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Abstract

Background—Dysregulation of extracellular signal-related kinase (ERK) activity has been 

potentially implicated in the pathophysiology of autistic disorder (autism). ERK is part of a central 

intracellular signaling cascade responsible for a myriad of cellular functions. ERK is expressed in 

peripheral blood lymphocytes, and measurement of activated (phosphorylated) lymphocytic ERK 

is commonly executed in many areas of medicine. We sought to conduct the first study of ERK 

activation in humans with autism by utilizing a lymphocytic ERK activation assay. We 

hypothesized that ERK activation would be enhanced in peripheral blood lymphocytes from 

persons with autism compared to those of neurotypical control subjects.

Method—We conducted an initial study of peripheral lymphocyte ERK activation in 45 subjects 

with autism and 26 age- and gender-matched control subjects (total n = 71). ERK activation was 

measured using a lymphocyte counting method (primary outcome expressed as lymphocytes 

staining positive for cytosolic phosphorylated ERK divided by total cells counted) and additional 

Western blot analysis of whole cell phosphorylated ERK adjusted for total ERK present in the 

lymphocyte lysate sample.

Results—Cytosolic/nuclear localization of pERK activated cells were increased by almost two-

fold in the autism subject group compared to matched neurotypical control subjects (cell count 

ratio of 0.064 ± 0.044 versus 0.034 ± 0.031; p = 0.002). Elevated phosphorylated ERK levels in 
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whole cell lysates also showed increased activated ERK in the autism group compared to controls 

(n = 54 total) in Western blot analysis.

Conclusions—The results of this first in human ERK activation study are consistent with 

enhanced peripheral lymphocytic ERK activation in autism, as well as suggesting that cellular 

compartmentalization of activated ERK may be altered in this disorder. Future work will be 

required to explore the impact of concomitant medication use and other subject characteristics 

such as level of cognitive functioning on ERK activation.

Trial Registration—Not applicable.
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1. Introduction

Autism spectrum disorder (ASD) is a developmental disorder characterized by deficits in 

social communication and interaction, and restricted, repetitive patterns of behavior, 

interests, or activities. Autism-like behaviors are also observed in Fragile X Syndrome 

(FXS), which is the most common type of inherited cognitive disability (Mariner et al., 

1986). Our goal is to investigate the pathobiochemical pathway(s) responsible for these 

disorders in order to devise rational-based drug targets and develop useful biomarker(s). We 

hypothesize that a common cell signaling pathway takes different routes depending on the 

disease conditions.

The pathophysiology of autism remains poorly understood. As a behaviorally defined 

disorder with significant phenotypic heterogeneity, success in understanding the cause of 

illness has remained elusive. Biomarker development in autism, while the focus of 

significant research, has been met with limited success to date. In this context, we have 

previously reported higher levels of secreted amyloid-β precursor protein-alpha form 

(sAPPα) and lower levels of potentially toxic amyloid-β (Aβ) peptide in plasma and brain 

tissue of children with severe autism (Sokol et al., 2006; Sokol et al., 2011; Lahiri et al., 

2013). How sAPPα mediates cell signaling relevant to ASD remains a major unanswered 

question, and the present work could shed some lights on this knowledge gap in the field.

Communication deficits and repetitive behaviors are seen in autism along with various 

symptoms that can vary in severity, including seizures and increased anxiety (Maski et al., 

2011; Fung and Hardan, 2014). Considering almost innumerable genetic, environmental, or 

a combination of both factors may contribute to the etiology of a single case of autism 

spectrum disorder, approaches examining central points of cellular signaling and activity 

may hold promise to direct efforts towards unifying elements of cellular dysregulation. With 

these concepts in mind, we focused on study of extracellular signal-related kinase (ERK; 

also recognized as a mitogen activated kinase or MAP kinase) regulation in autistic disorder. 

