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Chien-Wei Chiang 

TRANSLATIONAL HIGH-DIMENSIONAL DRUG INTERACTION DISCOVERY AND VALIDATION 

USING HEALTH RECORD DATABASES AND PHARMACOKINETICS MODELS 

Polypharmacy leads to increased risk of drug-drug interactions (DDI’s). In this 

dissertation, we create a database for quantifying fraction of metabolism (fm) of CYP450 

isozymes for FDA approved drugs. A reproducible data collection protocol was 

developed to extract key information from publicly available in vitro selective CYP 

enzyme inhibition studies. The fm was then estimated from the curated data. Then, 

proposed a random control selection approach for nested case-control design for 

electronical health records (HER) and electronical medical records (EMR) databases. By 

relaxing the matching by case’s index time restriction, random control dramatically 

reduces the computational burden compared with traditional control selection 

approaches. Using the Observational Medical Outcomes Partnership gold standard and 

an EMR database, random control is demonstrated to have better performances as well. 

Finally, combining epidemiological studies and pharmacokinetic modeling with fm 

database, we detected and evaluated high-dimensional drug-drug interactions among 

thirty high frequency drugs. Multi-drug combinations that increased risk of myopathy 

were identified in the FAERS and EMR databases by a mixture drug-count response 

model (MDCM) model. Twenty-eight 3-way and 43 4-way DDI’s increased ratio of area 

under plasma concentration–time curve (AUCR) >2-fold and had significant myopathy 

risk in both databases. The predicted AUCR of omeprazole in the presence of 

fluconazole and clonidine was 9.35; and increased risk of myopathy was 6.41 (LFDR = 
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0.002) in FAERS and 18.46 (LFDR = 0.005) in EMR. We demonstrate that combining 

health record informatics and pharmacokinetic modeling is a powerful translational 

approach to detect high-dimensional DDI’s.  

Huanmei Wu, Ph.D., Co-Chair 

Lang Li, Ph.D., Co-Chair  
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Chapter 1. Introduction 

1.1 Adverse Drug event and Drug-drug interaction 

Adverse drug events (ADEs) are considered to be a significant challenge for 

current clinical practices. Drug-drug interactions (DDIs) are a common cause of adverse 

drug events (ADE) (Hajjar, Cafiero, & Hanlon, 2007; U.S. Department of Health and 

Human Services; L. Zhang, Zhang, Zhao, & Huang, 2009). In the United States alone, each 

year an estimated 195,000 hospitalizations and 74,000 emergency room visits are the 

result of DDIs. National Health and Nutrition Examination Survey data published in 2010 

(Gu, Dillon, & Burt, 2010) showed that patients, who used two or more prescription 

drugs, increased from 25.4% to 31.2% in ten years since 1999. In particularly, among the 

older population, more than 64% took three or more prescription drugs, and 37% took 

five or more prescription drugs (Gu et al., 2010). In FDA Adverse Event Reporting System 

(FAERS) data, there are 35% reports that include three or more prescription drugs in 

each report, and 20% reports have five or more prescription drugs. Though ADEs can be 

detected in either pre-marketing clinical trials or post-marketing surveillances, most ADE 

knowledges are revealed in the post-marketing stage. This is because post-marketing 

stage allows larger population and prolonged follow up (Harpaz et al., 2012). 

Additionally, unlike pre-marketing clinical trials, drugs are administered without 

stringent inclusion/exclusion criteria.  

1.2 Fraction of metabolism and CYP P450  

There are some widely-used database for drug metabolism: a) DrugBank 

(Wishart et al., 2006), which is a comprehensive database which combines detailed drug 
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(i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug 

target (i.e. sequence, structure, and pathway) information; b) Transformer (the former 

Super CYP) (Preissner et al., 2010), which integrates Cytochrome P450 enzyme 

interactions and some pharmacological information; c) DIDB (Hachad, Ragueneau-

Majlessi, & Levy, 2010), which can evaluate the impact of DDI in the clinic by in vitro and 

in vivo DDI data, few fm data can be found. 

The contributions of CYPs for a drug’s metabolism can be estimated as the 

change in AUC or clearance in the absence and presence of a co-administered selective 

inhibitor through an in vivo approach (Creighton et al., 2008; Le Coutre et al., 2008). fm 

can be also estimated via a pharmacogenetics study where it can be calculated from the 

fold-change in exposure of a victim drug in extensive metabolizers (EMs) compared to 

poor metabolizers (PMs) (Ito, Hallifax, Obach, & Houston, 2005). Third, human 14C or 3H-

ADME studies, which measure the concentration of the radiolabeled unchanged drug 

and its metabolites in plasma, urine and feces, is also regarded as a valuable approach 

and clinical pharmacokinetics study to estimate the metabolic pathways of a drug 

(Bohnert et al., 2016; Rodrigues, Winchell, & Dobrinska, 2001). Several other in vitro 

methods have been developed to determine the contribution of individual cytochrome 

P450 isozymes in a drug’s metabolism. Substrate depletion in human liver microsomes 

(HLM) is one method that the drug is incubated with or without specific CYP450 

selective inhibitors (Huskey, Dean, Miller, Rasmusson, & Chiu, 1995). Comparing to the 

metabolism rate, Vmax/Km, of the substrate without any inhibitor, the percent 

inhibition of this CYP pathway by the CYP-selective chemical inhibitor reflects the 
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contribution of this CYP towards the substrate’s metabolism. Ideally chemical inhibitors 

should be potent, selective and metabolically stable. Substrate depletion can also be 

incubated with individual recombinant enzymes isoforms (Z. M. Li, Guo, & Ren, 2016). 

This approach estimates the metabolism rate, Vmax/Km, of the substrate in 

recombinant human (rh) CYP isoforms, and scales the rhCYP Vmax/Km to HLM CLint via a 

RAF/ISEF approach (Bohnert et al., 2016). Each isozymes contribution is estimated as the 

percent contribution of each CYP enzyme towards the total HLMCLint. 

1.3 Evaluate Adverse Drug Event signal 

1.3.1 Evaluation method 

For a drug-ADE pair of interest, either univariate analyses or multivariate 

analyses can be used for signal detection. Under univariate analyses, available samples 

are usually summarized by a 2-by-2 contingency table, in which contains the frequencies 

classified by the usage of the drug (yes/no) and the occurrence of the ADE (yes/no). The 

outcome is the frequency that this drug-ADE pair is co-occurred, and the expectation is 

the expected frequency of this drug-ADE pair under the assumption of no association. 

Univariate analyses are also known as disproportion analysis (DPA), as they quantify ADE 

signals by the outcome to expectation ratio (i.e. relative risk) or its variants. Frequentist 

DPAs include proportional reporting ratio (PRR) and reporting odds ratio (ROR) (Evans, 

Waller, & Davis, 2001; van Puijenbroek et al., 2002). While, the empirical Bayesian 

geometric mean (EBGM) is an empirical Bayesian DPA and the information component 

(IC) is a Bayesian DPA (Bate et al., 1998; DuMouchel, 1999). DPAs are demonstrated to 

have promising performances and are computationally efficient (Harpaz et al., 2013). 
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However, confounding bias, especially confounding by co-medication, may cause biased 

disproportionality measurements of the true association. Typical multivariate analyses 

utilize multiple logistic regression (MLR) or regulated logistic regression (RLR) models to 

adjust potential confounding variables (i.e. co-medications). Besides this advantage, 

practices of MLR/RLR are often challenged by considerable larger sample sizes of 

pharmacovigilance databases. For instance, regular computers cannot fit MLR over 

millions of samples. In a summary, DPAs are powerful tools for large scale signal 

detection, as they can be applied to multiple ADEs together (Harpaz et al., 2012). 

Multivariate analyses that models an ADE and all co-medications are preferred for 

specific hypotheses testing.  

1.3.2 Epidemiology Designs 

In SRS, temporal information is omitted and each sample contains the ADE and 

drug status (Yes/No). Such a structure allows both multivariate analyses and DPAs to be 

applied directly to SRS. However, in EMR/HER database, patients are usually followed 

longitudinally with detailed temporal information about medications and phenotypes. 

As a consequence, EMR/EHR analyses typically require sophisticated epidemiology 

designs such as cohort design, self-controlled design, and nested case-control design 

(Hennessy et al., 2016). These epidemiology designs have been widely utilized for 

EMR/EHR analyses. Cohort design identifies exposure and non-exposure cohorts. ADE 

risks are estimated within each cohort, and the drug-ADE associations are estimated by 

the RR. The non-exposure cohort can be selected based on estimated propensity scores 

to ensure their similarities with the exposure cohort. For instance, Tatonetti et al. 
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assumes the latent cofounders can be characterized by co-medications, and propensity 

scores are then calculated by modeling the co-medications based on such assumption 

(Tatonetti, Ye, Daneshjou, & Altman, 2012). For the cases and their matched controls, 

nested case-control design uses a predefined window to examine drug exposures. For a 

case, usually 4 – 10 controls are selected. The controls are usually matched with the 

case’s index date and risk factors (Schneeweiss, 2010). Additionally, they are case-free 

up to the case’s index time. Thus, such controls are also named as at risk or dynamic 

control. If the controls are restricted to be case free for the entire follow up, this type of 

controls is known as super control. Some example of application of nested case-control 

designs includes Brauer et al., La gamba et al. and Lee et al. (Brauer et al., 2014; La 

Gamba et al., 2017; Lee et al., 2011). In real applications, EMR/EHR databases may 

contain up to millions of patients. Such a sample size become an obstacle for the 

application of epidemiology designs to conduct large scale (i.e. drug wide and ADE wide) 

ADE signal detection. For instance, as we mentioned above, fitting propensity score 

model over millions of samples cannot be accomplished by regular computers. 

Moreover, in EMR/EHR analyses, propensity scores will be time dependent, which 

further increased the computational burden. Though nested case-control design do not 

require complicated modelling, the matching process still computationally expensive.  

1.4 Evaluate Drug-drug interaction 

1.4.1 Clinical pharmacokinetic studies 

The translational significance of drug-drug interaction studies relies on both 

clinical and molecular pharmacology evidence. One salient example is that of breast 
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cancer hormonal therapy, tamoxifen. The formation of its active metabolite, endoxifen, 

was inhibited by concomitant selective serotonin reuptake inhibitor paroxetine in a 

clinical pharmacokinetics study (Stearns et al., 2003). In-vitro metabolism studies 

revealed that this is due to paroxetine’s strong inhibition of the tamoxifen bio-

transformation to endoxifen via the CYP2D6 pathway (Desta, Ward, Soukhova, & 

Flockhart, 2004). In a follow-up pharmacogenetic study, breast cancer patients with 

CYP2D6 loss function variants have a higher risk of disease relapse and a lower incidence 

of hot flush (Goetz et al., 2005). The clinical consequence of treating breast cancer and 

depression using tamoxifen and SSRIs was reviewed (Henry, Stearns, Flockhart, Hayes, & 

Riba, 2008), and called for further investigation. Another example is the sedation agent 

midazolam. Co-administration of midazolam and ergosterol synthesis inhibitor 

ketoconazole has been identified to reduced subjects’ cognitive function (Lam, Alfaro, 

Ereshefsky, & Miller, 2003). In clinical PK and in-vitro experiments, midazolam 

metabolism was inhibited by ketoconazole through the CYP3A pathway (Gascon & 

Dayer, 1991; Gorski, Hall, Jones, VandenBranden, & Wrighton, 1994), leading to 

increased midazolam exposure (Olkkola, Backman, & Neuvonen, 1994). 

1.4.2 Epidemiology and drug-drug-ADE associations 

As described by Hennessy and Flockhart (Hennessy & Flockhart, 2012), an 

integrated informatics, epidemiology, and pharmacology approach has the potential to 

accelerate the translational drug interaction studies. Pioneered by Tatonetti et al 

(Tatonetti et al., 2012), FAERS and electronic medical records were utilized to generate 

and validate Drug-ADE and drug-drug-ADE associations. In a follow-up study, 
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Lorberbaum et al demonstrated that patients co-administrated ceftriaxone and 

lansoprazole were 1.4 times as likely to have a prolong QT prolongation than the 

administrated single drug in both EMR and FAERS data. Further validation showed that 

ceftriaxone/lansoprazole drug interaction was due to hERG channel blocker in a patch-

clamp experiment system (Lorberbaum et al., 2016). Duke et al proposed a text mining 

strategy for DDI molecular pharmacology evidence discovery from the public literature 

(Duke et al., 2012), which discovered 13,197 potential DDIs. In the follow-up in-vitro 

study, Han et al validated the loratadine-simvastatin myotoxicity interaction, and its 

increased myopathy risk in both EMR and FAERS databases (Han et al., 2015). Similarly, 

Schelleman et al examined the increased risk of hypoglycaemia with co-administration 

of fibrates and statins in sulfonylurea users in a pharmaco-epidemiology study 

(Schelleman et al., 2014). This DDI was further evaluated in an in-vitro in-vivo 

extrapolation (IVIVE) pharmacokinetics model. 

1.4.3 In-vitro In-vivo extrapolation (IVIVE) pharmacokinetics model 

To use IVIVE pharmacokinetics model, drugs pharmacokinetics properties have 

been studied, especially metabolism. The majority of small molecule drugs are catalyzed 

by Cytochrome P450 (CYP) enzymes, which are located in the hepatic endoplasmic 

reticulum (Renwick, 1999; Shen, Kunze, & Thummel, 1997). Many factors can alter 

hepatic drug metabolism, including genetic polymorphisms, disease and concomitant 

medications, foods etc.(Eichelbaum, Ingelman-Sundberg, & Evans, 2006; Ereshefsky, 

1996; Shah & Smith, 2015). Among these factors, concomitant medications are very 

important because of poly-pharmacy (Admassie, Melese, Mequanent, Hailu, & Srikanth, 
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2013; Fitzgerald, 2009; Hanlon et al., 1996; Rosholm, Bjerrum, Hallas, Worm, & Gram, 

1998; Sasaki et al., 2013). Therefore, it is highly important to quantify the contribution 

of different metabolism pathways in order to predict drug exposure change after 

inhibitions (D. Zhang, Zhu, & Humphreys, 2007). The term fm, is defined as the fraction 

of drug metabolized by an enzyme. There are multiple ways that fm can be estimated 

through clinical pharmacokinetics studies or in vitro pharmacokinetics experiments. 

