minimal polynomials pg(z) of the periodic points of T are normal polynomials over Q (see
[10]), while the polynomials sl(ir) (x) are typically not normal over Q, since deg sl(ir) () = 2" th(—d) =
[Qor s : K] is only half of the degree of the ring class field Qor; over Q. Thus, the ring class fields
in question are the normal closures of the fields Q(p,) they generate over Q, except when Q(p,) is
normal (and therefore abelian) over Q. In the latter case, Qar; = K(p,) = Q(v/—d, p,) is abelian
over Q, which implies that the discriminant —22"d = —4n, where n is an idoneal number. See [3],
pp. 59-62 and [§]. From [§] (see Theorem 3, Corollary 8, and Corollary 23 in that paper), this

situation arises only for 22" ~2d = 28,60, 112, 240; and in these cases Qory = Q(pr, vV —d) = Q(py, 7).
Note that the roots of sflr)(x) are invariant under the map  — -5, by (24).

_ The pre-periodic points of F'(z) can now be determined in terms of the pre-periodic points of
T(z). Extending the relation (17) to the conjugate value and working in Q,, we have

T(24) = F(Z)47 z € @27

meaning that each value of the left-hand side is a value of the right-hand side, and conversely. If
@ is a pre-periodic point of F at level 7 > 1, where I'"(a,.) = 7 is a root of bg(x), then successive
values of T' can be chosen so that

T"(ay) = F"(ar)! =
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- is either periodic or pre-periodic of level at most r with respect to T.

/4

is a root of pg(x); hence, «
On the other hand, if p, is pre-periodic at level r with respect to T, and p,1~ is any fourth root of

pr, then values of F' can be chosen so that
Er(py/ ) =17 (p,) = 7
is some root of pg(x), and therefore
Er(p/*y =em, e {£1,+i}.

Now note that — is pre-periodic of level 1, since F(—m) = F(m) is a root of bg(x); and im is
pre-periodic of level 2, if we extend the definition of F(z) = =1H¥%l== V1=2" to the domain D = {z €
Ka(i) : |22 < 1} in the quadratic extension Kz(i). This is because F'(ir) = —F (7). Hence, o/t s
either periodic or pre-periodic of level at most r + 2 with respect to F'. (Similar arguments apply
in case T"(p,) = &%, for a root ¢ which is a unit in Ky.) Though we have worked 2-adically in this

argument, the conclusions are algebraic in nature, and apply equally in C. This gives the following.

Theorem 14. The pre-periodic points of the multivalued function F(z) are the roots of the poly-
nomials .
pa(z?)
bd(I)

together with the roots of the polynomials s((;) (x*), for » > 1. The latter roots coincide with the
values

= by(—x)ba(ix)by(—ix), d=7T (mod 8),

f2(2)? w+2 v+4++—d _
/\(2)1/425;’(2)2,z: = g T2 L e € {£L 41}, 16| (0¥ + ),

and their conjugates over Q. In particular, the periodic and pre-periodic points of F'(z) are given
by values of modular functions at imaginary quadratic arguments.

The roots of the polynomials sl([)(:zr‘l) generate the same sequence of ring class fields over K =
Q(v/—d) as do the roots of sl([)(x), as we show in the following theorem.

Theorem 15. The polynomials sg) (x*) are irreducible over Q and K(¢/pr) = Qori2y, forr > 1.
Proof. We start from the factorization
9(a,y?) = (2y® = 2(z — 2)y + 2)(zy” + 2(z — 2)y + ).

Solving for z in this equation gives

Since G(pr+1,pr) = 0, this gives

4./pr
1= >, 28
Pr+1 (Vor +1)2 r (28)
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for some choice of the square-root. This implies that K(p,1+1) C K(y/pr), for r > 1. Taking the
square-root in (28) gives further that

2./pr

+/Pr+1 = .
Pr+1 Jor+1

This implies that
Qor2yp = K(pri2) C© K(Vpryn) € K(Ypr), 7> 1

Now [K(/pr) : Qarp] = [K(¢/pr) : K(pr)] <4 and [Qori2y : Qory] = 4 give that K (¢/pr) = Qori2y.
Since deg(sg)(x‘l)) = 2"t (—d) = [Qgr+2; : K], this proves that sg) (x*) is irreducible over K, and
therefore over Q. [J

Corollary 16. (a) The ring class fields Qary of even conductor over K = Q(v/—d), where —d =1
(mod 8), are generated by individual pre-periodic points of the algebraic function F (2). Every pre-
periodic point of F(z) whose level is 1 > 2 generates a ring class field whose conductor over K is
ezxactly divisible by 27.

(b) All the pre-periodic points e, of F at level r > 1, for which F"(e,) is a root of ba(x), are
conjugate over Q.

Proof. We note that the pre-periodic points €1 of F at level 1 are the roots of ba(—x) =0, and the
pre-periodic points €5 are the roots of by(ix)bs(—iz) = 0. In the latter case, the quantities im and
i€ generate Q4 over K, since K (m) = K(n*) = Qf and Q¢ (i) = Qas. The assertions for r > 3 will
follow directly from the theorem, if we show that the roots €, = p,lo/ 4 of sl([)(:zr‘l) are pre-periodic of
level r + 2 for the function F , for 7 > 1. We have shown above that the level of the pre-periodic
point pi/4 is at most r + 2. If it were strictly less than r 4+ 2, then either FT(p}NM) =7 or £ would
be a root of by(x); or F'T(pi“) = —m or —¢. In the former case, F'T_l(p,lmM) = —7’ or —=¢’ would be
pre-periodic of level 1. In the latter case, FT_l(p,laM) = din’ or £¢¢’. In either case, p, = (p$/4)4
would be a pre-periodic point of T of level < r — 1. But this is impossible, since p, is not a root of
s((;) (x), for i <r — 1. This argument holds for » > 2, and also for r = 1, if we set s((io) (x) = pa(z).
This implies all the assertions. [J

These results show that Conjectures 1 and 2 of [I2] (for p = 2) are true for both functions T

and F. Since the normal closures of the fields Q(pi/zl) contain the number ¢ = \/—1, the four cases
d = 28,60, 112,240 mentioned above are no longer exceptional in the following theorem.

Theorem 17. The collection of ring class fields over imaginary quadratic fields of the form K =
Q(v—d), with —d = 1 (mod 8), coincides with the set of normal closures of the fields generated
over Q by individual periodic and pre-periodic points (different from 0,—1) of the algebraic function
F(z) = EVI=ET
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