ERK1 (MAPK3) and ERK2 (MAPK1) are central elements of intracellular signaling 

governing neuronal development (Samuels et al., 2008; Samuels et al., 2009), synaptic 

plasticity (Kelleher et al., 2004), and memory formation (Cui et al., 2008) which are all 
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functions that are likely dysregulated in autism. ERK1/2 activation has also been implicated 

in various seizure models (Merlo et al., 2004; Yamagata et al., 2013). An imbalance in 

optimal ERK1/2 activation may play a role in cognitive function seen in autism-related 

disorders (Chevere-Torres et al., 2012). ERK1 and ERK2 isoforms exhibit significant 

functional redundancy and are thought to have resulted from single gene duplication at the 

onset of vertebrate evolution (Busca et al., 2015). Both exhibit a similar three dimensional 

structure and are ubiquitously expressed in mammals with similar specific activity (Robbins 

et al., 1993; Lefloch et al., 2008). Evidence from genetic studies in idiopathic autism, known 

genetic syndromes associated with autism, and murine models all point to potential aberrant 

ERK1/2 activity associated with the disorder. Specifically, copy number variation at the 

human 16p11.2 locus is a common risk variant associated with autism accounting for up to 

1% of all cases (Malhotra and Sebat, 2012). The MAPK3 gene which encodes for ERK1 is 

located in this region. Interestingly, reports on the impact of 16p11.2 deletion on ERK1/2 

activity have been conflicting with reports of resultant ERK1/2 up (Pucilowska et al., 2015) 

or down regulation (Tian et al., 2015).

The developmental syndromes known as RASopathies include neurofibromatosis type 1 

(NF1), Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous 

syndrome (CFC) which are all associated with enhanced Ras/MAPK activity resulting in 

excessive ERK1/2 activation (phosphorylation; pERK1/2). There are several clinical features 

that overlap among each syndrome including dysmorphic facial features, short stature, and 

increased cancer risk (Cizmarova et al., 2015). Recently, a systematic phenotype assessment 

of the RASopathies noted increased autistic traits in those with a RASopathy compared to 

non-affected siblings (Adviento et al., 2014).

FXS is a well-established single gene disorder and the leading genetic cause of autism. In 

both brain samples from patients with FXS and in brain tissue from Fmr1 knockout mice, 

pERK1/2 is elevated (Michalon et al., 2012; Wang et al., 2012). In Fmr1 knockout mice, 

treatment with a MEK1/2 inhibitor or lovastatin reduces ERK1/2 phosphorylation and has 

been associated with phenotypic rescue including reduction in audiogenic seizures (Wang et 

al., 2012). Lovastatin, an HMG-CoA reductase inhibitor, inhibits Ras-ERK1/2 and prevents 

the development of seizure-like symptoms in Fmr1−/y mice (Osterweil et al., 2013). 

Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous and 

neurodevelopmental disorder caused by the loss of TSC1 or TSC2 suppressor genes which 

results in enhanced activation of the mammalian target of rapamycin (mTOR) signaling 

cascade. It is estimated that 50% of persons with TSC meet criteria for autism and/or 

developmental disability (Curatolo et al., 2008; Jeste et al., 2008). Constituents of the 

ERK1/2 pathway are overactive in TSC cell lines and in TSC-associated brain lesions 

further implicating this central signaling cascade in the pathophysiology of autism related 

disorders (Govindarajan et al., 2003; Ma et al., 2007).

In the BTBR inbred mouse model of autism, pERK1/2 levels were shown to be increased in 

the prefrontal cortex (Faridar et al., 2014). Additionally, in this BTBR report pERK1/2 was 

elevated in lymphocytes which correlated with the cortex findings. In mouse models, there 

may be a critical developmental period when ERK1/2 dysregulation may result in autistic 

features. Phospho-blockade of ERK1/2 at postnatal day 6 (P6), but not at P14 leads to the 

Erickson et al. Page 3

J Psychiatr Res. Author manuscript; available in PMC 2018 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



development of autistic-like behaviors in adult mice (Yufune et al., 2015). A conditional 

ERK2 knockout mouse expresses a phenotype marked by aggressive behavior, reduced 

social behaviors, and learning deficits(Satoh et al., 2011), which are findings potentially 

consistent with an autism-like phenotype.

ERK1/2 is expressed in peripheral blood cells including lymphocytes. Analysis of ERK1/2 

activation in lymphocytes is well established in the leukemia literature (Balakrishnan et al., 

2014; Naci and Aoudjit, 2014; Uzan et al., 2014). Parsing ERK1 and ERK2 activation apart 

in human biological samples has not to date been reported. ERK requires phosphorylation 

for full activity and employs phosphatases to regulate signal transduction cascades (Caunt 

and Keyse, 2013). Activation and inactivation of ERK is influenced by the subcellular 

localization of the phosphatase (cytoplasm and nuclear compartments) (Owens and Keyse, 

2007). Phosphorylation of ERK indicates the translocation of activated ERK into the 

cytosolic compartment. Given the feasibility to analyze ERK (ERK1 and ERK2 combined) 

activation in peripheral blood combined with the above evidence indirectly implicating ERK 

dysregulation in the pathophysiology of autism, we undertook the first known human study 

to date of ERK activation in autism using peripheral lymphocyte assays. It has been shown 

that inflammatory responses may lead to homing of lymphocytes to the CNS (Weller, 1996). 