1.5 Proposed Solutions  

1.5.1 Scope of Aim 1: Drug fm database 

The purpose of the aim is to prepare the required pharmacokinetic parameters 

that can be used to in an in-vitro in-vivo extrapolation (IVIVE) pharmacokinetics model. 

The fm database was curated from published articles indexed in PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed/). In drug selection, 237 FDA approved cancer 

drugs were identified in DrugBank and National Cancer Institute (NCI). The next stage is 

the key word search, including cancer drug names, “cytochrome P450”, “human liver 

microsomes” and/or “metabolism”. The detail of this aim will be described in Chapter 2. 

1.5.2 Scope of Aim 2: Random control approach based nested case-control design 

We propose a control selection approach for nested case-control design which 

will be computationally efficient for large scale ADE signal detection. We name the 

proposed controls as random control, as both the patients and their index time are 

randomly selected. The key difference between random control and super/dynamic 

control is the relaxation of matching by the index time condition. The performances of 

nested case-control design by using super, dynamic and random control will be 
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evaluated by the Observational Medical Outcomes Partnership (OMOP) gold standard 

(Ryan et al., 2012). The detail of this aim will be described in Chapter 3. 

1.5.3 Scope of Aim 3: High-dimensional drug interaction 

We will use this newly developed mixture drug-count response model (MDCM) 

to detect high-dimensional drug-drug interactions (HDDIs) that lead to increased risk of 

myopathy in two independent databases: Indiana Network of Patient Care - CDM (INPC-

CDM) electronic medical record and FAERS (Chiang et al., 2017). Using in vitro 

cytochrome P450 (CYP) inhibition data and mechanistic static in vitro in vivo DDI 

predictions, we evaluate the potential pharmacological mechanisms of these HDDIs. The 

detail of this aim will be described in Chapter 4. 

1.6 Impact of Project 

1.6.1 Impact of Aim 1 

In this research, we present our initial effort in developing a drug fm database. 

We focus on the fm data collected and estimated from in vitro inhibition studies of 

human liver microsomes, including both metabolites formation and substrate depletion 

studies. There are additional data, such as pharmacogenetics clinical PK studies and 

drug interaction clinical PK studies, in which fm can also be estimated. These fm 

estimates could be more accurate than the fm estimates from in vitro studies. 

This database has been demonstrated successfully to predict the drug-drug 

interactions regarding several CYP isozymes. We believe that the public availability of 

this database will facilitate pharmacokinetics research. 
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1.6.2 Impact of Aim 2 

In this study, we propose a random control approach based nested case-control 

design for EMR/EHR analyses. In random controls, patients will be randomly selected to 

from a control pool, and index times are randomly selected as well. Hence, the risk 

factor evaluation is only limited to the control pool at the index times. Additionally, the 

control pools can be used for multiple ADEs. As a consequence, random control 

selection is efficient for large scale (i.e. all ADEs) signal detection. On the statistical 

prospect, dynamic/super control approaches estimate the frequency of a medication 

within a group of case free patients who have similar risk factors with the cases. Under 

random control, the frequency of drug is estimated within the population who has 

similar risk factors with the cases.  

1.6.3 Impact of Aim 3 

This study demonstrates the power to elucidate clinically significant high-

dimensional drug interactions from clinical records. Using two unique data sets, ADE 

case reports from the FAERS and structured electronic medical record data from the 

INPC-CDM, we observed increasing trends in myopathy risk with higher medication 

burden. As a large number of DDIs are the result of PK interactions at the level of CYP 

enzymes, we also estimated the increased exposure of 9 substrate drugs in the presence 

of 2, 3, or more inhibitors. Although we demonstrated that decreased clearance of 

drugs due to CYP inhibition is one source of the increased myopathy risk among 

polypharmacy patients, this mechanism is unable to fully explain the increased risk of 

myopathy observed in subjects taking 4 or more medications. As our computational 
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efficiency expands to allow for the evaluation of greater number of drugs using our 

MDCM model, additional pharmacokinetic and pharmacodynamic mechanisms of 

interaction will need to be considered to further account for the increased risk of ADEs 

observed in polypharmacy patients.  
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Chapter 2. The Cancer Drug Fraction of Metabolism Database 

Summary: The aim of this study is to create a database for quantifying fraction of 

metabolism (fm) of CYP450 isozymes for FDA approved cancer drugs. A reproducible 

data collection protocol was developed to extract key information including both 

substrate depletion and metabolites formation data from publicly available in vitro 

selective CYP enzyme inhibition studies. The fm was then estimated from the curated 

data. To demonstrate the utility of this database, we conduct an in vitro/in vivo drug 

interaction prediction among these 56 cancer drugs.   

2.1 Introduction 

Drugs are eliminated by excretion or metabolism after entering the human body 

(Rowland & Tozer, 2005). The majority of small molecule drugs are catalyzed by 

Cytochrome P450 (CYP) enzymes, which are located in the hepatic endoplasmic 

reticulum (Renwick, 1999; Shen et al., 1997). Many factors can alter hepatic drug 

metabolism, including genetic polymorphisms, disease and concomitant medications, 

foods etc. (Eichelbaum et al., 2006; Ereshefsky, 1996; Shah & Smith, 2015). Among these 

factors, concomitant medications are very important because of poly-pharmacy 

(Admassie et al., 2013; Fitzgerald, 2009; Hanlon et al., 1996; Rosholm et al., 1998; Sasaki 

et al., 2013). 

Many enzymatic routes of elimination, including almost all of those occurring via 

the CYP450 enzymes, can be inhibited or induced by concomitant medications. 

Particularly, when the primary metabolic pathways of a drug are inhibited or induced by 

strong inhibitors or inducers, drug and metabolite concentrations in the blood and 
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tissue can be severely affected (Vose & Ings, 2014; Yu, Ritchie, Mulgaonkar, & 

Ragueneau-Majlessi, 2014). The dramatically changed drug exposure may result in 

unwanted adverse reactions or reduced efficacy (Williams et al., 2004). A randomized, 

open-label, parallel-group study indicated that after co-administration of ketoconazole 

for 12 days, the AUC0-∞ of midazolam was about 6.56 times higher (1280 ng·h/mL vs. 

195 ng·h/mL) (Shoaf, Bricmont, & Mallikaarjun, 2012). Also, the SDMT (Symbol Digit 

Modalities Test) scores, the decrease in which represents an impairment of cognitive 

function, were reduced (-13.6 in SDMT score) by co-administration of ketoconazole and 

midazolam (Lam et al., 2003). Therefore, all these showed that midazolam and 

ketoconazole may have strong DDIs both on PD and PK. In another randomized study, 

co-administration of irbesartan with hydrochlorothiazide significantly decreased the 

hydrochlorothiazide AUC by 26.3% (1373 ng-h/ml vs. 1087 ng-h/ml). At the same time, 

the effect of irbesartan on systolic blood pressure when administered with 

hydrochlorothiazide were significantly different from those when irbesartan was 

administered alone. It was a 25% increase in Emax, and a 40% decrease in EC50, which 

suggested a synergistic blood pressure lowering effect for the combination (Hedaya & 

Helmy, 2015).  

Therefore, it is highly important to quantify the contribution of different 

metabolism pathways in order to predict drug exposure change after inhibitions (D. 

Zhang et al., 2007). The term fm, is defined as the fraction of drug metabolized by an 

enzyme. There are multiple ways that fm can be estimated through clinical 

pharmacokinetics studies or in vitro pharmacokinetics experiments. First, the 
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contributions of CYPs for a drug’s metabolism can be estimated as the change in AUC or 

clearance in the absence and presence of a co-administered selective inhibitor through 

an in vivo approach (Creighton et al., 2008; Le Coutre et al., 2008). For example, Yeung 

et al. utilized clinical drug interaction studies, in which ketoconazole was used as the 

CYP3A4 probe inhibitor, and calculated a drug’s fm in the CYP3A4 pathway using the 

following equation (Yeung et al., 2015): 

𝑓𝑚ଷ஺ସ = 1 −
𝐴𝑈𝐶௖௢௡௧௥௢௟

𝐴𝑈𝐶௜௡௛௜௕௜௧௘
 

where AUC is area under the concentration-time curve of victim drug. For example, 

cinacalcet is metabolized primarily by CYP3A4, and ketoconazole is a CYP3A4 probe 

inhibitor. The AUCinhibited/AUCcontrol is 2.03, and the fm3A4 is 0.51 using the above 

equation (Harris, Salfi, Sullivan, & Padhi, 2007). 

Second, fm can be estimated via a pharmacogenetics study where it can be 

calculated from the fold-change in exposure of a victim drug in extensive metabolizers 

(EMs) compared to poor metabolizers(PMs) (Ito et al., 2005). In Silas’s study, a large 

population of patients were studied with respect to the metabolism of metoprolol (Silas, 

McGourty, Lennard, Tucker, & Woods, 1985). After a single 200 mg oral dose of 

metoprolol，the average AUC of metoprolol in blood over the 24 hours of six PMs was 

7250 ng*ml-1*h. While in the EM population, the average AUC was much lower which 

was 1246 ng*ml-1*h. Thus, metoprolol’s fmCYP2D6 can be calculated from the formula: 

fm2D6 = 1-CLPM/CLEM=1-AUCEM/AUCPM=0.828. 
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Third, human 14C or 3H-ADME studies, which measure the concentration of the 

radiolabeled unchanged drug and its metabolites in plasma, urine and feces, is also 

regarded as a valuable approach and clinical pharmacokinetics study to estimate the 

metabolic pathways of a drug (Bohnert et al., 2016; Rodrigues et al., 2001). For example, 

[14C]faldaprevir was used for ADME study in which the formation rates of its metabolites 

by various rCYP isoforms were determined. The contribution of each cytochrome was 

determined by rates of metabolite formation after normalization by relative liver 

content of each cytochrome.  The results showed that the normalized contributions by 

CYP3A4 were 94% and 97% for two kind of metabolites (Y. Li et al., 2014). 

Several other in vitro methods have been developed to determine the 

contribution of individual cytochrome P450 isozymes in a drug’s metabolism. Substrate 

depletion in human liver microsomes (HLM) is one method that the drug is incubated 

with or without specific CYP450 selective inhibitors (Huskey et al., 1995). Comparing to 

the metabolism rate, Vmax/Km, of the substrate without any inhibitor, the percent 

inhibition of this CYP pathway by the CYP-selective chemical inhibitor reflects the 

contribution of this CYP towards the substrate’s metabolism. Ideally chemical inhibitors 

should be potent, selective and metabolically stable. Substrate depletion can also be 

incubated with individual recombinant enzymes isoforms (Z. M. Li et al., 2016). This 

approach estimates the metabolism rate, Vmax/Km, of the substrate in recombinant 

human (rh) CYP isoforms, and scales the rhCYP Vmax/Km to HLM CLint via a RAF/ISEF 

approach (Bohnert et al., 2016). Each isozymes contribution is estimated as the percent 

contribution of each CYP enzyme towards the total HLMCLint. 
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A metabolite formation study is another option. For example, after incubation, 

the mixtures of human liver microsomes and carbamazepine was analyzed by HPLC/MS. 

Rates of carbamazepine metabolites (2- and 3-hydroxycarbazepine) formation were 

determined in microsomes and then compared with typical P450 enzyme activities. Data 

were analyzed by nonlinear regression and linear transformation to estimate apparent 

PK values and enzyme models, respectively.  Then formation of 2- and 3-hydroxylated 

carbamazepine metabolites was evaluated in the presence or absence of known P450 

inhibitors (Pearce, Vakkalagadda, & Leeder, 2002). Human liver microsomes from 

high/low CYP activity donors were used to estimate the inhibition percentage of 

carbamazepine metabolites formation. Also cDNA-expressed isoforms were examined 

for the affinity of different metabolites formation. 

Recently, due to the success of the cryopreservation of human hepatocytes 

(Stephenne, Najimi, & Sokal, 2010), hepatocyte suspension model (Mao, Mohutsky, 

Harrelson, Wrighton, & Hall, 2011) becomes a new method to estimate fm. 

Physiologically, cryopreserved human hepatocyte is closer to the human hepatic 

metabolism than the other in vitro system does. Desbans (Desbans et al., 2014) used 

cryopreserved human hepatocytes from 12 donors to estimate fmCYP3A for five 

prototypical CYP3A substrates with varying degree of CYP3A-dependent in vivo 

clearance using intrinsic metabolic stability measurements in the presence and absence 

of a CYP3A probe inhibitor, ketoconazole. After hepatocytes are incubated with test 

compounds and/or the inhibitor, the intrinsic clearance was estimated from the parent 
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compound depletion profile. Then fmCYP3A was calculated from the ratio between CLint in 

absence and in presence of ketoconazole as: 

𝑓𝑚ଷ஺ = 1 −
𝐶𝐿௜௡௧ 𝑤𝑖𝑡ℎ ketoconazole

𝐶𝐿௜௡௧ 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ketoconazole
 

 

Although there are some widely-used database for drug metabolism: a) DrugBank 

(Wishart et al., 2006), which is a comprehensive database which combines detailed drug 

(i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug 

target (i.e. sequence, structure, and pathway) information; b) Transformer (the former 

Super CYP) (Preissner et al., 2010), which integrates Cytochrome P450 enzyme 

interactions and some pharmacological information; c) DIDB (Hachad et al., 2010), 

which can evaluate the impact of DDI in the clinic by in vitro and in vivo DDI data, few 

fm data can be found. 

However, there is no database that contains fm data systemically. In this chapter, 

we present our initial effort in developing a cancer drug fm database. We focus on the 

fm data collected and estimated from in vitro inhibition studies of human liver 

microsomes, including both metabolites formation and substrate depletion studies. 

