
Associations Between Dysmenorrhea Symptom-Based 
Phenotypes and Vaginal Microbiome: A Pilot Study

Chen X. Chen, PhD, RN1, Janet S. Carpenter, PhD, RN, FAAN1, Xiang Gao, PhD, MS2, 
Evelyn Toh, PhD3, Qunfeng Dong, PhD2, David E. Nelson, PhD3, Caroline Mitchell, MD, 
MPH4,5, J. Dennis Fortenberry, MD, MS6

1Indiana University School of Nursing, Indianapolis, IN, USA

2Loyola University Chicago, Stritch School of Medicine, Department of Medicine, Maywood, IL

3Indiana University School of Medicine, Department of Microbiology and Immunology, 
Indianapolis, IN, USA

4Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA

5Obstetrics, Gynecology & Reproductive Biology, Harvard Medical School, Boston, MA, USA

6Indiana University School of Medicine, Department of Pediatrics, Indianapolis, IN, USA

Abstract

Background: Dysmenorrhea is highly prevalent; it places women at risk for other chronic pain 

conditions. There is a high degree of individual variability in menstrual pain severity, the number 

of painful sites, and co-occurring gastrointestinal symptoms. Distinct dysmenorrhea symptom-

based phenotypes were previously identified, but the biological underpinnings of these phenotypes 

are less known. One underexplored contributor is the vaginal microbiome. The vaginal microbiota 

differs significantly among reproductive-age women and may modulate as well as amplify 

reproductive tract inflammation, which may contribute to dysmenorrhea symptoms.

Objectives: The objective of this study was to examine associations between dysmenorrhea 

symptom-based phenotypes and vaginal microbiome compositions on- and off-menses.
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Methods: We conducted a prospective, longitudinal, pilot study of 20 women (aged 15–24) 

grouped into three dysmenorrhea symptom-based phenotypes: “mild localized pain,” “severe 

localized pain,” and “severe multiple pain and gastrointestinal symptoms.” Over one menstrual 

cycle, participants provided vaginal swabs when they were on-menses and off-menses. We assayed 

the vaginal microbiome using 16S rRNA gene sequencing. Permutational multivariate analysis of 

variance tests were used to compare microbiome compositions across phenotypes, with heat maps 

generated to visualize the relative abundance of bacterial taxa.

Results: The vaginal microbiome compositions (n = 40) were different across the three 

phenotypes. After separating the on-menses (n = 20) and off-menses (n = 20) specimens, the 

statistically significant difference was seen on-menses, but not off-menses. Compared to the “mild 

localized pain” phenotype, participants in the “multiple severe symptoms” phenotype had a lower 

lactobacilli level and a higher abundance of Prevotella, Atopobium, and Gardnerella when on-

menses. We also observed trends of differences across phenotypes in vaginal microbiome change 

from off- to on-menses.

Discussion: The study provides proof-of-concept data to support larger studies on associations 

between dysmenorrhea symptom-based phenotypes and vaginal microbiome that might lead to 

new intervention targets and/or biomarkers for dysmenorrhea. This line of research has the 

potential to inform precision dysmenorrhea treatment that can improve women’s quality of life.
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Between 45% to 95% of women of reproductive age experience dysmenorrhea, 

characterized by menstrual pain (Iacovides et al., 2015). Dysmenorrhea leads to school 

absences, lost work hours, impaired physical activity, poor sleep, reduced quality of life 

(Dawood, 2006; Iacovides et al., 2015; Rencz et al., 2017), and increases women’s 

susceptibility to other chronic pain syndromes (Berkley, 2013; Iacovides et al., 2015).

Individual variability in dysmenorrhea has been characterized into three phenotypes: “mild 

localized pain” phenotype (with mild abdominal pain), “severe localized pain” phenotype 

(with severe abdominal pain), and “multiple severe symptoms” phenotype (with severe pain 

at multiple sites and gastrointestinal symptoms; Chen et al., 2018, 2021). These phenotypes 

have been associated with perceived treatment ineffectiveness: Compared to the “mild 

localized pain” phenotype, women in the “multiple severe symptoms” phenotype were more 

likely to perceive common treatments as ineffective (Chen, Carpenter, LaPradd et al., 2020). 