The brain pathology of children diagnosed with ASD suggests ongoing neuroinflammation 

in various regions of the brain (Morgan 2010; Tetreault et al., 2012). This connection 

between neuroinflammation, lymphocyte migration, and the CNS may link the activation of 

ERK1/2 in the peripheral blood to that of the CNS in many neurological disorders including 

ASD. We hypothesized that ERK activation visualized as its translocation from the nucleus 

to the cytoplasm, would be increased in the peripheral lymphocytes of persons with autism 

compared to age- and gender-matched neurotypical control subjects. Our working 

hypothesis is based on the findings of potentially enhanced ERK activation in the 

RASopathies, the BTBR mouse model of ASD, and in FXS.

2. Methods

All subjects were recruited and enrolled at the Christian Sarkine Autism Treatment Center at 

Riley Hospital for Children between February and June 2012. The project was approved by 

the Indiana University Institutional Review Board (IRB). Inclusion criteria for persons with 

autistic disorder included age 5 years or older, a previous professional diagnosis of autism, 

confirmation of diagnosis by a clinician with expertise in the field (CAE) using a criteria for 

autistic disorder checklist from the Diagnostic and Statistical Manual for Mental Disorders, 

4th Edition Text Revision (DSM-IV TR), and a score on the Social Communication 

Questionnaire of 15 or greater. Additional subject characterization of the autism subject 

group included completion of a medical and developmental history, physical examination, 

the Aberrant Behavior Checklist (ABC), Social Responsiveness Scale (SRS), IQ testing 

using the Stanford Binet 5th Edition for verbal subjects or the Leiter Revised 2nd Edition for 

non-verbal subjects, and the Vineland Adaptive Behavior Scales 2nd Editions (VABS II). 

Neurotypical control group subjects were recruited from flier ads and electronic ad postings 

within the Indianapolis, Indiana area. Control group subjects completed the SCQ with a 

required score less than 8 for inclusion. Control group subjects additionally underwent a 

developmental, psychiatric, and medical history evaluation to confirm no significant history 
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of developmental delays, autism features, or comorbid mental illness. Control group subjects 

were matched by age (+/− six months) and gender with some controls matching for multiple 

subjects from the group of persons with autistic disorder. All subjects underwent a basic 

medical exam, were determined not to be actively ill and to be afebrile.

For the ERK blood lymphocyte analysis, lymphocytes were isolated from blood and used for 

immunocytochemistry or immunoblotting. Immunocytochemical analysis of ERK or 

phospho-ERK (p-ERK) expression in lymphocyte samples involves the fixing followed by 

antibody staining of cells. Immunoblotting, or Western blot analysis allows for semi-

quantitative comparison of the protein expression levels of interest.

2.1. Blood collection

The lymphocyte isolation protocol began no longer than 2 h after blood collection. 

Lymphocytes were isolated from whole blood by centrifuging samples in cell preparation 

tubes with sodium citrate (BD Vacutainer, Franklin Lakes, NJ) at 1800 g for 20 min at room 

temperature. After centrifugation, the supernatant, i.e. the lymphocyte layer was transferred 

to a fresh 15-ml conical polyethylene tube (PET) tube, 1× sterile phosphate-buffered 

solution (PBS) was added up to 15 ml and this was centrifuged at 400 g for 15 min. 