Because in vitro assessment of the metabolic rate of drugs by each of the major CYPs is 

routinely carried out in drug discovery and development, we anticipate that the fm data 

of many cancer drugs are available in the literature. The other data types (e.g. PGx test 

and clinical drug interaction PK experiment) for fm estimation will be available in the 

future. 
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2.2 Construction and Content 

The fm database was curated from published articles indexed in PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed/). An overview of the data collection is available 

in Figure 2.1. In Cancer Drug Selection, 237 FDA approved cancer drugs were identified 

in DrugBank and National Cancer Institute (NCI). The next stage is the key word search, 

including cancer drug names, “cytochrome P450”, “human liver microsomes” and/or 

“metabolism”. Cancer drug generic names, their synonymous and brand names 

published in the DrugBank are included in the search. Cytochrome P450 enzyme names 

include their synonymous names in HUGO Gene Nomenclature Committee. CYP450 

enzymes and metabolism are included in the search, because we focus only on the drug 

metabolism. 

Identified PubMed abstracts were filtered. We purposely looked for whether this 

is a drug metabolism study; whether the contribution of CYP enzymes to the 

metabolisms is investigated; or whether the CYP enzyme inhibitors are discussed. If all 

these information are not reported in the abstract, this paper is then removed. If an 

abstract passes the filtering step, its full text receives further examination. In the 

Method section, substrate depletion in human liver microsomal study information 

and/or the metabolite formation study information are checked. We have searched and 

identified the following experimental information. In the metabolite formation studies, 

all incubations were performed at 37 °C; HLMs were incubated with sodium phosphate 

buffer and NADPH (usually NADP + glucose-6-phosphate dehydrogenase) before adding 

the substrates; and control samples containing no NADPH or substrates were also 
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included. Well established selective inhibitors of CYP enzymes were incubated with 

substrate. Incubations are carried out for a defined time. In final stage, drug metabolites 

were evaluated using HPLC in the presence or absence known CYP enzyme selective 

inhibitors. For substrate depletion studies, pre-incubation and incubation procedures 

are the same as metabolite formation studies. However, no NADPH or substrates 

samples was needed. After being vortexed, the concentration of the remaining parent 

drugs in the supernatants was measured using the HPLC assay in the presence or 

absence selective inhibitors. If this information were not reported in the method section, 

this paper is then removed. 
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Figure 2.1 The flow chart of data collection procedure   

Cancer Drug Selection 

Abstracts Collected from the 
Keyword Search 

Abstract Filtering 

Full Text Method Checking 

Full Text Result Data Collection 

Fm Calculation 

Valadation 
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The result section is then read through carefully, including the result narrative, 

figures and tables, including their legends, or supplemental materials. We collect the 

following data from the paper for the fm calculations: The metabolites for each drug 

and/or their relative contribution of the metabolisms; the percentage of inhibitions for 

each CYP enzyme and their related CYP inhibitor (sometimes, this percentage was 

directly reported, and other times, the metabolism rates under inhibition and control 

were reported); and the substrate concentrations, and inhibitor concentrations. After 

these data are collected, fm is then calculated by metabolite formation data according 

to following steps. 

1. The metabolites from the drug by human liver microsomes are evaluated in the 

presence or absence (i.e., control sample) of known P450 isoform-selective 

inhibitors. The relative proportion of the metabolites formation in reaction 

mixtures with no inhibitor is set as 100%. If the inhibition percentage of a drug 

metabolite is not reported directly in the paper, it is calculated from the changes 

of control sample.   

2. If multiple metabolite pathways exist, the contribution of each metabolite 

pathway to the total drug metabolism will be calculated. 

3. If a CYP enzyme is inhibited by several inhibitors, the percent of inhibition for 

each inhibitor is calculated. Then, their mean value is calculated and taken as the 

inhibition percentage for this pathway. 

4. If the substrate concentration of the inhibition experiment varies in the paper, 

the percentage of inhibition at each concentration is calculated. Then, their 
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mean value is calculated and taken. 

5. The total inhibition percentage of one metabolite was normalized. The fraction of 

metabolite for the ith CYP enzyme in the jth metabolite is:  

1.  where inhibitioni refers to the percentage of inhibition for the ith enzyme. The sum of 

fmij over all metabolites is regarded as the fraction of metabolized for enzyme i. 

On the other hand, fm can be calculated through the substrate depletion data: 

1. The inhibition percentage or the remaining proportions of substrates are evaluated in 

the presence or absence (i.e., control sample) of known P450 isoform-selective 

inhibitors. And it is known that the sum of inhibition percentage of certain substrate and 

its remaining proportion equals 100%. If the inhibition percentage of a drug metabolite 

is not reported directly in the paper, it is calculated from the changes of control sample 

or the remaining percentage.   

2. If a CYP enzyme is inhibited by several inhibitors, the mean percent of inhibition for 

each inhibitor is taken as metabolite formation data. 

3. If the substrate concentration of the inhibition experiment varies, the mean 

percentage of inhibition at each concentration is taken. 

4. The metabolized fraction for the ith CYP enzyme is:  

𝑓௠ =
𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛௜

∑ 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛௜௜
 

where inhibitioni refers to the percentage of inhibition for the ith enzyme. 

i
ij

i
i

inhibition
fm percentage of pathway j

inhibition
 

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To ensure the data integrity, two curators with biology background conducted 

data curating. Dr. Sara K. Quinney who has extensive pharmacology training background 

further checked any differentially annotated abstracts. Then, the data extraction from 

the full text was carried out by those two annotators again. Among the disagreed data 

collection between these two annotators, a group review was conducted by Drs Wang, 

Quinney and Li to reach the final agreement. 

Data validation step was conducted as follows. Two sets of drugs were validated. 

In the positive set, 10 out of 57 random cancer drugs where fm data was identified are 

re-evaluated. In the negative set, 10 out of 179 random cancer drugs withoutidentified 

fm data were re-evaluated. During this validation process, two independent annotators 

went through the total fm data curating process for these twenty drugs. These two 

validation annotators have master or PhD degrees in the computational biology and/or 

biology background. Drs. Quinney and Li who have the pharmacology background 

further evaluate the concordance among these three sets of annotations. The 

consistency of fm data is reported. 

Among 237 cancer drugs, we have found fm data for 57 of them. During the 

validation, among the 10 negative cancer drugs (i.e. no fm data is identified from the 

first annotator), the other two annotators did not find their fm data either. Therefore, 

the validation overlap rate is 100% for the negative drug set. Among those 10 positive 

cancer drugs, each validation annotator manages to find fm data for 9 of them. The 

overlap rate is 90% for the positive drug set. Finally, among the overlapped positive drug 

set, the consistency of fm value are calculated. Within a 20% relative difference range, 
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60.0% and 30.0% of fm values are consistent between original annotator and validation 

annotator 1 and 2, respectively. 

Among the discordant fm values for the positive cancer drug data set, the cited 

PubMed full text papers and fm values are further evaluated by two additional 

pharmacologists. They find the original annotation has the highest accuracy in collecting 

and calculating the Fm. She is right on 85.7% of the discordant values among three 

annotators. The validation results are shown in Table 2.1. 
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  Drug 2B6 2C8 2C19 2D6 3A 2A6 2E1 2C9 1A1 1A2 
Validation annotator 1 Anastrozole 0 16.6 0 0 44.6 15.3 1.3 2.5 0 1.5 

  Dasatinib 0 0 0 0 0 0 0 0 0 0 
  Aprepitant 0 0 0 0.9 92.5 0 0 2.8 0 3.8 
  Azacitidine 0 0 0 0 0 0 58.3 0 0 41.7 
  Bortezomib 0 0 21.5 14.9 44.7 0 0 8.7 0 10.1 
  Colchicine 0 0 0 4.2 70.2 0 17.2 8.3 0 0 
  Docetaxel 0 0 0 0 45.8 0 13.2 0 0 11.5 
  Vinblastine 0 1 0 6.4 81.6 0 1 0 0 0 
  Vinorelbine 0 4.6 8.6 0.7 78.6 4.6 0 0 0 2.9 
  Irbesartan 0 24.8 0 0 3.5 46 25.6 0 0 0 

Validation annotator 2 Anastrozole 18.6 21.8 0 0 35.4 24.2 0 0 0 0 
  Dasatinib 0 0 0 0 28.2 0 0 0 22.5 0 
  Aprepitant 0 0 0 0 100 0 0 0 0 0 
  Azacitidine 0 0 0 0 0 0 0 0 0 0 
  Bortezomib 0 0 34.5 8.1 44 0 0 1.4 0 12 
  Colchicine 0 0 0 0 100 0 0 0 0 0 
  Docetaxel 0 0 0 0 100 0 0 0 0 0 
  Vinblastine 0 0 0 0 100 0 0 0 0 0 
  Vinorelbine 0 0 0 0 100 0 0 0 0 0 
  Irbesartan 0 100 0 0 0 0 0 0 0 0 

Original annotator Anastrozole 11.4 13.3 8.2 2.9 35.7 24.5 2 0 0 0 
  Dasatinib 0 0 0 0 28.2 0 0 0 22.5 0 
  Aprepitant 0 0 0 0.9 93.4 0 0 2.8 0 2.8 
  Azacitidine 0 0 0 0 0 0 58.3 0 0 41.7 
  Bortezomib 0 0 21.5 14.9 44.7 0 0 8.7 0 10.1 
  Colchicine 0 0 0 0 100 0 0 0 0 0 
  Docetaxel 0 0 0 0 67.7 0 19.6 0 0 12.7 
  Vinblastine 0 11 0 6.4 81.6 0 1 0 0 0 
  Vinorelbine 0 4.6 8.6 0.7 78.6 4.6 0 0 0 2.9 
  Irbesartan 0 24.8 0 0 3.5 46 25.6 0 0 0 

Table 2.1 The validation Results 
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2.3 Utility 

Fm database will help to predict drug interactions. These data characterize all 

the hepatic CYP450 metabolic pathways and their contributions in predicting drug 

interactions. We therefore further explore and predict the drug interactions among 

these 57 cancer drugs in the following case study. 

AUCratio (AUCR) is the key parameter to measure the drug interaction. The 

predicted AUCR is estimated as following: 

 

where is the ratio of the area under the plasma concentration-time profile of the 

substrate drug in the presence (AUCi) and absence (AUC) of the inhibitor drug;  is 

the fraction of the total hepatic metabolism mediated through a CYP enzyme (from our 

fm database),  is the unbound inhibitor concentration, is the unbound inhibition 

constant. In this chapter, equals to , where Cmax is the maximum 

concentration, and is the fraction of unbound drug in plasma. In this chapter, we 

have further identified fu, Cmax and Ki,u for 32 out of 57 cancer drugs through the 

PubMed literature review. Then, each drugs pair selected from 32 drugs are further 

evaluated twice in order to predict their interactions. Each time, one drug serves as 

substrate and the other one serves as inhibitor, and vice-versa. Following the FDA DDI 

guideline (Food & Administration, 2012) and expert experience, an AUCR >1.5 is 
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regarded as the moderate or strong DDI evidence. Based on our PBPK model based DDI 

predictions, we find 97 drug pairs with AUCR more than 1.5. After been validated in 

DrugBank, Drugs.com and PubMed, 33 pairs have at least one clear DDIs evidence 

mentioned in DrugBank or Drugs.com or in PubMed (Table 2.2). 
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Drug Pair AUCR DrugBank Drugs.com 
Pubmed 
(in vitro) 

Pubmed 
(in vivo) 

Pubmed 
(clinical) 

(vinblastine,clonidine) 38.33 
The serum concentration of 
Clonidine can be decreased when 
it is combined with Vinblastine.     

(vinorebline,clonidine) 38.33 
The serum concentration of 
Clonidine can be increased when 
it is combined with Vinorelbine. 

    

(etoposide,clonidine) 11.58 
The serum concentration of 
Clonidine can be increased when 
it is combined with Etoposide. 

    

(aprepitant,clonidine) 11.09 
The serum concentration of 
Clonidine can be increased when 
it is combined with Aprepitant.     

(sorafenib,clonidine) 7.67 
The serum concentration of 
Clonidine can be increased when 
it is combined with Sorafenib.     

(colchicine,docetaxel) 4.89 

The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Colchicine. 

The risk of peripheral neuropathy 
may be increased during 
concurrent use of two or more 
agents that are associated with 
this adverse effect. 

   

(vinblastine,docetaxel) 4.89 

The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Vinblastine. 

The risk of peripheral neuropathy 
may be increased during 
concurrent use of two or more 
agents that are associated with 
this adverse effect.  

   

(vinorebline,docetaxel) 4.89  

The risk of peripheral neuropathy 
may be increased during 
concurrent use of two or more 
agents that are associated with 
this adverse effect.  

   

(vincristine,clonidine) 4.26 
The serum concentration of 
Clonidine can be decreased when 
it is combined with Vincristine. 

    

Table 2.2 The validation results of DDI prediction based on PBPK model 
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Drug Pair AUCR DrugBank Drugs.com Pubmed 
(in vitro) 

Pubmed 
(in vivo) 

Pubmed 
(clinical) 

(everolimus,docetaxel) 4.16 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Everolimus. 

    

(etoposide,docetaxel) 3.94 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Etoposide. 

The risk of peripheral neuropathy 
may be increased during 
concurrent use of two or more 
agents that are associated with 
this adverse effect.  

   

(fenretinide,docetaxel) 3.92 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Fenretinide. 

    

(aprepitant,docetaxel) 3.89 
The serum concentration of 
Docetaxel can be increased when 
it is combined with Aprepitant. 

Coadministration with inhibitors 
of CYP450 3A4 may increase the 
plasma concentrations of 
docetaxel, which is a substrate of 
the isoenzyme.  

 
(Kaneta et al., 2014) 
(Nygren et al., 2005) 

(Kaneta et al., 2014) 
(Nygren et al., 2005) 

(sorafenib,docetaxel) 3.4 
The serum concentration of 
Docetaxel can be increased when 
it is combined with Sorafenib. 

 Coadministration with sorafenib 
may increase the plasma 
concentrations of docetaxel.  