According to the National Institutes of Health’s Symptom Science Model—developed by 

nurse scientists—integrating phenotypic and omics data is essential to understanding 

individual differences in symptom experiences and to developing precision-based symptom 

interventionsh. There is a need to study phenotype-omic associations in dysmenorrhea, so 

new and precision-based interventions can be developed.

The vaginal microbiota may play a role in individual differences in dysmenorrhea 

symptoms. A higher abundance of vaginal lactobacilli was associated with lower 

concentrations of pro-inflammatory immune markers in vaginal fluid (Amabebe & Anumba, 
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2018; Fettweis et al., 2019). Lactobacillus spp. produce lactic acid, elicit anti-inflammatory 

responses, and inhibit pro-inhibitory mediators (Hearps et al., 2017; Ma et al., 2012). In 

contrast, a diverse vaginal bacterial community promotes release of pro-inflammatory 

cytokines in the reproductive tract (Amabebe & Anumba, 2018; Doerflinger et al., 2014; 

Fettweis et al., 2019;), which may exacerbate dysmenorrhea symptoms.

To our knowledge, only one study linked dysmenorrhea to the microbiome within the 

reproductive tract. Among women undergoing hysteroscopy or laparoscopy (Pelzer et al., 

2018), endometrial facultative anaerobes were more abundant in women with dysmenorrhea 

(n = 24) compared to women with menorrhagia (n = 17). However, the cross-sectional 

design did not sample the vaginal microbiome nor account for potential microbiome change 

within a menstrual cycle (Gajer et al., 2012; Hickey et al., 2013). Other limitations were a 

highly select clinical population, invasive sampling, and no measurement of dysmenorrhea 

symptom heterogeneity.

Exploring associations between the vaginal microbiome and dysmenorrhea phenotypes may 

elucidate mechanisms of dysmenorrhea and suggest new avenues for interventions. The 

purpose of the study was to examine associations between dysmenorrhea symptom-based 

phenotypes and vaginal microbiome compositions when women were on-menses and off-

menses. We hypothesized dysmenorrhea symptom-based phenotypes would be associated 

with vaginal microbiome compositions on- and/or off-menses.

Methods

Study Design

In this prospective, longitudinal pilot study, 20 participants provided data at enrollment on-

menses and off-menses.

Sample

The sample size was based on funding availability and funding timeline and was comparable 

to some previous studies involving longitudinal vaginal microbiome sample collections 

(Gajer et al., 2012; Hickey et al., 2013). Inclusion criteria were (a) females aged 14–24; (b) 

onset of menarche > 2 years prior to the study; (c) regular menstrual cycles (24–38 days) for 

3 months preceding enrollment; and (d) in good general health. Exclusion criteria were (a) 

pregnancy or lactation; (b) diagnosis of endometriosis, uterine fibroids, polycystic ovary 

syndrome, or pelvic inflammatory diseases; (c) diagnosis of irritable bowel syndrome or 

inflammatory bowel disease; (d) use of any hormonal contraceptives within 3 months; (5) 

use of any intrauterine device within 30 days; (f) use of any systemic antibiotics within 3 

months; and (g) use of any systemic or vaginal antifungal treatment within 3 months. 

Exclusion criteria were designed to reduce potential confounders of the vaginal microbiome.

Measures

Dysmenorrhea Symptom-Based Phenotypes—Based on previous research findings 

(Chen et al., 2018), we designed one question to identify symptom-based phenotypes. 