Supernatant was aspirated and the pellet was re-suspended in 1 ml sterile PBS. The 

resuspension was transferred to a 1.5 ml Eppendorf tube and centrifuged at 400 g for 10 min 

at room temperature. Supernatant was aspirated and pellet resuspended slowly in 500 µl 

Roswell Park Memorial Institute Medium (RPMI, Corning Cellgro, Manassas, VA) 1640 

medium containing 10% fetal bovine serum (FBS, Atlanta Biologicals S11150; Flowery 

Branch, GA). The lymphocytes/cells in RPMI suspension were plated onto the poly D lysine 

(PDL)-coated 6-well or 24-well plates (Sigma-Aldrich, St. Louis, MO) and incubated in a 

sterile cell culture CO2 (5%) incubator at 37 °C. Cells were cultured for 24–36 h for the 

immunohistochemistry experiments (see Immunocytochemistry). Remaining cell mixture 

was transferred to an Eppendorf tube and centrifuged at 400 × g for 6 min. Supernatant was 

removed and the pellet was used to make cell lysate for western blot analysis. Cells were 

lysed in Mammalian Protein Extraction Reagent (M-PER, Thermo Scientific, Waltham, 

MA) containing phosphatase inhibitor cocktail (Roche, Indianapolis, IN). The total protein 

concentration in the cell lysates was measured using the Bradford protein assay (BioRad, 

Hercules, CA).

2.2. Immunocytochemistry

Isolated lymphocytes in RPMI were plated onto a PDL-coated 24-well plates and cultured at 

37 °C for 24–36 h. Conditioned media was removed and cells were fixed by adding 4% 

paraformaldehyde mixed in phosphate buffer solution (PBS) at room temperature for 12 

min. Excess paraformaldehyde solution was aspirated from each well. Fixed cells were 

washed three times gently with cold PBS, and then permeabilized with 0.12% Triton X-100 

solutiondiluted in PBS for 12–15 min at room temperature. Excess Triton-X solution was 

aspirated and the fixed cells were gently washed three times with chilled PBS to remove all 

traces of detergent. Cells were blocked with 10% horse serum (HS; diluted in PBS) for 20 

min at room temperature. Unbound blocking agent was aspirated. Primary antibody (ERK/

MAPK, PhosphoSolutions #500-ERK, Aurora, CO; ERK/MAPK Thr202/Tyr204 
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PhosphoSolutions #p160-2024, Aurora, CO) diluted 1:250 in 1% HS in PBS was added and 

allowed to incubate overnight at 4 °C. Primary antibody was removed and cells rinsed three 

times with cold PBS. Alexa Fluor Probes (Jackson ImmunoResearch, 111-585-144, West 

Grove, PA) conjugated goat anti rabbit secondary antibody 1:200 in Dulbecco's phosphate-

buffered saline (DPBS, 20-031-CV, Corning Cellgro Manassas, VA) was added and 

incubated for 1 h in the dark. Secondary antibody was removed in the dark and cells were 

rinsed three times with PBS. Hoechst stain diluted in PBS 1:500 was added into each well. 

Images including a minimum of 200 lymphocytes per patient sample were captured with the 

Leica Type 090–135.002 microscope with SPOT RT Diagnostic. Positive control cells from 

each patient sample were treated with 10 µM tamoxifen with the same ensuing p-ERK and 

Hoechst staining. The number of p-ERK positive-cells was counted by looking for cytosolic 

translocation of p-ERK as seen in the tamoxifen-treated positive control cells.

Images were captured using SPOT Basic microimaging software and saved for scoring using 

Adobe Photoshop. Pseudocolor was added to each image and only cells exhibiting 

translocation from the nucleus to the cytosol were counted as activated. These cells were 

generally seen has having an empty or hollow area in the cell due to lack of staining in this 

region. These cells were counted using the count feature in Adobe Photoshop (Ray et al., 

2014).

2.3. Immunoblotting

Protein estimation from the Bradford assay was used to load 10 µg of total protein in each 

lane of a 26-lane 10% Criterion gel (BioRad). Laemmli Sample buffer and water were used 

to bring each sample up to 30 µl total. Samples were denatured at 95 °C for 5 min using a 

thermocycler. Running buffer (XT-MOPS, BioRad) was added to a cassette before loading 

wells with sample. Protein standard (BioRad #161–0374) was loaded in one lane of the gel 

as a marker. Human fetal neuron (HFN) lysate (Ray et al., 2014) and human brain lysate 

(Long et al., 2014) were also loaded as positive controls for p-ERK expression. Gel was run 

at 200 V for 1.5 h, and transfer was performed using the Invitrogen iBlot system. Dry 

transfer was performed for 7 min and the polyvinylidene difluoride (PVDF) blot was stained 

with Ponceau Stain (BioRad) for 10 min to observe effective protein transfer afterwards, 

then de-stained with 5% acetic acid solution. The blot was rinsed in 1× Tris-Buffered Saline 