 (Awada et al., 2012) 
(Awada et al., 2012)  
(Mardjuadi et al., 
2012) 

(granisetron,docetaxel) 2.73   

(Watanabe, 
Nakajima, Nozaki, 
Hoshiai, & Noda, 
2003) 

(Watanabe et al., 
2003) (Miyata et al., 2006) 

(vincristine,docetaxel) 2.67 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Vincristine. 

The risk of peripheral neuropathy 
may be increased during 
concurrent use of two or more 
agents that are associated with 
this adverse effect.  

   

Table 2.2 Continued 
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Drug Pair AUCR DrugBank Drugs.com 
Pubmed 
(in vitro) 

Pubmed 
(in vivo) 

Pubmed 
(clinical) 

(irinotecan,docetaxel) 2.49 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Irinotecan. 

 (Maekawa et al., 
2010) 

 
(Argiris, Kut, Luong, 
& Avram, 2006) 
(Engels et al., 2007) 

(ifosfamide,docetaxel) 2.46 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Palifosfamide. 

The concomitant or sequential 
administration of multiple 
antineoplastic agents may 
potentiate the risk and severity of 
additive toxicities, such as 
immunosuppression and 
myelotoxicity.  

   

(pazopanib,docetaxel) 2.17 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Pazopanib. 

Coadministration with inhibitors 
of CYP450 3A4 may increase the 
plasma concentrations of 
docetaxel, which is a substrate of 
the isoenzyme. 

   

(idarubicin,cytarabine) 2.04   
(Colburn, Giles, 
Oladovich, & Smith, 
2004) 

  

(sunitinib,clonidine) 2.02 
The serum concentration of 
Clonidine can be increased when 
it is combined with Sunitinib. 

    

(lapatinib,clonidine) 1.93 
The serum concentration of 
Clonidine can be increased when 
it is combined with Lapatinib. 

    

(bortezomib,clonidine) 1.77 
The metabolism of Clonidine can 
be decreased when combined 
with Bortezomib.     

(bosutinib,clonidine) 1.72 
The serum concentration of 
Clonidine can be increased when 
it is combined with Bosutinib.     

(eribulin,docetaxel) 1.71 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Eribulin. 

The risk of peripheral neuropathy 
may be increased during 
concurrent use of two or more 
agents that are associated with 
this adverse effect.  

   

Table 2.2 Continued 
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Drug Pair AUCR DrugBank Drugs.com Pubmed 
(in vitro) 

Pubmed 
(in vivo) 

Pubmed 
(clinical) 

(sunitinib,docetaxel) 1.70 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Sunitinib. 

   (Bergh et al., 2012) 

(paclitaxel,clonidine) 1.68 
The serum concentration of 
Clonidine can be increased when 
it is combined with Paclitaxel. 

    

(ixabepilone,docetaxel) 1.68 

The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Ixabepilone. 

 The risk of peripheral neuropathy 
may be increased during 
concurrent use of two or more 
agents that are associated with 
this adverse effect 

   

(lapatinib,docetaxel) 1.65 
The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Lapatinib. 

 Coadministration with inhibitors 
of CYP450 3A4 may increase the 
plasma concentrations of 
docetaxel, which is a substrate of 
the isoenzyme.  

  
(LoRusso et al., 
2008) 

(bortezomib,docetaxel) 1.55 

The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Bortezomib. 

Bortezomib can cause peripheral 
neuropathy, and concurrent use 
of other agents that are also 
associated with this adverse 
effect can potentiate the risk 
and/or severity of nerve damage.  

 (Messersmith et al., 
2006) 

(Messersmith et al., 
2006) 

(bosutinib,docetaxel) 1.52 

The risk or severity of adverse 
effects can be increased when 
Docetaxel is combined with 
Bosutinib. 

    

(paclitaxel,docetaxel) 1.50 

The risk or severity of adverse 
effects can be increased when 
Paclitaxel is combined with 
Docetaxel. 

The risk of peripheral neuropathy 
may be increased during 
concurrent use of two or more 
agents that are associated with 
this adverse effect 

(Maekawa et al., 
2010) 
(Watanabe et al., 
2003) 
(Royer, Monsarrat, 
Sonnier, Wright, & 
Cresteil, 1996) 

(Royer et al., 1996) 

(Esposito et al., 
1999) 
(Bahleda et al., 
2014) 
(Izquierdo et al., 
2006) 

(paroxetine,clonidine) 1.50 
The metabolism of Clonidine can 
be decreased when combined 
with Paroxetine. 

    

Table 2.2 Continued   
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2.4 Discussion 

In this cancer drug fm database, the relative contributions of CYP isozyme are 

curated and calculated from drug metabolism studied using the human liver 

microsomes. These in vitro experiments include both metabolites formation and 

substrate depletion studies from the published articles. After a number of data filtering 

and data processing steps, this database curated 57 cancer drugs with fm data for 

primary CYP450 enzymes (i.e. CYP 3A4, CYP 2D6, CYP 2C9 etc.). A predefined data 

curating protocol was established to assure data quality and data reproducibility. 

Multiple annotators were employed in the data filtering stage and the data validation 

stage. Two independent validation annotators re-evaluated the random selection from 

positive and negative set. The overlap rate is 90% and 100% for the positive and 

negative set, respectively. Among the overlapped positive drug set, the consistency of 

fm are 60.0% and 30.0% for validation annotator 1 and 2. After evaluated by two 

additional pharmacologists, the original annotation has the highest accuracy in 

collecting and calculating the fm evaluated by two additional pharmacologists. They find 

the original annotation has the highest accuracy in collecting and calculating the fm 

among three annotators. 

In our initial effort to curate fm data from the literature, we have focused on 

primarily the fm data calculate from the in vitro experiments. There are additional data, 

such as pharmacogenetics clinical PK studies and drug interaction clinical PK studies, in 

which fm can also be estimated. These fm estimates could be more accurate than the 

fm estimates from in vitro studies. 
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This database has been demonstrated successfully to predict the drug-drug 

interactions regarding several CYP isozymes. We believe that the public availability of 

this database will facilitate pharmacokinetics research.  
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Chapter 3. A Computationally Efficient Design for Electronical Health/Medical Records 

Mining 

Summary: Nested case-control design is a promising approach for detecting adverse 

drug events (ADEs) from electronical health records (HER) and electronical medical 

records (EMR) databases. Currently, computational burden is a significant challenge for 

the application of nested case-control design on EMR/HER databases, especially for 

investigating multiple ADEs. In this chapter, we propose a random control selection 

approach for nested case-control design. By relaxing the matching by case’s index time 

restriction, random control dramatically reduces the computational burden compared 

with traditional control selection approaches. By using the Observational Medical 

Outcomes Partnership gold standard and an EMR database, random control is 

demonstrated to have better performances as well.  

3.1 Introduction 

Adverse drug events (ADEs) are considered to be a significant challenge for 

current clinical practices. In the United States alone, ADEs cause approximately 125,000 

hospital admissions each year; up to 53% hospital stays prolonged; and as many as 4.6% 

of deaths (de Vries, Ramrattan, Smorenburg, Gouma, & Boermeester, 2008; Hall, 

DeFrances, Williams, Golosinskiy, & Schwartzman, 2010; Lazarou, Pomeranz, & Corey, 

1998). Though ADEs can be detected in either pre-marketing clinical trials or post-

marketing surveillances, most ADE knowledges are revealed in the post-marketing stage. 

This is because post-marketing stage allows larger population and prolonged follow up 

(Harpaz et al., 2012). Additionally, unlike pre-marketing clinical trials, drugs are 
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administered without stringent inclusion/exclusion criteria. During the past two decades, 

different types of databases have been maintained for drug safety surveillance such as 

Spontaneous Reporting System (SRS), Electronic Medical Records (EMR) and Electronic 

Health Records (EHR). SRS collects ADE reports from healthcare professionals, 

consumers, and manufacturers. EMR and EHR are administrative health databases. They 

usually contain standard medical and clinical data gathered in the provider’s offices.  

SRS and EMR/EHR analyses have gathered valuable ADE knowledges.  For a drug-

ADE pair of interest, either univariate analyses or multivariate analyses can be used for 

signal detection. Under univariate analyses, available samples are usually summarized 

by a 2-by-2 contingency table, in which contains the frequencies classified by the usage 

of the drug (yes/no) and the occurrence of the ADE (yes/no). The outcome is the 

frequency that this drug-ADE pair is co-occurred, and the expectation is the expected 

frequency of this drug-ADE pair under the assumption of no association. Univariate 

analyses are also known as disproportion analysis (DPA), as they quantify ADE signals by 

the outcome to expectation ratio (i.e. relative risk) or its variants. Frequentist DPAs 

include proportional reporting ratio (PRR) and reporting odds ratio (ROR) (Evans et al., 

2001; van Puijenbroek et al., 2002). While, the empirical Bayesian geometric mean 

(EBGM) is an empirical Bayesian DPA and the information component (IC) is a Bayesian 

DPA (Bate et al., 1998; DuMouchel, 1999). DPAs are demonstrated to have promising 

performances and are computationally efficient (Harpaz et al., 2013). However, 

confounding bias, especially confounding by co-medication, may cause biased 

disproportionality measurements of the true association. Typical multivariate analyses 
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utilize multiple logistic regression (MLR) or regulated logistic regression (RLR) models to 

adjust potential confounding variables (i.e. co-medications). Besides this advantage, 

practices of MLR/RLR are often challenged by considerable larger sample sizes of 

pharmacovigilance databases. For instance, regular computers cannot fit MLR over 

millions of samples. In a summary, DPAs are powerful tools for large scale signal 

detection, as they can be applied to multiple ADEs together (Harpaz et al., 2012). 

Multivariate analyses that models an ADE and all co-medications are preferred for 

specific hypotheses testing.  

In SRS, temporal information are omitted and each sample contains the ADE and 

drug status (Yes/No). Such a structure allows both multivariate analyses and DPAs to be 

applied directly to SRS. However, in EMR/HER database, patients are usually followed 

longitudinally with detailed temporal information about medications and phenotypes. 

As a consequence, EMR/EHR analyses typically require sophisticated epidemiology 

designs such as cohort design, self-controlled design, and nested case-control design 

(Hennessy et al., 2016). These epidemiology designs have been widely utilized for 

EMR/EHR analyses. Cohort design identifies exposure and non-exposure cohorts. ADE 

risks are estimated within each cohort, and the drug-ADE associations are estimated by 

the RR. The non-exposure cohort can be selected based on estimated propensity scores 

to ensure their similarities with the exposure cohort. For instance, Tatonetti et al. 

assumes the latent cofounders can be characterized by co-medications, and propensity 

scores are then calculated by modeling the co-medications based on such assumption 

(Tatonetti et al., 2012). For the cases and their matched controls, nested case-control 



 

37 

design uses a predefined window to examine drug exposures. For a case, usually 4 – 10 

controls are selected. The controls are usually matched with the case’s index date and 

risk factors (Schneeweiss, 2010). Additionally, they are case-free up to the case’s index 

time. Thus, such controls are also named as at risk or dynamic control. If the controls are 

restricted to be case free for the entire follow up, this type of controls is known as super 

control. Some example of application of nested case-control designs includes Brauer et 

al., La gamba et al. and Lee et al. (Brauer et al., 2014; La Gamba et al., 2017; Lee et al., 

2011). In real applications, EMR/EHR databases may contain up to millions of patients. 

Such a sample size become an obstacle for the application of epidemiology designs to 

conduct large scale (i.e. drug wide and ADE wide) ADE signal detection. For instance, as 

we mentioned above, fitting propensity score model over millions of samples cannot be 

accomplished by regular computers. Moreover, in EMR/EHR analyses, propensity scores 

will be time dependent, which further increased the computational burden. Though 

nested case-control design do not require complicated modelling, the matching process 

still computationally expensive.  

We propose a control selection approach for nested case-control design which 

will be computationally efficient for large scale ADE signal detection. Unlike the dynamic 

and super control, the proposed methods will select a pool of controls before cases are 

identified. Later, for a case, the matched controls will be patients with similar risk 

factors from the control pool. We name the proposed controls as random control, as 

both the patients and their index time are randomly selected. The key difference 

between random control and super/dynamic control is the relaxation of matching by the 
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index time condition. For super/dynamic control, at a case’s index time, all available 

samples have to be evaluated for control selection. For instance, under dynamic control, 

the samples at risk are changing over time. While, random control only need to evaluate 

the control pool for once, and avoid the time consuming evaluation processes.  In 

another word, the controls under super/dynamic control are case specific, but are not 

for random control. Additionally, random control can be applied to multiple ADEs. The 

performances of nested case-control design by using super, dynamic and random 

control will be evaluated by the Observational Medical Outcomes Partnership (OMOP) 

gold standard (Ryan et al., 2012). 

3.2 Methods 

3.2.1 Data source 

The Indiana Network for Patient Care (INPC) is a health information 

infrastructure containing medical records for over 15 million patients from five major 

hospital systems (fifteen separate hospitals) (McDonald et al., 2005). INPC-Common 

Data Model (INPC-CDM) data was derived from INPC patients between 2004 and 2015, 

following CDM Version 5.0 guideline (http://omop.org/CDM). The INPC-CDM consists of 

structured longitudinal information including medical conditions and prescription 

medications for patients. It also includes lab tests and demographics for patients. In our 

analysis, to process these complex data, medical conditions and prescription 

medications were mapped into ICD-9 codes and drugbank ID (www.drugbank.ca) with 

starting and end date. Thus, for each patient, our final data included the patient’s age, 
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gender, the starting and end date of each medical condition, and the starting and end 

date of each prescription medication. 

3.2.2 The OMOP Gold Standard 

The Observational Medical Outcomes Partnership (OMOP) gold standard was 

designed to establish a reference set for pharmacovigilance study (Ryan et al., 2012). It 

contains 399 drug-ADE pairs that were made up of 181 drugs and 4 ADEs (acute 

myocardial infarction, acute renal failure, acute liver injury, and gastrointestinal 

bleeding). These 399 drug-ADE pairs were classed as 165 true positive test cases and 

234 true negative test cases. 