Participants were asked, “In the last 6 months, which of the following statements best 
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describes your physical symptoms before or during menstruation?” Response options 

included descriptions about each phenotype: (a) “I usually had only mild abdominal cramps 

or mild, dull abdominal pain/discomfort, but not many other symptoms”; (b) “I usually had 

severe abdominal cramps, but not many other symptoms”; (c) “I usually had severe 

abdominal cramps, severe pain at other locations (e.g., low back, headaches, or pain all 

over), and severe gastrointestinal symptoms (e.g., bloating, diarrhea, and change in bowel 

frequencies)”; and (d) None of the above.

Dysmenorrhea symptom burden was assessed via a 14-item symptom list (Chen et al., 2015, 

2018). Participants rated severity of each symptom from 0 (“not present”) to 10 (“extremely 

severe”). Symptoms included abdominal cramps, dull abdominal pain or discomfort, low 

back pain, pain in the upper thighs, headache or migraines, pain when the bladder was full, 

aches all over, bloating, nausea, vomiting, diarrhea (loose stools), constipation (hard stools), 

more bowel movements than usual, and fewer bowel movements than usual. After summing 

items, total scores ranged from 0 to 140 (greater symptom burden).

Demographic, Health-Related, and Behavioral Data—At enrollment, we collected 

self-reported demographic (age, race, ethnicity, and educational level), health-related 

(menstrual history, health conditions), and behavioral data (e.g., sexual behaviors, hygiene 

behavior, cigarette smoking, alcohol use). At both enrollment and follow-up, we collected 

information about participants’ recent health behaviors, including sexual behaviors and 

recent use of antibiotics and/or probiotics. When participants were on-menses, we asked 

about their use of menstrual products (e.g., tampons, pads, cups).

Vaginal Microbiome

Vaginal Swab Collection.: Participants self-collected vaginal swabs using OMNIgene-

VAGINAL kits (Ottawa, Canada). Compared to provider-collected specimens, previous 

research suggests that self-collected specimens have the same microbial diversity and high 

validity (Forney et al., 2010). Vaginal swabs were collected on-menses (Days 1–3 of the 

menstrual cycle) and off-menses (midcycle day +/−5 days), as research suggests the vaginal 

microbiome profile can change during menstruation (Gajer et al., 2012; Hickey et al., 2013). 

This meant that for each participant the two sample collections were separated by 13 to 20 

days depending on the length of their menstrual cycle. The collection kits allow for ambient 

temperature (−20°C to 50°C) storage for up to 30 days. Upon receipt, the specimens were 

aliquoted into cryovials, barcoded, and frozen at −80°C for later processing and assays.

DNA Extraction.: Nucleic acids were batch extracted from vaginal swab specimens using 

the Epicentre MasterPure™ Complete DNA and RNA Purification Kit. Controls were 

included at all steps to monitor for potential reagent contamination. DNA quality was 

monitored by gel electrophoresis and fluorescent dsDNA assays. Genomic DNA (gDNA) 

was stored at −80°C until used in creating sequencing libraries.

16S rRNA Gene Sequencing.: Multiplexed amplicon sequencing libraries were prepared 

using the NEXTflex 16S V4 Amplicon-Seq Library Prep Kit 2.0 (Perkin Elmer). The 

normalized and pooled libraries were paired-end sequenced on an Illumina MiSeq 
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instrument (Illumina, San Diego, CA), using the 2 × 300 bp v3 chemistry. Sequences were 

filtered and trimmed using DADA2 (version 1.14; Callahan et al., 2016). Forward reads 

were trimmed at 290 bp, and reverse reads were trimmed at 260 bp. Reads with more than 

10 “expected errors” were discarded. Chimeric reads were identified by the default 

consensus method and discarded in DATA2. A total of 5,418 operational taxonomic units 

(OTUs) were generated from 7,056,833 cleaned reads and annotated with BLCA software 

(Gao et al., 2017) using the 16S ribosomal RNA database from NCBI (dated as of 

September 24, 2019). As DNA was not detected in the regent controls, no control sequence 

was used for library construction and sequencing.