(TBS) and then blocked with 5% milk in Tris-Buffered Saline and Tween 20 (TBST) for 1 h 

at room temperature. This was discarded and the blot was probed with p-ERK primary 

antibody (same as used in IHC) diluted in 5% milk in TBST overnight at 4 °C. The 

following day, primary antibody was removed, and the blot was washed in TBST 3 times for 

10-min each. The blot was placed in goat-anti-rabbit secondary antibody (Thermo #31460) 

diluted in 5% milk in TBST for 1 h at room temperature. The blot was then rinsed in TBST 

3 times for 10 min each. After rinsing, 1:1 Enhanced Chemiluminescence (ECL) reagent 

(GE) was added to the PDVF membrane and incubated at room temperature for 1 min. Film 

was developed at 5-min and 10-min. Blot was stripped using stripping buffer (Thermo 

Restore PLUS) for 8 min, then rinsed in TBST for 5 min. The blot was then blocked in 5% 

milk in TBST for 1 h and reprobed with the secondary antibody to ensure proper stripping. 

After washing three times, the blot was re-probed with pan-ERK (1:1000; same as IHC) 

primary antibody overnight at 4 °C. Goatanti-rabbit was also used at the secondary antibody 
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in this case. Blot was rinsed and film was developed as described above. Gel densitometry 

was performed using ImageJ software. A phospho-to-pan-ERK ratio was determined for 

each sample and plotted. Please see Alley et al., 2010 for a review of the immunoblotting 

methodology (Alley et al., 2010).

2.4. Statistics

Our primary analysis was a comparison of lymphocyte ERK activation ratio (number of 

cytosolic positive/nuclear negative p-ERK lymphocytes divided by total number of 

lymphocytes counted) between the autistic disorder and neurotypical control groups. 

Independent sample t-tests were utilized to compare group ERK activation ratios, total 

number of cells counted and number of ERK activated cells. We additionally compared 

subject group ages, gender, and SCQ scores using t tests and Chi Squared testing when 

appropriate. For the confirmatory Western blot statistical analysis, group p-ERK values 

adjusted for total ERK were compared using an independent sample t-test. All molecular 

ERK analyses were done blinded to group assignment. Given the pilot nature of this work 

and single primary analysis of two groups, we did not Bonferroni correct for multiple 

primary comparisons.

Finally, we conducted an exploratory Pearson Correlation analysis to look for any potential 

relationships between cellular ERK activation ratios and various subject characteristics in 

the autistic disorder subject group. A two-tailed bivariate Pearson Correlation Coefficient 

was generated for relationships between subject cell count ERK activation ratio and age, 

ABC subscale scores, SRS total raw score, Vineland Adaptive Behavior composite score, IQ 

and SCQ score.

3. Results and discussion

A total of 71 persons enrolled in this project during the five month recruitment period. All 

subjects were Caucasian. This included 45 persons with autistic disorder and 26 age- and 

gender-matched neurotypical control subjects who completed the project. The groups were 

well matched with similar age and gender ratio as noted in Table 1. The SCQ scores between 

the groups were consistent with study inclusion criteria. Additional characterization of the 

autistic disorder group in Table 2 notes a mean level of mild developmental disability in the 

subjects with autism combined with SRS and ABC mean scores consistent with autism 

population means. Overall, these values are consistent with our sample of persons with 

autism being generally representative of the Caucasian population of persons with autistic 

disorder. We additionally present concomitant medication use in the autistic disorder subject 

group given the high rates of medication use in this population (see Table 3; 42 of 45 (93%) 

subjects with autism were taking at least one psychotropic drug).

Lymphocytes from all subjects were analyzed using the compartmental lymphocyte counting 

method. Fifty four subjects had evaluable samples remaining for Western blot analysis. The 

unstimulated cell count ratio (cytosolic positive/nucleus negative pERK lymphocytes 

counted, divided by the total number of cells counted) was significantly higher in the autistic 

disorder group compared to controls (see Table 4 and Fig. 1; ratio of 0.064 ± 0.044 versus 