In OMOP golden standard, 4 ADEs were defined by using Medical Dictionary for 

Regulatory Activities (MedDRA) (https://www.meddra.org/) Lower Level Terms (LLT). 

For our analysis, these MedDRA LLTs were mapped into ICD-9 codes. There were total 

44, 6, 16, and 12 ICD-9 codes for acute myocardial infarction, acute renal failure, acute 

liver injury, and gastrointestinal bleeding respectively. 

3.2.3 Study Designs 

We aim for evaluating the performances of super, dynamic and random controls 

under a nested case-control design. The design is similar as existing EMR data analysis 

(Duke et al., 2012; Han et al., 2015; P. Zhang et al., 2015). Under the nested case-control 

design, we select 4 controls for each case. Each case and control will have an index time. 

At each index time, we examine the medications up to 30 days prior to the index time 

(one month drug window). Naturally, for a drug and an ADE, the data can be 

summarized as Table 3.1. 
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3.2.3.1 Case selection 

For each ADE, two types of new case events were defined. The first type was the 

first case event where the first ADE occurred. The second case event type included any 

follow-up ADE event whose corresponding drug exposure was more than 6 months after 

the previous ADE event. In other words, the second type of new ADE case event 

required a “washout” period (i.e., no drug exposure) of more than 6 months. Summary 

statistics for each ADE are shown in Table 3.2. We identified total 204,780, 281,461, 

261,874, and 221,330 ADE case events for acute myocardial infarction, acute renal 

failure, acute liver injury, and gastrointestinal bleeding with occurred percentage of 

3.77%, 5.18%, 4.82%, and 4.07% respectively. 

After the cases were identified, 𝑎 and 𝑏 in Table 3.1 can be determined for a 

selected drug. While, under different control selection approaches 𝑐 and 𝑑 are different.   

3.2.3.2 No Control Selection (All patients) 

We first conduct an analysis by using all patients without a control selection 

approach. Without control selection, 𝑐 was the frequency of patients who experienced 

the ADE but unexposed to the drug in the entire follow up; 𝑑 was the frequency of 

patients who neither experienced the ADE nor exposed to the drug in the entire follow 

up. These analyses will be served as reference for the following control selection 

approaches. 

3.2.3.3 Super Control and Dynamic control Selection 

The controls were matched with case’s index time, age and gender. Additionally, 

we restricted the controls and the case to have equal number of medications within the 
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one month drug window. At each case’s index time, control patients were selected by 

these rules. Further, the dynamic controls were sampled from patients who were case 

free at the index time. On the other hand, the super controls were selected from 

patients who were case-free for their entire follow up. 

3.2.3.4 Random control Selection 

For random control selection, a control pool was randomly selected from all 

patients first. Similarly, we selected a random index time for each control patient in the 

pool. For each case, matched control were patients from the control pool with same age, 

gender and number of medications. In our analysis, we selected 1 million patients to 

from the control pool.  

3.2.4 Comparison analysis  

By using OMOP gold standard, DPAs and multivariate analyses were shown to 

have comparable performances (Harpaz et al., 2013). Hence, in this study, we selected 2 

frequentist and 1 Bayesian DPAs for evaluation. They were PRR, ROR and IC (Bate et al., 

1998; Evans et al., 2001; van Puijenbroek et al., 2002). Start from Table 3.1, the PRR, 

ROR and IC were given in Table 3.3. 

Normal approximation and delta method can be used to compute the variances 

of PRR, ROR and IC. The lower bound of 95% confidence intervals, PRR_025, ROR_025 

and IC_025, will be used for evaluation as well. For this DPAs, common threshold, 1 for 

PRR, PRR_025, ROR and ROR_025; and 0 for IC and IC_025 were adopted for evaluation.  
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 Case Control Total 

Drug  𝑎 𝑏 𝑎 + 𝑏 

No Drug 𝑐 𝑑 𝑐 + 𝑑 

Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 

Table 3.1 2-by-2 contingency table for a drug-ADE pair 
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Adverse Event Case Event  Percentage Case Patients 

Myocardial Infarction 204,780 3.77% 137,439 

GI Bleed 281,461 5.18% 235,056 

Liver Injury 261,874 4.82% 200,956 

Acute Renal Failure 221,330 4.07% 165,469 

Table 3.2 Summary statistics for each ADE (each patient can have multiple new case events) 
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DPA Formula Description 

PRR (Evans et al., 2001) 
𝑎

(𝑎 + 𝑏)

𝑐

(𝑐 + 𝑑)
൘  

PRR measures the ratio of P(ADE|Drug) 
over P(ADE|No Drug). 
 

ROR (van Puijenbroek et al., 2002) 
𝑎

𝑏

𝑐

𝑑
ൗ  

ROR measures the ratio of ୔(୅ୈ୉|ୈ୰୳୥)

୔(୒୭ ୅ୈ୉|ୈ୰୳୥)
 

over ୔(୅ୈ୉|୒୭ ୈ୰୳୥)

୔(୒୭ ୅ୈ୉|୒୭ ୈ୰୳୥)
 

 

IC (Bate et al., 1998) logଶ ቎
𝑎 + 1

(𝑎 + 𝑐) × (𝑎 + 𝑏)
𝑎 + 𝑏 + 𝑐 + 𝑑

+ 1
቏ 

IC is the log 2 transformed outcome to 
expectation ratio ቀ ୔(୅ୈ୉ &ୈ୰୳୥)

୔(୅ୈ୉)×୔(ୈ୰୳୥)
ቁ. By 

adding 1 on both the numerator and the 
denominator, infrequent drug-ADE pairs 
will have penalized IC values. 

Table 3.3 PRR, ROR and IC 
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3.3 Results 

3.3.1 Performance evaluation under common signal detection rules 

The performances including specificity, sensitivity, precision, recall and F-score 

under common signal detection rules are shown in Table 3.4. Among all four control 

selection methods, random control approach has significant better F-scores (0.42-0.46) 

than the other three methods (0.21-0.30). Moreover, random control approach leads to 

better recall (0.36-0.41) compared to the other three approaches (0.12-0.23). All 

patients approach generates the best precision (0.79), followed by random control 

method (0.36-0.41), and dynamic control and super control methods have equally worst 

precision (0.42-0.45).  

3.3.2 Area under the receiver operating characteristic curve (AUC) analysis 

To further explore the properties of each control selection approach, we conduct 

AUC analysis. The AUCs are shown in Figure 3.1. After classification, there is no 

significant difference between dynamic control (AUC: 0.38-0.57) and super control (AUC: 

0.36-0.58). All patients approach has the best overall AUC scores (0.59-0.62), followed 

by random control approach (0.57-0.60), and dynamic control and super control 

approaches have equally worst precision (0.48-0.54) in all three evaluation method (PRR, 

ROR, and IC). In sub-category phenotypes, all patients approach achieves the best AUC 

score (0.71-0.73 and 0.59-0.61) in acute liver injury and acute renal failure, but not 

preforms well in acute myocardial infarction and gastrointestinal bleeding phenotypes 

with AUC (0.47-0.51 and 0.43-0.50). Random control approach is consistently generated 

good scores across all four phenotypes (0.46-0.62). In acute myocardial infarction, acute 
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liver injury and acute renal failure phenotypes, AUC (0.49-0.62) is comparable to all 

patients approach (0.47-0.73), but significant better than dynamic control and super 

control approach (0.35-0.51). In gastrointestinal bleeding phenotype, random control 

approach is equally good as dynamic control and super control methods with AUC (0.46-

0.56) and (4.48-0.58) respectively.  

Further, for all four ADEs, the AUC curves for random control approach and all 

patients approach are shown in Figure 3.2. Generally, two methods have comparable 

curves. While, random control have better true positive rates under lower false positive 

rates for all three matrices.  
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Method Design Specificity Sensitivity Precision Recall F-score 

PRR025 > 1 

Dynamic Control 0.8058 0.1938 0.4366 0.1938 0.2684 
Super Control 0.7961 0.1938 0.4247 0.1938 0.2661 

Random Control 0.7330 0.3625 0.5133 0.3625 0.4249 
All Patients 0.9757 0.1188 0.7917 0.1188 0.2065 

 

ROR025 > 1 

Dynamic Control 0.7864 0.2250 0.4500 0.2250 0.3000 
Super Control 0.7913 0.2125 0.4416 0.2125 0.2869 

Random Control 0.7136 0.4062 0.5242 0.4062 0.4577 
All Patients 0.9757 0.1188 0.7917 0.1188 0.2065 

 

IC025 > 0 

Dynamic Control 0.8058 0.1938 0.4366 0.1938 0.2684 
Super Control 0.8010 0.1938 0.4306 0.1938 0.2672 

Random Control 0.7330 0.3625 0.5133 0.3625 0.4249 
All Patients 0.9757 0.1188 0.7917 0.1188 0.2065 

Table 3.4 Performances of different control selection approaches 
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Figure 3.1 AUC values for four control selection strategies 
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Figure 3.2 AUC curves for all patients analysis and random control 
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3.4 Conclusion and Discussion 

In this study, we propose a random control approach based nested case-control 

design for EMR/EHR analyses. For a case, random controls are matched patients who 

have same risk factors as the case. While, compared with the dynamic/super control 

selection approach, random control selection relaxes the matching by the cases’ index 

time restriction, which is the most computational expensive step. Under the matching 

by the cases’ index time restriction, the risk factors for all patients will be examined at 

each distinct index time. Given the sample size and the amount of distinct case index 

times of EMR/HER data, such matching process generates a considerable computational 

burden. Moreover, for investigating multiple ADEs, the dynamic/super controls have to 

be different, which further increase the computational burden. For random controls, 

patients will be randomly selected to from a control pool, and index times are randomly 

selected as well. Hence, the risk factor evaluation is only limited to the control pool at 

the index times. Additionally, the control pools can be used for multiple ADEs. As a 

consequence, random control selection is efficient for large scale (i.e. all ADEs) signal 

detection. On the statistical prospect, dynamic/super control approaches estimate the 

frequency of a medication within a group of case free patients who have similar risk 

factors with the cases. Under random control, the frequency of drug is estimated within 

the population who has similar risk factors with the cases.  

Additionally, we evaluate the performances of random control and other control 

selection approaches by using the OMOP gold standard and the INPC-CDM data. For 

each of the 399 drug-ADE pairs in the OMOP gold standard, samples in our data are 
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summarized into a 2-by-2 contingency table (Table 3.1). Six disproportionality 

measurements of drug-ADE association that generate from three ADE signal detection 

methods (2 frequentists and 1 Bayesian) are calculated. Finally, we compute the area 

under ROC curve (AUC) values by using these disproportionality measurements. We 

observe the random control (AUC: 0.572 – 0.597) and all patients analysis (AUC: 0.595 – 

0.619) have modest well AUCs. While, the dynamic controls (AUC: 0.492 -0.539) and 

super controls (AUC: 0.482 – 0.538) have less powerful detection capability.  

The goal of this study is to find a computational efficient study design for large 

scale EMR/EHR analysis. Through AUC analyses, the random control selection has a 

modest well detection capability. Its average AUC value is only less than the best 

average AUC value. The modest detection capability that we observed in this study 

coincides with a few other studies, which aimed to evaluate the performance of 

different ADE signal detection methods. For instance, Ryan et al. initially evaluated the 

signal detection methods on multiple EMR/EHR databases (Ryan et al., 2012).  Their 

analysis is based on the OMOP gold standard. Results shown that case crossover design 

had AUC = 0.66 and case-control design had AUC = 0.62. Liu et al. perform an evaluation 

by using an EMR data from Vanderbilt University Medical Center and another gold 

standard (Liu et al., 2013). In their analysis, the evaluation is based on F-score. Results 

shown that PRR and ROR have F-score = 0.62, and IC has F-score = 0.60. In order to 

achieve better performance, multivariate methods may be used, as they are 

demonstrated to have better performances than DPAs. As we solely focused on study 

design, only DPAs are used for evaluation.  
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Chapter 4. Translational high-dimensional drug Interaction discovery and validation 

using health record databases and pharmacokinetics models 

Summary: Polypharmacy increases the risk of drug-drug interactions (DDI’s). Combining 

epidemiological studies with pharmacokinetic modeling, we detected and evaluated 

high-dimensional DDI’s among thirty frequent drugs. Multi-drug combinations that 

increased risk of myopathy were identified in the FDA Adverse Event Reporting System 

(FAERS) and electronic medical record (EMR) databases by a mixture drug-count 

response model. CYP450 inhibition was estimated among the 30 drugs in the presence 

of 1 to 4 inhibitors using in vitro in vivo extrapolation. Twenty-eight 3-way and 43 4-way 

DDI’s had significant myopathy risk in both databases and predicted increases in the 

area under the concentration time curve ratio (AUCR) >2-fold.  The HD-DDI of 

omeprazole, fluconazole and clonidine was associated with a 6.41-fold (FAERS) and 

18.46-fold (EMR) increase risk of myopathy (LFDR<0.005); the AUCR of omeprazole in 

this combination was 9.35.The combination of health record informatics and 

pharmacokinetic modeling is a powerful translational approach to detect high-

dimensional DDI’s.  

4.1 Introduction 

Drug-drug interactions (DDIs) are a common cause of adverse drug events (ADE) 

(Hajjar et al., 2007; U.S. Department of Health and Human Services; L. Zhang et al., 

2009). In the United States alone, each year an estimated 195,000 hospitalizations and 

74,000 emergency room visits are the result of DDIs. National Health and Nutrition 

Examination Survey data published in 2010 (Gu et al., 2010) showed that the number of 
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patients using two or more prescription drugs increased from 25.4% to 31.2% in ten 

years. In particular, more than 64% of elderly individuals took three or more 

prescription drugs, and 37% took five or more prescription drugs (Gu et al., 2010). In the 

FDA Adverse Event Reporting System (FAERS) data, 35% of reports include three or 

more prescription drugs, and 20% reports have five or more prescription drugs. 