0.034 ± 0.031, p = 0.002). Consistent with this primary ratio finding, despite a trend towards 
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more cells counted in the neurotypical control group, more cells staining positive for 

cytosolic positive/nucleus negative ERK phosphorylation (activation) were noted in the 

autistic disorder subject group (p = 0.045). Additionally, whole cell pERK Western Blotting 

analysis demonstrated an increased phosphorylated to total ERK ratio in the autistic disorder 

group (n = 37) compared to neurotypical controls (n = 17; see Fig. 2; p = 0.004). The 

subjects whose samples were included in the Western Blotting analysis did not differ in 

demographic characteristics compared to the larger group in the lymphocyte counting 

analysis. Our Western blotting analysis included the subset of participants whose samples 

had sufficient usable lymphocyte material for processes. Our exploratory Pearson correlation 

analysis yielded no significant correlations between lymphocyte counted ERK activation 

ratio and various subject characteristics including age, IQ, ABC, Vineland, and SCQ scores 

in the autistic disorder subject group.

In this first preliminary report on blood lymphocytic ERK activation (phosphorylation) in 

humans with autistic disorder, our finding is consistent with genetic, murine, and human 

postmortem findings in the field that have potentially implicated ERK dysregulation in the 

pathophysiology of the disorder. Enhanced lymphocytic activation in autism may be 

interpreted as a non-specific sign of excessive cellular activity. Given the fine-tuned nature 

and central location of ERK activity in cells, this perturbation of ERK activation may 

potentially have significant impact on cellular growth, signaling, and senescence.

While the strengths of this report include confirmation of ERK dysregulation by two 

independent methodologies conducted blinded to group assignment, the results of this report 

must be taken in the context of several limitations of the analysis. First, the sample sizes are 

not sufficiently large enough to conduct effective analyses of potential patient subgroups 

such as ERK activation analysis within, for example, age, gender, concomitant medication 

status, or IQ defined subgroups. Furthermore, since limited to the Caucasian population, it 

cannot conclusively establish the role of ERK/p-ERK in the ASD seen in other ethnic 

groups. Given these limitations, it is not possible to understand potential subject 

characteristics that may be associated with aberrant ERK activation. Additionally, our 

limited number of control subjects was based on the maximum number of controls we could 

recruit within a six month study period. This may have further limited our ability to 

understand factors that may have predicted ERK activation rates.

The potential impact of concomitant medication use may be a potential confounder to our 

ERK activation analyses. Limited data exists describing the impact of psychotropic drugs on 

ERK activation (phosphorylation). Our autistic disorder group is enriched for use of 

antipsychotics, alpha 2 agonists, selective serotonin reuptake inhibitors (SSRIs), and 

stimulants. There is no available data describing psychotropic drug impact on lymphocytic 

ERK activation. In vitro and murine data describing antipsychotic ERK activation effects 

have included reports of risperidone-associated desensitization to ERK activation (Clarke et 

al., 2013), aripiprazole-associated suppression of ERK activation (Ishii et al., 2010), and 

quetiapine having no impact on ERK activation (Pereira et al., 2014). The alpha2-agonist 

literature regarding ERK activation is very limited with one report of the alpha2-agonist 

xylazine being associated with reduction in ERK activation in rat brain (Peng et al., 1998). 

In the dopamine transporter knockout mouse model of hyperactivity, both stimulant 
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(methylphenidate and mixed amphetamine salts) and fluoxetine (SSRI) treatment were 

associated with inhibition of ERK signaling in brain (Beaulieu et al., 2006). Overall, it is 

difficult given review of the available literature to attribute our excessive lymphocytic ERK 

activation finding in those with autism to psychotropic drug use alone. Future study 

enriching enrollment for persons with autism and no concomitant medication use will help 

address this potential confounder.

Our analysis does not control for intellectual disability between comparison groups. Given 

this, it is not possible to exactly attribute the ERK dysregulation noted to the diagnosis of 

autistic disorder versus being a feature potentially shared among a broader group of persons 

with intellectual disability with or without autism. While we did not note a correlation of 

ERK activation values and IQ that could have signaled greater likelihood of an intellectual 

disability effect on ERK activity, it still may be possible that ERK dysregulation is driven 

more by the presence of intellectual disability versus the presence of autistic disorder alone. 

Additionally, our autistic disorder diagnoses were not validated using research 

administration of gold standard measures such as the Autism Diagnostic Observation 

Schedule or the Autism Diagnostic Interview-Revised. Future larger-scale work should 

likely utilize one or both of these measures to verify diagnosis.

Given the ubiquitous nature of ERK signaling across cell types and organ systems in 

mammals, equating ERK dysregulation in one cell type or organ system with similar activity 

in other systems has not been well explored. Inflammatory responses seen in the brains of 

ASD patients link lymphocyte migration to the CNS to neuroinflammation and the 

activation of ERK in the peripheral blood (Morgan et al., 2010; Tetreault et al., 2012). ERK 

dysregulation in lymphocytes may provide some insight into the role of ERK activation in 

ASD severity or detection. While our methodology utilizes a readily available biological 

sample that can be accessed across a wide functioning range of persons with autism, we 

cannot be sure that enhanced ERK activation in peripheral lymphocytes equates with ERK 

dysregulation in brain where we would expect molecular perturbation to result in an autism 

phenotype. Despite this, in recent study in the knockout mouse model of FXS, excessive 

ERK activation was noted in both brain and blood cell samples showing that some 

correlation may exist (Deacon et al., 2015).

Despite these limitations, the concept that ERK activation may be dysregulated in persons 

with autistic disorder presents a potential molecular target of treatment and a molecular 

means to match potential treatments with those within the autism umbrella who may best 

respond to a specific intervention. As an example, phosphorylated ERK levels are currently 

in study in oncology as a predictor of targeted treatment response (Branca et al., 2004; 

Campbell et al., 2009; Li and Yang, 2009; Zhang et al., 2009; Matsubara et al., 2010). Future 

work in autism will require larger sample sizes, use of likely multiple control groups 

controlling for age, gender, and IQ, and enrollment of some concomitant medication free 

affected subjects with autism. It will also be necessary in the future to work towards 

understanding what upstream mediators of ERK activation may be responsible for ERK 

dysregulation. Furthermore, analysis of which downstream effectors of ERK activation may 

show dysregulation secondary to aberrant ERK activation will help foster future 

understanding of the impact of aberrant ERK activity.
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We are tempted to discuss the above results with other recent biomarker studies in a broader 

context. Neurodevelopmental disorders (ASD and FXS) are the opposite end of late-life 

neurodegenerative disorders, such as Alzheimer's disease (AD), which is the most common 

form of age-related dementia (Maloney and Lahiri, 2016). There are distinct brain 

abnormalities as well as cellular and neurochemical pathways found in ASD, FXS and AD 

subjects. In this context, we have recently proposed that anabolic excess may result in a gain 

of function overgrowth associated with elements of neurodevelopmental conditions, while 

catabolic excess would be associated with neurodegeneration (Lahiri et al., 2013). Higher 

levels of sAPPα and lower levels of a potentially toxic Aβ peptide are observed in plasma 

and brain tissue of children with severe autism. The sAPPα results have been replicated by 

an independent laboratory (Bailey et al., 2008; Bailey et al., 2013). Previously, we found 

increased sAPPα, APP, and Aβ plasma markers in children with FXS compared to youth 

with ASD (Erickson et al., 2014). The present work takes our sAPPα forward to link ERK-

mediated cell signaling relevant to ASD. Interestingly, sAPPα activity is required to promote 

neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway 

(Gakhar-Koppole et al., 2008). Indeed, direct stimulation of AMPA receptor increases non-

amyloidogenic α-secretase-mediated APP processing and inhibits Aβ generation. APP 

processing was blocked by the matrix metalloproteinase inhibitor TAPI-1 but was only 

partially dependent on Ca(2+) influx and ERK activity (Hoey et al., 2013). Another group 

elucidated a potential pathway for sAPPα signaling through MAP kinase activation in iPSC 

of adult progenitor cells of ectodermal and mesodermal origin. Importantly, sAPPα operates 

independently of the prominent proliferation factors epidermal growth factor (EGF) and 

basic fibroblast growth factor (bFGF), but in association with ERK signaling and MAP-

kinase signaling pathways (Demars et al., 2011). Even in non-neuronal cells, sAPP activates 

microglia via JNK and p38-MAPK. Further, sAPP activates the ERK, JNK and p38 classes 

of MAP kinases but that only JNK and p38-MAPK are critical for activation of microglia by 

sAPPα, a process that compromises neuronal function and survival (Bodles and Barger, 

2005).

Taken together, studying the ERK signaling pathway in autism assumes significance as it 

integrates ERK activation with an important putative biomarker, such as sAPPα. The overall 

rationale for selecting the ERK signaling pathway (this manuscript) and its integration with 

other biomarker-related studies (e.g., APP pathway metabolites) in autism and FXS provides 

a necessary conceptual framework and feasible experimental platform that warrant further 

studies.