In order to evaluate clinical effects and molecular mechanisms of DDIs, clinical 

pharmacokinetic (PK) studies, pharmaco-epidemiologic studies, and in vitro PK 

experiments have been routinely utilized. One salient example is that of breast cancer 

hormonal therapy, tamoxifen. The formation of its active metabolite, endoxifen, was 

inhibited by concomitant selective serotonin reuptake inhibitor paroxetine in a clinical 

pharmacokinetics study (Stearns et al., 2003). In vitro metabolism studies revealed that 

this is due to paroxetine’s strong inhibition of the tamoxifen bio-transformation to 

endoxifen via the CYP2D6 pathway (Desta et al., 2004). In a follow-up pharmacogenetic 

study, breast cancer patients with CYP2D6 loss function variants have a higher risk of 

disease relapse and a lower incidence of hot flush (Goetz et al., 2005). The clinical 

consequence of treating breast cancer and depression using tamoxifen and SSRIs was 

reviewed (Henry et al., 2008), and a call made for further investigation. Another 

example is the sedation agent midazolam. Co-administration of midazolam and 

ergosterol synthesis inhibitor ketoconazole has been identified to reduced subjects’ 

cognitive function (Lam et al., 2003). In clinical PK and in vitro experiments, midazolam 

metabolism was inhibited by ketoconazole through the CYP3A pathway (Gascon & 
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Dayer, 1991; Gorski et al., 1994), leading to increased midazolam exposure (Olkkola et 

al., 1994). 

These examples clearly demonstrate that the translational significance of drug 

interaction studies relies on both clinical and molecular pharmacology evidence. As 

described by Hennessy and Flockhart (Hennessy & Flockhart, 2012), an integrated 

informatics, epidemiology, and pharmacology approach has the potential to accelerate 

the translational drug interaction studies. Pioneered by Tatonetti et al. (Tatonetti et al., 

2012), FAERS and electronic medical records were utilized to generate and validate 

drug-ADE and drug-drug-ADE associations. In a follow-up study, Lorberbaum et al. 

demonstrated that patients co-administrated ceftriaxone and lansoprazole were 1.4 

times as likely to have a prolong QT prolongation than the administrated single drug in 

both EMR and FAERS data. Further validation showed that ceftriaxone/lansoprazole 

drug interaction was due to hERG channel blocker in a patch-clamp experiment system 

(Lorberbaum et al., 2016). Duke et al. proposed a text mining strategy for DDI molecular 

pharmacology evidence discovery from the public literature (Duke et al., 2012), which 

discovered 13,197 potential DDIs. In the follow-up in vitro study, Han et al. validated the 

loratadine-simvastatin myotoxicity interaction, and its increased myopathy risk in both 

EMR and FAERS databases (Han et al., 2015). Similarly, Schelleman et al. examined the 

increased risk of hypoglycaemia with co-administration of fibrates and statins in 

sulfonylurea users in a pharmaco-epidemiology study (Schelleman et al., 2014). This DDI 

was further evaluated in an in vitro in vivo extrapolation (IVIVE) pharmacokinetic model.  
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High dimensional drug interactions (HDDIs), i.e. DDIs with three or more drugs, 

have not yet been broadly investigated. There are a few examples of clinical PK studies, 

in vitro PK experiments, and IVIVE PK models that evaluate interactions among 3 or 

more drugs. Co-administration of gemfibrozil and itraconazole were shown to increase 

repaglinide plasma exposure to a greater extent than either one alone (Niemi, Backman, 

Neuvonen, & Neuvonen, 2003). Zhang et al. found an additive PK model, including 

mechanism-based and competitive components, best described the in vitro inhibition of 

midazolam metabolism by erythromycin, diltiazem and their metabolites (X. Zhang, 

Jones, & Hall, 2009). Through IVIVE, this model was confirmed in vivo in mice (X. Zhang, 

Quinney, Gorski, Jones, & Hall, 2009). On the other hand, to our knowledge, there are 

no studies of three way drug interactions using pharmaco-epidemiology studies. 

Proportional reporting ratio (PRR) (Evans et al., 2001), the reporting odds ratio (ROR) 

(van Puijenbroek et al., 2002), the information component (IC) (Bate et al., 1998), and 

the empirical Bayes geometric mean (EBGM) (DuMouchel, 1999) have been proposed 

for detection of drug-ADE signals. However, these methods are focused on ADE 

detection for single drugs, not drug combination. To overcome this limitation, we have 

recently developed a new method, a mixture drug-count response model (MDCM). This 

model focuses on detecting high dimensional drug interactions, and characterizes the 

drug-count response relationship between the number of co-administered drugs and an 

ADE. We have successfully demonstrated its statistical and computational performance 

in a recent publication (P. Zhang et al., 2015). 
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In this chapter, we will use this newly developed MDCM to detect HDDIs that 

lead to increased risk of myopathy in two independent databases: Indiana Network of 

Patient Care - CDM (INPC-CDM) electronic medical record and FAERS. Using in vitro 

cytochrome P450 (CYP) inhibition data and mechanistic static in vitro in vivo DDI 

predictions, we evaluate the potential pharmacological mechanisms of these HDDIs. 

4.2 Materials and Methods 

4.2.1 Indiana Network of Patient Care (INPC) Electronic Medical Record 

INPC-CDM data was derived from INPC patients between 2004 and 2015, 

following CDM Version 5.0 guideline (http://omop.org/CDM). The INPC-CDM consists of 

structured data detailing medical conditions, medications, and lab tests of patients. 

Using this data set, we have identified myopathy patients, as defined in our previous 

paper (Duke et al., Table S6 (Duke et al., 2012)). The myopathy case definition contains 

both severe symptoms, such as rhabdomyolysis, and mild symptoms, such as muscle 

weakness. The myopathy cases include the first myopathy event recorded for a patient 

and cases in which no other myopathy event occurred within the past 6 months. For 

each case, ten controls were selected from records within the same time-frame (anchor 

time-matched) and matching demographic criteria. These controls did not have any 

myopathy events recorded in the INPC-CDM data set. Under each anchor time in both 

cases and matched controls, a one-month drug exposure window was generated. Drugs 

were coded as present if their prescription time periods overlapped with the drug 

exposure window. Drug names were normalized to their DrugBank IDs. The INPC-CDM 

data set has 450,673 cases and 4,506,730 controls. This case/control design for the 



 

57 

myopathy using the INPC-CDM database was similar to that used in our previous 

publications (Fahmi et al., 2008; Han et al., 2015; P. Zhang et al., 2015). 

4.2.2 FDA Adverse Event Reporting System (FAERS) 

In FAERS, myopathy cases were similarly identified using the same terms we 

used in the INPC-CDM (Table 4.1). There were 136,791 myopathy cases, and 3,969,842 

controls identified in the FAERS. The drug names were mapped to their DrugBank IDs. 

4.2.3 Drug Selection Criteria and Data Curation 

- Only FDA-approved drugs included 

- Selected by frequency >0.5% in both INPC and FAERS databases 

- Myopathy risk identified in SIDER 

- Limited to 30 drugs due to computational expense of MDCM 

Pharmacokinetic parameters required for in vitro in vivo extrapolation of AUCR 

(Cmax, fu, fm, Km, Vmax, Ki) were curated from Goodman and Gilman (Goodman, Gilman, 

Brunton, Lazo, & Parker, 2006) or published literature identified in PubMed. Cmax 

obtained from literature review (Goodman et al., 2006) was used as the inhibitor 

concentration [𝐼]. This conservative approach to estimate maximal inhibition has been 

used by others (Lu, Miwa, Prakash, Gan, & Balani, 2007). If a pharmacokinetics 

parameter was reported in multiple sources, the sample mean was used.  

The fm data was curated from several different types of published studies. Most 

of the fm data were estimated from substrate depletion studies in human liver 

microsomes, in which the substrate is incubated with or without CYP-selective inhibitors 

(Huskey et al., 1995). The percentage inhibition caused by the CYP-selective inhibitor 
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reflects the fm of drug for this CYP. The fm can also be estimated through in vivo 

pharmacokinetic studies comparing the AUC or clearance of a substrate in the presence 

and absence of a CYP-selective inhibitor (Creighton et al., 2008) or in a pharmacogenetic 

PK study where it can be calculated from the fold-change in exposure of a victim drug in 

extensive metabolizers compared to poor metabolizers (Ito et al., 2005; P. Zhang et al., 

2015). 

4.2.4 A Mixture Drug-Count-Response Model for the High-Dimensional Drug Effect on 
Myopathy 

In 2015, our group developed a mixture drug-count-response model (MDCM) for 

identifying high-dimensional drug interaction-induced ADEs (P. Zhang et al., 2015). In 

the MDCM, i is denoted as the number of drugs for i-way drug combinations; j is the jth 

i-way drug combinations; 𝑛௜௝ is the total number of patients taking jth i-way drug 

combination; and 𝑦௜௝  is the number of cases among those 𝑛௜௝ patients. The parameter 𝜋 

represents the proportion of drug combinations that follow the drug-count-response 

model. The probability distribution of 𝑦௜௝  is defined as the following mixture model  

𝑃(𝑦௜௝) = (1 − 𝜋 )𝐵𝑖𝑛൫𝑛௜௝, 𝑦௜௝ , 𝑃௖௢௡௦௧൯ + 𝜋 𝐵𝑖𝑛൫𝑛௜௝, 𝑦௜௝ , 𝑃௖௢௨௡௧൯            (Eq. 1) 

where 𝑃௖௢௡௦௧ and 𝑃௖௢௨௡௧ represent a constant ADE risk probability and a drug-count-

response ADE risk probability respectively: 

𝑃௖௢௡௦௧ =
ୡ×ୣ୶୮ (ఉబ)

ଵାୣ୶୮ (ఉబ)
, 𝑃௖௢௡௦௧  =

ୡ×ୣ୶୮ (ఉబାఉభ(௜ିଵ))

ଵାୣ୶୮ (ఉబାఉభ(௜ିଵ))
.  

After applying MDCM to both FAERS and INPC-CDM data, a local false discovery rate 

(LFDR) is calculated for each drug combination. A LFDR demonstrates the significance of 
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a drug combination that follows the drug-count-response model. Then, all the drug 

combinations are ranked based on the LFDR accordingly. 

𝐿𝐹𝐷𝑅 =
(ଵିగ)஻௜௡൫௡೔ೕ,௬೔ೕ,௉೎೚೙ೞ೟൯

(ଵିగ)஻௜௡൫௡೔ೕ,௬೔ೕ,௉೎೚೙ೞ೟൯ାగ஻௜௡൫௡೔ೕ,௬೔ೕ,௉೎೚೙ೞ೟൯
                                (Eq. 2) 

This MDCM allows different drug combinations to share the same risk probabilities, 

either a constant risk or a drug-count-response risk. This strategy overcomes the small 

sample size in each high dimensional drug combination. In this chapter, we evaluate the 

dimension of the drugs taken from single drug to 5 co-administered drugs.  
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INPC – CDM FAERS 
Disorder of skeletal muscle (Myopathy) Myopathy 
Muscle pain (Myalgia and myositis) Myositis 
 Myalgia 
Muscle, ligament and fascia disorders 
(Rhabdomyolysis) 

Rhabdomyolysis 

Muscle weakness Muscular weakness 
Polymyositis Polymyositis 
Myoglobinuria Myoglobinuria 
 Muscle spasms 
 Muscle injury 
 Muscle fatigue 

Table 4.1 Myopathy phenotype definition 
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4.2.5 Sensitivity Data Analysis 

Overlapping and mutually validated significant (LFDR < 0.05) high dimensional 

drug combinations between FAERS and INPC-CDM data were further evaluated. In the 

follow-up sensitivity analyses, a sequential logistic regression was conducted to 

compare myopathy risk between any two adjacent dimensions of drug combinations, 

for example 1-way vs 2-way, 2-way vs 3-way, etc. The logistic regression model included 

the demographic, and the number of other co-medications as covariates to adjust for 

the confounding effects.  

4.2.6 High Dimensional Drug Interaction In-Vitro to In-Vivo Extrapolation (IVIVE)  

A substrate’s clearance (CLtotal) is composed of hepatic clearance (CLH) and renal 

clearance (CLR), 𝐶𝑙௧௢௧௔௟ = 𝐶𝑙ு + 𝐶𝑙ோ. The ratio of area of under the concentration-time 

curve in the presence and absence of inhibitor (AUCR) is defined in (Eq 3), where C𝑙ு
ᇱis 

the hepatic clearance of the substrate drug after inhibition (Ito, Brown, & Houston, 

2004). 

                                                        AUCR =
஺௎஼ᇲ

஺௎஼
=

େ௟೟೚೟ೌ೗

େ௟೟೚೟ೌ೗
ᇲ =

େ௟ಹାେ௟ೃ

େ௟ಹ
ᇲାେ௟ೃ

                           (Eq. 3)                              

Let the fraction of the renal clearance (𝑓௘) =
େ௟ೃ

େ௟ಹାେ௟ೃ
 , and C𝑙ோ = C𝑙ு ൭

𝑓௘
1 − 𝑓௘

ൗ ൱, and 

the AUCR can be further defined as  

AUCR =
1

(1 − 𝑓௘)
C𝑙ு

ᇱ

C𝑙ு
+ 𝑓௘

 

For high clearance drugs in which CLint approaches hepatic blood flow, C𝑙ு is limited by 

hepatic blood flow rate, and significant hepatic inhibition is unlikely. For the low 
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clearance drugs, ஼௟ಹ
ᇲ

஼௟ಹ
=

௙ೠ஼௟೔೙೟
ᇲ

௙ೠ஼௟೔೙೟
=

஼௟೔೙೟
ᇲ

஼௟೔೙೟
= ∑ 𝑓𝑚௜

஼௟೔೙೟,೔
ᇲ

஼௟೔೙೟,೔
, where 𝑓𝑚௜  is the fraction of 

metabolism by CYP enzyme (i) , and ∑ 𝑓𝑚௜
௡
௜ୀଵ = 1 where n is the number of metabolism 

routes. 