4. Conclusions

This initial study of peripheral lymphocytic ERK activation in humans with autistic disorder 

compared to neurotypical control subjects noted increased ERK activation (phosphorylation) 

in subjects with autism. Future work focused on understanding potential ERK dysregulation 

in autism is warranted and holds promise to further elucidate the pathophysiology of the 

disorder. Such work will also be essential to developing the knowledge base necessary to 

potentially utilize ERK activation as a useful peripheral biomarker capable of tracking the 

progression of disease, identification of environmental triggers, and even predicting 

treatment response. Future larger-scale analysis of ERK activation in autism will potentially 
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need to control in the analysis for key potential confounding factors including, but not 

limited to, subject age and cognitive functioning level.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Lymphocyte Counting Phosphorylated ERK Analysis. Phosphorylated-ERK positive cells 

were identified and counted as activated based on the cytosolic translocation of p-ERK in the 

cell. The ratio of pERK positive lymphoctyes to total lymphocytes counted is significantly 

increased in the autistic disorder group as compared to the control group.
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Fig. 2. 
Increased ERK activation (phosphorylation) in autistic subjects. Densitometry (Image J) of 

Western blot shows a significant increase in pERK expression adjusted for total ERK in the 

autistic disorder group. Representative Western blot image shows respective p-ERK and total 

ERK expression of 11 subjects.
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Table 1

Characterization of autistic disorder (N = 45) versus neurotypical control subjects (N = 26).

Features Autistic disorder Neurotypical controls P value

Age 13.8 ± 9.2 years (range 5–52 years) 14.6 ± 9.4 years (range 5–52 years) 0.71

Gender 37 male/8 female (82% male) 21 male/5 female (81% males) 0.88

SCQ score 23.6 ± 5.3 2.1 ± 3.4 <0.0001

P determined by independent samples t-tests or Chi Squared.

SCQ = Social Communication Questionnaire.
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Table 2

Characterization of subjects with autistic disorder.

SRS total raw score 109.9 ± 25.9

ABC irritability Subscale 16.8 ± 11.3

ABC social withdrawal subscale 11.2 ± 7.8

ABC stereotypy subscale 7.7 ± 4.8

ABC hyperactivity subscale 19.9 ± 12.5

ABC inappropriate speech subscale 4.9 ± 3.9

SRS total raw score 109.9 ± 25.9

Full scale IQ 63.2 ± 21.6

Vineland adaptive behavior composite score 61.1 ± 18.3

All values reported as mean ± standard deviation.

N = 45 for all measures except IQ testing N = 32. IQ measured by Stanford Binet 5th Edition, verbal subjects and Lieter Revised for non-verbal 
subjects.

SRS = Social Responsiveness Scale, ABC = Aberrant Behavior Checklist.
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Table 3

Concomitant psychotropic medication use in group with autistic disorder.

Drug Number of subjects

Risperidone 12

Guanfacine 11

Paliperidone 7

Aripiprazole 6

Melatonin 4

Sertraline 4

Ziprasidone 4

Atomoxetine 3

Fluoxetine 3

Dextroamphetamine 2

Lithium 2

Methylphenidate 2

Mirtazapine 2

Mixed Amphetamine Salts 2

Quetiapine 2

Trazodone 2

Valproic acid 2

Clonazepam 1

Clozapine 1

Duloxetine 1

Escitalopram 1

Fluvoxamine 1

Lamotrigine 1

Paroxetine 1

Olanzapine 1

Topiramate 1

42/45 Subjects with Autistic Disorder were taking psychotropic medication.

Mean # meds = 1.8 ± 1.0 meds.
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Table 4

ERK Activation analysis.

Autistic disorder (N = 45) ±SD Neurotypical controls (N = 26) ±SD P value

Total cells counted 407.3 ± 189.3 480.6 ± 207.1 0.15

Cytosolic pERK cells counted 23.7 ± 16.9 15.8 ± 14.7 0.045

Ratio of cytosolic pERK positive to total cells counteda 0.064 ± 0.044 0.034 ± 0.031 0.002

P determined by independent samples t-tests.

SCQ = Social Communication Questionnaire.

a
See Fig. 1.
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