When there is only one inhibitor and one metabolizing enzyme, Ito et al. (Ito et 

al., 2004; Ito et al., 2005) showed that the change in clearance in the presence of a DDI 

can be predicted as ஼௟೔೙೟,೔
ᇲ

஼௟೔೙೟,೔
=

ଵ

ଵା
[಺]

ೖ೔

, where[𝐼] is fraction unbound concentration of the 

inhibitor and Ki is the competitive inhibition constant. If there are inhibitors on the same 

enzyme, the inhibitors’ effects are assumed to fit an additive model (Rostami-Hodjegan 

& Tucker, 2007). The AUCR for inhibition of a single enzyme then becomes 

𝐴𝑈𝐶𝑅 =  
𝐶𝑙௜௡௧,௜

ᇱ

𝐶𝑙௜௡௧,௜

=
1

1 + ቆ∑
ൣ𝐼௝൧
𝑘𝑖௝

௃
௝ୀଵ ቇ

 

When considering multiple inhibitors and multiple enzyme pathways, the AUCR is 

predicted by equation 4 (Lu et al., 2007): 

𝐴𝑈𝐶𝑅 =
ଵ

(ଵି௙೐) ∑ ௙௠೔×
భ

భశቌ∑
ቂ಺ೕቃ

ೖ೔ೕ

಻
ೕసభ

ቍ

೙
೔సభ  ା ௙೐

                                    (Eq. 4) 

We used this method to predict the AUCR for each substrate drug in the presence of 1- 

to 4- inhibitors. 

4.3 Results 

4.3.1 Drug Selections 

As our MDCM is computationally expensive, we limited this analysis to top 30 

drugs. After normalizing drug names by their DrugBank IDs, 1,238 and 1,716 FDA 

approved drugs were identified in the INPC-CDM and FAERS datasets. Of these, after 
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selecting drugs 268 and 172 drugs in INPC-CDM and FAERS, respectively, had a relative 

frequency ≥0.5%, with 119 drugs overlapping both databases. Among these 119 drugs, 

95 have reported myopathy risk according to SIDER (http://sideeffects.embl.de/). We 

curated the in vitro pharmacokinetic data for these 119 drugs to determine their 

potential to interact via CYP450 inhibition. Nine drugs had reported fraction metabolism 

(fm) by human CYP450 enzymes. These drugs were evaluated as substrates for the 

prediction of area under the concentration-time curve ratio in the presence to absence 

of inhibitor (AUCR). Published competitive inhibition (ki) values for at least one CYP450 

enzyme were available for 64 of the drugs. The top 23 drugs with inhibition ranked by 

௙ೠ×஼೘ೌೣ

௞೔
 were selected as inhibitors (Figure 4.1). 

4.3.2 INPC-CDM and FAERS Show Strikingly Different Drug-Count Myopathy Response 
Mixture Models 

Under the MDCM, each drug combination has a probability of being assigned to 

either a drug-count myopathy response model or a constant myopathy risk model. The 

drug-count response model and constant model share the same myopathy risk when 

subjects take only one drug. The drug-count myopathy response model captures the 

overall trend of the nonlinear relationship between the number of co-administered 

drugs and myopathy risk. It also characterizes a constant myopathy risk and the 

maximum myopathy risk as the number of co-administered drugs increases. Strikingly, 

the drug-count response model demonstrated very different trends between drug 

combinations and myopathy risk in INPC-CDM and FAERS databases. INPC-CDM had 

constant myopathy risk of 0.42, and maximum risk of 0.74; while FAERS data shows 
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constant risk of 0.07 and a maximum risk of 1.0 (Figure 4.2). In the INPC-CDM, the 

maximum myopathy risk occurs when the four drugs are co-administered. However, in 

the FAERS, the myopathy risk continues to increase beyond 5-drug combinations. 
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Figure 4.1 Drugs selection flow chart 
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Figure 4.2 Mixture dose-response model curve for both INPC and FAERS data. Red dash line is the baseline risk estimated; Blue dash 

line is maximum risk estimated. 
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4.3.3 Overlapping Drug Combinations in INPC-CDM and FAERS 

The drug-count-response mixture model generates a local false discovery rate 

(LFDR) statistic that allows us to differentiate drug combinations that are more likely to 

follow the drug-response myopathy risk model than the constant risk model. Figure 4.3 

shows the percentage of overlapping drug combinations that are shared between two 

databases, with a LFDR of 0.05. We see strong and consistent evidence of increased 

myopathy risk with an overlap of 37-40% of 2-way to 5-way drug combinations shown to 

increase myopathy risk in both databases.   

4.3.4 The Overall Trend of High Dimensional Drug Interactions in Pharmacokinetics 
Predicted by IVIVE 

One common mechanism of drug-drug interaction occurs through inhibition of 

drug metabolism.  In order to assess whether the potential DDIs identified by pharmaco-

epidemiology evidence are due to pharmacokinetic drug interactions, we used IVIVE to 

evaluate the change in drug exposure between a drug administered alone and co-

administered with 2-, 3-, or more drugs. In the IVIVE prediction, CYP substrates and CYP 

inhibitors are differentially defined. Among our 30 selected drugs, nine are CYP 

substrates with curated fm, fe, and fu data from the literature. We also obtained the ki, fu, 

and Cmax for 23 drugs identified as CYP inhibitors. These data were combined through 

IVIVE to predict the area under the concentration time curve ratio (AUCR) for 156 two-

way, 1302 three-way, 6971 four-way, and 26901 five-way drug interaction combinations 

(Figure 4.4). When we look at all the AUCR data under different dimensions of drug 

interactions, their medians, 75th percentiles, and the maximum AUCRs all reach a 

maximum plateau with the co-administration of 3 drugs. 
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4.3.5 Significant Three-way Drug Interactions and Their Sensitivity Analyses  

Among the 9 substrates and 23 inhibitors, 28 three-way drug interactions have a 

predicted AUCR >2 and a LFDR from the MDCM model < 0.05. We hypothesized that 

among these drugs, the risk of myopathy would increase as the number of co-occurring 

drugs increased. Therefore, for each 3-drug combination we evaluated myopathy risk 

between individuals taking 1 drug vs any 2-drug combination, and between 2-drug and 

3-drug combinations. One drug-triplet showed a strong increasing trend in myopathy 

risk: omeprazole, clonidine, and fluconazole (Figure 4.5) after adjusting for the number 

of additional co-medications, age, and gender. In the FAERS data set, taking any two of 

these three drugs together increased the risk of myopathy by 1.88-fold compared to 

taking any of the drugs alone (p = 0.012). Taking the 3-drug combination of omeprazole, 

clonidine and fluconazole increased the risk of myopathy by 5.01-fold compared to the 

2-drug combinations (p = 0.000012). In the INPC-CDM, taking any two of these drugs 

concurrently increased the risk of myopathy by 1.75-fold (p=7.8E-13) and taking all 

three together increased the risk by 4.18-fold (p=0.0069) compared to taking one drug 

and two drugs, respectively. Similar comparisons of 2- and 3-drug combinations to 1- 

and 2 drug combinations for the other 27 drug triplets examined did not reveal 

significantly increased myopathy risk in both data sets for other drug combinations 

(Table 4.2). 
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Figure 4.3 Overlapped drug combination between INPC and FAERS dataset. * LFDR < 

0.05 
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Figure 4.4 Simulated AUCR of 2-way to 5-way drugs combination. Only AUCR>=1.25 are 

reported here.  
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Figure 4.5 Group-wise odds ratio analysis; OMZ is omeprazole or esomeprazole; CLN is clonidine; FLU is fluconazole 
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Drugs LFDR AUCR INPC-CDM FAERS 
Substrate Inhibitor 1 Inhibitor 2 INPC FAERS AUCR AUCR1 AUCR2 OR Total Case G12 G23 OR Total Case G12 G23 

omeprazole Fluconazole clonidine 5.67E-03 2.68E-03 9.35 5.06 1.45 18.46 37 24 2.64E-12 4.18E-01 6.41 105 19 1.38E-01 2.00E-01 
esomeprazole Fluconazole clonidine 1.40E-04 7.14E-12 8.51 5.17 1.35 36.67 28 22 1.34E-04 4.35E-02 13.04 100 31 1.09E-01 7.64E-06 
a- omeprazole/ 
esomeprazole Clonidine fluconazole           24.21   7.77E-13 6.88E-02 8.73   1.15E-02 1.22E-05 
esomeprazole Fluconazole acetaminophen 4.22E-14 5.38E-04 5.20 5.17 1.01 18.77 279 182 5.13E-05 5.06E-02 5.20 922 140 3.75E-07 9.67E-02 
esomeprazole Fluconazole trazodone 6.57E-04 2.78E-06 5.19 5.17 1.01 17.31 71 45 3.83E-24 8.04E-01 10.45 68 18 1.22E-01 1.04E-01 
esomeprazole fluconazole fentanyl 7.06E-08 2.28E-15 5.18 5.17 1.01 39.09 54 43 2.88E-24 4.96E-01 8.09 303 66 6.21E-18 2.30E-01 
esomeprazole fluconazole metoclopramide 3.40E-06 1.29E-09 5.17 5.17 1.00 36.67 42 33 1.20E-09 9.91E-02 6.46 368 67 1.66E-01 9.00E-01 
esomeprazole fluconazole tramadol 1.76E-02 3.69E-10 5.17 5.17 1.00 15.88 44 27 4.70E-03 4.40E-01 8.69 165 38 1.42E-01 2.76E-02 
esomeprazole fluconazole levofloxacin 9.02E-03 1.41E-23 5.17 5.17 1.00 16.88 43 27 1.29E-16 6.44E-01 9.15 363 87 7.19E-01 8.97E-01 
esomeprazole fluconazole ciprofloxacin 1.06E-03 4.06E-14 5.17 5.17 1.00 18.42 54 35 1.68E-05 1.00E-01 7.02 411 80 4.42E-04 2.95E-01 
omeprazole fluconazole acetaminophen 1.25E-21 4.09E-13 5.10 5.06 1.02 18.67 450 293 3.78E-48 4.57E-02 5.67 1109 181 1.28E-01 4.15E-01 
omeprazole fluconazole trazodone 4.12E-04 6.72E-16 5.08 5.06 1.01 18.26 65 42 4.48E-52 7.03E-01 12.74 141 43 4.50E-01 6.23E-04 
omeprazole fluconazole fentanyl 1.07E-05 3.97E-16 5.08 5.06 1.01 27.69 49 36 4.33E-49 5.47E-01 7.85 343 73 1.21E-03 7.31E-01 
omeprazole fluconazole paroxetine 1.69E-02 1.88E-06 5.06 5.06 1.00 18.00 28 18 1.00E-04 1.70E-01 7.38 148 30 1.94E-03 9.55E-01 
omeprazole fluconazole diclofenac 2.42E-02 2.04E-03 5.06 5.06 1.00 17.78 25 16 8.62E-08 2.30E-01 6.61 97 18 3.57E-01 7.10E-03 
omeprazole fluconazole levofloxacin 2.09E-03 1.93E-37 5.06 5.06 1.00 17.50 55 35 6.35E-25 4.23E-01 9.94 502 128 6.16E-02 5.28E-07 
loratadine fluconazole tramadol 2.11E-03 1.37E-03 3.13 2.65 1.06 22.00 32 22 4.50E-09 6.91E-01 7.52 68 14 8.59E-01 5.49E-01 
loratadine clonidine metoclopramide 2.70E-02 2.40E-02 2.86 2.84 1.00 26.67 11 8 1.74E-05 6.80E-01 7.81 33 7 3.91E-04 8.40E-01 
loratadine clonidine levofloxacin 1.27E-03 4.50E-03 2.84 2.84 1.00 N/A 10 10 7.61E-05 6.96E-01 8.06 46 10 4.58E-01 7.91E-01 
loratadine fluconazole fentanyl 2.32E-02 2.64E-04 2.68 2.65 1.02 35.00 9 7 3.63E-16 6.77E-01 7.46 88 18 1.61E-05 6.22E-01 
loratadine fluconazole acetaminophen 2.57E-19 1.31E-04 2.67 2.65 1.04 39.34 148 118 3.97E-86 3.21E-03 5.86 262 44 1.19E-03 3.68E-01 
loratadine fluconazole metoclopramide 2.50E-03 1.17E-04 2.67 2.65 1.00 100.00 11 10 1.49E-07 2.06E-01 8.88 64 15 1.28E-01 4.15E-01 
loratadine fluconazole levofloxacin 2.14E-04 1.02E-09 2.65 2.65 1.00 80.00 18 16 9.40E-07 6.35E-02 10.24 115 30 4.97E-02 1.16E-01 
venlafaxine tramadol clonidine 5.74E-03 2.47E-07 2.30 2.03 1.06 36.67 14 11 5.97E-08 1.18E-01 11.38 71 20 6.26E-03 5.49E-03 
venlafaxine tramadol fentanyl 1.83E-05 2.69E-29 2.06 2.03 1.03 73.34 25 22 1.30E-22 4.55E-02 15.96 203 72 9.58E-21 1.33E-09 
venlafaxine tramadol trazodone 6.48E-06 7.86E-13 2.06 2.03 1.03 18.00 112 72 2.39E-25 2.05E-01 7.72 281 59 1.64E-05 1.97E-03 
venlafaxine tramadol metoclopramide 7.86E-04 8.81E-16 2.05 2.03 1.02 28.57 27 20 3.39E-16 3.34E-01 12.16 149 44 1.56E-09 4.52E-05 
venlafaxine tramadol ciprofloxacin 1.60E-02 3.45E-12 2.05 2.03 1.00 16.92 35 22 1.30E-20 5.76E-01 14.51 90 30 8.54E-05 5.01E-02 
venlafaxine tramadol acetaminophen 7.15E-17 1.05E-14 2.05 2.03 1.00 17.87 390 250 1.52E-59 1.07E-01 6.10 766 133 2.09E-16 1.04E-04 

Table 4.2 Top 28 3-way drugs interaction combination. G12 and G23 means the p-value of odds ratio compared taken 1 of 3 drugs vs 

2 of 3 drugs, and taken 2 of 3 drugs and 3 of 3 drugs. a. Combine analysis: treated omeprazole and esomeprazole as same drug. 
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The AUCRs of omeprazole due to the inhibition by clonidine and fluconazole 

alone or together were estimated from literature data using mechanistic static 

interaction models (Ito et al., 2005). Omeprazole is a racemic mixture of R- and S-

omeprazole. While both enantiomers are metabolized by CYP2C19 and CYP3A (Figure 

4.6), the fm’s for each pathway are slightly different (Table 4.3). Fluconazole is a well-

known CYP2C19 and CYP3A inhibitor with a median ki value of 5.075 µM and 13.25 µM, 

respectively (Moody, Griffin, Mather, McGinnity, & Riley, 1999; Niwa, Shiraga, & Takagi, 

2005; Wienkers et al., 1996). The ki of clonidine for CYP3A is 0.15 µM (Tanaka, 

Nakamura, Inomata, & Honda, 2006). Incorporating these values into the IVIVE model 

(Equation 4), predicts AUCRs of R- and S-omeprazole of 1.45 and 1.35, respectively, after 

the clonidine inhibition, and 5.06 and 5.17 after fluconazole inhibition. Following co-

administration of the 3 drugs, the AUCRs of R- and S-omeprazole are predicted to be 

9.35 and 8.51, respectively. Alternatively, the fm of omeprazole can also be estimated 

from pharmacogenetics PK study. Venkatakrishnan et al. calculated the fm of 

omeprazole from AUCR of CYP2C19 extensive metabolizer and poor metabolizer 

(Venkatakrishnan, Obach, & Rostami-Hodjegan, 2007; Yasui-Furukori et al., 2004) (fm = 

0.87 for CYP2C19). Using this fm, the AUCR estimated from IVIVE is predicted to be 1.14 

after the clonidine inhibition; 5.99 after fluconazole inhibition; and 7.69 after inhibition 

by both drugs. 

4.4 Discussion 

Using the MDCM, we mined the high dimensional drug interactions among 30 

common drugs in two independent health record databases. We identified a number of 



 

74 

high-dimensional drug interactions that have increased risk of myopathy in both 

databases. This model further reveals interesting differences in the drug-count response 

relationship in the two databases. In the FAERS, the maximum myopathy risk goes to 

almost 1.0 as the dimension of drug combinations increases. Thus, a patient would be 

expected to experience a myopathy event if he/she takes a large number of drugs. On 

the other hand, the maximum myopathy risk in the INPC-CDM data is 0.72. However, 

because it was estimated from a case-control study, this number cannot be simply 

interpreted as a population maximum myopathy risk. Our 1:10 case control design has a 

higher myopathy case frequency (0.09) than the INPC-CDM population myopathy risk 

(0.067) reported previously (Duke et al., 2012). Hence, we anticipate that the population 

maximum HDDI myopathy risk in the INPC-CDM data is less than 0.72. While we observe 

that the maximum myopathy risk is higher in the FAERS database than in the INPC-CDM 

database, it is extremely striking that the frequency in FAERS approaches one. Although 

the maximum myopathy risk in the INPC-CDM data is lower than that of FAERS, it is still 

an extremely common ADE.  

Among the statistically significant three-way drug interactions identified from 

MDCM and validated by two databases, more stringent sequential comparisons are 

further conducted between 1-drug vs 2-drug and 2-drug vs 3-drugs. We further 

demonstrated that omeprazole, clonidine, and fluconazole, exhibited statistically 

significantly increased myopathy risk from single drug to three-drug combination in both 

databases.  
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In parallel to our MDCM model, we evaluated the potential CYP PK interactions among 

the 30 drugs. In the IVIVE high dimensional drug interaction prediction, one drug acts as 

the substrate and the other drugs are assumed to be reversible inhibitors of CYP 

enzymes. Substrate AUCR changes were predicted based the curated in vitro PK data. 

The maximum predicted AUCR was reached with three-drug combinations. In contrast, 

the maximum HDDI myopathy risk observed in the two medical record databases did 

not occur until five drugs were co-administered. This suggests that additional 

mechanisms are responsible for the increased risk of myopathy observed with HDDIs. 

For instance, we have previously shown that the increased risk myopathy with co-

administration of loratadine and simvatstain is due to a pharmacodynamic mechanism 

in the muscle cell (Han et al., 2015). We have also shown that the increased risk of 

myopathy observed when chloroquine is co-administered with simvastatin is the result 

of increased lysosomal OATP1B1 protein degradation (Alam et al., 2016). 
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Figure 4.6 hepatic metabolism drugs interaction between omeprazole, clonidine, and fluconazole. 

  



 

 
 

77 

Drug DBID 1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A unknown CYP 
pathway 

Fe 

Alprazolam db00404 - 4.50% - - 9.80% 1.20% - - 53.00% 31.50% 20.00% 

Duloxetine db00476 41.27% - - - - - 50.06% - - 8.67% - 

esomeprazole db00736 - - - - - 73.00% - - 27.00% - 0.50% 

lansoprazole db00448 - - - - - 67.90% - - 32.10% - - 

Loratadine db00455 - - - - - 20.00% 10.00% - 70.00% - 5.00% 

omeprazole db00338 - - - - - 68.00% - - 32.00% - - 

simvastatin db00641 - - - - - - - - 52.50% 47.50% 10.00% 

Tramadol db00193 14.08% - - - 8.18% 8.89% 23.89% 10.32% 34.63% - 20.00% 

Venlafaxine db00285 0.47% - - - 6.01% - 87.39% - 6.13% - 5.50% 

Table 4.3 Drugs fm and fe 
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As the risk of myopathy consistently increased among 2-way and 3-way 

combinations of omeprazole, clonidine, and fluconazole, we closely examined the 

predicted AUCR using IVIVE for these combinations. Compared to the 1.5-5 fold increase 

in AUCR of R- and S-omeprazole when inhibited by only one drug, either clonidine or 

fluconazole, the co-administration of both drugs with omeprazole led to an AUCR of 8.5-

9.4. As fm is a critical component of predicting the extent of interaction, we evaluated 

the interaction using both in vitro data and data from clinical pharmacogenetic study of 

CYP2C19 to determine omeprazole’s fm. We estimated fmCYP2C19 (0.68) from in vitro 

data mining (McGinnity, Parker, Soars, & Riley, 2000); Roman et al. estimated 

omeprazole clearance is decreased by 50% in CYP2C19 heterozygous patients 

(fmCYP2C19 = 0.5) (Roman et al., 2014); Venkatakrishnan et al. estimated fmCYP2C19 

(0.87) from AUCR of CYP2C19 PMs (Venkatakrishnan et al., 2007; Yasui-Furukori et al., 

2004). The different fmCYP2C19 estimation results AUCR of omeprazole inhibit by 

clonidine and fluconazole range from 7.55-11.74. Although the mechanism of 

omeprazole induced myopathy has not yet been understood, various hypotheses have 

been proposed such as the induction of auto-immune antibodies (Clark & Strandell, 

2006; Sivakumar & Dalakas, 1994), and the irreversible inhibition of potassium-hydrogen 

ATPase in the skeletal muscles (Schonhofer, Werner, & Troger, 1997).  

Recently, Sansone et al. surveyed the Italian National Network of 

Pharmacovigilance Database and found that omeprazole was more frequently involved 

in reports of myopathy than any other non-statin drug (Capogrosso Sansone et al., 

2017). From these evidences, omeprazole is the primary candidate that induced 
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myopathy. In additional, there were sixteen case reports in the literature (Jeon et al., 

2016; Visruthan, Boo, Kader, Ping, & Ong, 2012)) and summarized in a case series that 

associate the use of omeprazole with myopathy (Clark & Strandell, 2006). Among these 

sixteen cases, two were identified as Asians, but the race were not reported among the 

other cases. Similarly, in our database, the race data were incomplete and sometimes 

inaccurate. Hence, the race effect of omeprazole induces myopathy remains unknown.  

One limitation of the MDCM model is its large computational expense. Because 

of this, only a limited number of drugs (i.e. 30) could be screened for high-dimensional 

drug interactions. Thus, screening steps are required to reduce the number of drugs. 

More research is needed to increase the computational efficiency of MDCM. Future 

research will also apply the MDCM model to evaluate the drug-count response patterns 

for other ADEs.    

Although the mechanistic static model is a well-accepted screening tool for 

pharmacokinetic drug interactions, it may over- or under-estimate the extent of 

interaction. Of note, our model only included reversible inhibition and did not consider 

gut wall metabolism effects of inhibitors. Thus, we may have under-estimated the AUCR 

for orally administered drugs. While mechanistic static models have been established to 

predict the effect of mechanism based inhibitors and CYP inducers (Fahmi et al., 2008; 

Mayhew, Jones, & Hall, 2000), these models have not been validated with respect to 

high-dimensional interactions among drugs that inhibit the same enzyme. Additionally, 

interactions in other pathways, such as drug transporters, could be included using more 
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mechanistic and time-dependent modeling techniques. In addition, we utilized Cmax data 

from the literature without respect to the doses of drugs observed in the clinical records. 

This study demonstrates the power to elucidate clinically significant high-

dimensional drug interactions from clinical records. Using two unique data sets, ADE 

case reports from the FAERS and structured electronic medical record data from the 

INPC-CDM, we observed increasing trends in myopathy risk with higher medication 

burden. As a large number of DDIs are the result of PK interactions at the level of CYP 

enzymes, we also estimated the increased exposure of 9 substrate drugs in the presence 

of 2, 3, or more inhibitors. Although we demonstrated that decreased clearance of 

drugs due to CYP inhibition is one source of the increased myopathy risk among 

polypharmacy patients, this mechanism is unable to fully explain the increased risk of 

myopathy observed in subjects taking 4 or more medications. As our computational 

efficiency expands to allow for the evaluation of greater number of drugs using our 

MDCM model, additional pharmacokinetic and pharmacodynamic mechanisms of 

interaction will need to be considered to further account for the increased risk of ADEs 

observed in polypharmacy patients. 
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Chapter 5. Conclusion 

In this research, we create a fm database that will help to predict drug 

interactions. These data characterize all the hepatic CYP450 metabolic pathways and 

their contributions in predicting drug interactions. We therefore further explore and 

predict the drug interactions among these 57 cancer drugs in the following case study. 

In this dissertation, we have further identified fu, Cmax and Ki,u for 32 out of 57 cancer 

drugs through the PubMed literature review. Then, each drugs pair selected from 32 

drugs are further evaluated twice in order to predict their interactions. Each time, one 

drug serves as substrate and the other one serves as inhibitor, and vice-versa. Following 

the FDA DDI guideline(Food & Administration, 2012) and expert experience, an AUCR 

>1.5 is regarded as the moderate or strong DDI evidence. Based on our PBPK model 

based DDI predictions, we find 97 drug pairs with AUCR more than 1.5. After been 

validated in DrugBank, Drugs.com and PubMed, 33 pairs have at least one clear DDIs 

evidence mentioned in DrugBank or Drugs.com or in PubMed. 

Using the MDCM with IVIVE, we mined the high dimensional drug interactions 

among 30 common drugs in two independent health record databases. We identified a 

number of high-dimensional drug interactions that have increased risk of myopathy. The 

predicted AUCR demonstrated the maximum inhibition in CYP enzymes when the 

dimension of drug combination reaches three. In contrast, the maximum HDDI 

myopathy risk observed in the two medical record databases did not occur until five 

drugs were co-administered. This suggests that additional mechanisms are responsible 

for the increased risk of myopathy observed with HDDIs. Using more stringent 
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sequential comparisons between 1-drug vs 2-drug and 2-drug vs 3-drugs, we further 

demonstrated that omeprazole, clonidine, and fluconazole, exhibited statistically 

significantly increased myopathy risk from single drug to three-drug combination in both 

databases. Compared to the 1.5-5 fold increase in AUCR of R- and S-omeprazole when 

inhibited by only one drug, either clonidine or fluconazole, the co-administration of both 

drugs with omeprazole led to an AUCR of 8.5-9.4. As fm is a critical component of 

predicting the extent of interaction, we evaluated the interaction using both in-vitro 

data and data from clinical pharmacogenetic study of CYP2C19 to determine 

omeprazole’s fm (Venkatakrishnan et al., 2007; Yasui-Furukori et al., 2004). We further 

review the risk of myopathy with omeprazole. There are case reports since 1992 and 

case series published by the World Health Organization (WHO) that the use of 

omeprazole may be associated with myopathy (Clark & Strandell, 2006). Recently, 

Sansone et al use Italian National Network of Pharmacovigilance Database to identify 

that omeprazole could be involved in reports of myopathy more frequently than any 

non-statin drug (Capogrosso Sansone et al., 2017). For the first time, we demonstrate 

both clinical impact and pharmacologic mechanism for the omeprazole, clonidine, and 

fluconazole interaction induced myopathy where myopathy has been report associated 

with omeprazole and fluconazole alone in SIDER.  

Finally, we propose a random control approach based nested case-control design 

for EMR/EHR analyses. For a case, random controls are matched patients who have 

same risk factors as the case. While, compared with the dynamic/super control selection 

approach, random control selection relaxes the matching by the cases’ index time 
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restriction, which is the most computational expensive step. We evaluate the 

performances of random control and other control selection approaches by using the 

OMOP gold standard and the INPC-CDM data. The area AUC values by using these 

disproportionality measurements. We observe the random control (AUC: 0.572 – 0.597) 

and all patients analysis (AUC: 0.595 – 0.619) have modest well AUCs. While, the 

dynamic controls (AUC: 0.492 -0.539) and super controls (AUC: 0.482 – 0.538) have less 

powerful detection capability. Through AUC analyses, the random control selection has 

a modest well detection capability. Its average AUC value is only less than the best 

average AUC value. 

In the future, with random control selection, all other ADEs can share same 

controls; we are looking forward to investigating other drug-count responsive patterns 

for other ADEs. Also, because of the limitation of the computation expense MDCM, it 

computationally can handle only a limited number of drugs (i.e. 30). Thus, screening 

steps are required to reduce the number of drugs. More research is needed to increase 

the computational efficiency of MDCM. 
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