Study Procedures

The study was approved by the local institutional review board. Participants were recruited 

through study flyers posted on a university campus and a statewide research volunteer 

registry maintained at the institution. The latter was created for individuals to sign up to 

receive information about ongoing studies. Using the study criteria, the registry manager 

emailed a group of potentially eligible participants (based on age, gender, geographical 

location, and willingness to travel for the study visits) to inform them about the study 

opportunity. Interested potential participants contacted a research assistant, and the research 

assistant obtained their verbal permission for screening over the telephone.

An enrollment visit was scheduled for eligible and interested participants. During the visit, 

the research assistant explained procedures and the consent form before obtaining signed 

assent (aged ≤ 18) and/or signed consent (aged ≥ 18, parents of those aged ≤ 18). 

Participants answered self-report questionnaires through the Research Electronic Data 

Capture (REDCap) online platform (Harris et al., 2009). Research staff trained participants 

to self-collect samples using strategies described previously (Chen, Carpenter, Murphy et al., 

2020). After collecting swabs at home, participants brought them to the clinical research 

center within 2 days.

Data Analysis

Demographic and clinical data were summarized descriptively by phenotypes using IBM 

SPSS Statistics for Windows, Version 26.0 (Armonk, NY: IBM Corp). Dysmenorrhea 

symptom burden scores were compared across phenotypes using the Kruskal–Wallis 

independent sample test.

Microbiome data analysis was performed in R with packages phyloseq and vegan 

(McMurdie & Holmes, 2013). To assess differences in bacterial community composition 

(i.e., beta-diversity) by phenotype, we conducted permutational multivariate analysis of 

variance (PERMANOVA) tests. We first conducted a PERMANOVA test when on- and off-

menses specimens were combined (40 specimens), accounting for dependency between 

specimens from tnhe same individual. Then, we conducted PERMANOVA tests separating 

the 20 on-menses from the 20 off-menses specimens. Non-metric multidimensional scaling 

(NMDS) was used to visualize dissimilarity between phenotypes in a low-dimensional 

space. We compared alpha diversity between phenotypes. Specifically, we used Wilcoxon 
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tests to compare the Shannon indices and the Simpson indices between the “mild localized 

pain” phenotype (n = 12) and “multiple severe symptoms” phenotype (n = 6).

We applied heatmaps to visualize the relationship between samples and their top 100 relative 

abundance OTUs. As the sample size for the “severe localized pain” phenotype was very 

small (n = 2), we compared relative OTU abundance between the “mild localized pain” 

phenotype (n = 12) and “multiple severe symptoms” phenotype (n = 6) during off- and on-

menses stages, respectively. For these two-group comparisons, we compared OTUs with an 

average abundance above 0.5% in at least one phenotype group using Wilcoxon rank-sum 

(WRS) tests and negative binomial methods.

To compare off- to on-menses change between phenotypes, we calculated changes in 

bacteria abundance and used WRS tests and negative binomial (NB) methods to examine 

whether the amount of changes differed between phenotypes. We also used line charts to 

visually compare the amount of changes in abundance between the “mild localized pain” 

phenotype and “multiple severe symptoms” phenotype.

Results

Participant Characteristics

Participants were a mean age of 20.9 ± 3.2 years (minimum–maximum: 15–24 years). Most 

(n = 12, 60%) were White, while 7 (35%) were African American/Black, and one (5%) was 

Asian. None identified as Hispanic or Latino. Eleven (55%) had a bachelor’s degree or 

above. The average menstrual cycle length was 28.5 ± 2.4 days. Average age of menarche 

was 12.3 ± 1.7 years old.

Table 1 shows the demographic, clinical, and behavioral data by phenotypes. Participants 

identified with phenotypes as follows: 12 (60%) “mild localized pain” phenotype, 2 (10%) 

“severe localized pain” phenotype, and 6 (70%) “multiple severe symptoms” phenotype. As 

expected, phenotypes differed significantly in dysmenorrhea burden scores (p = 0.017).

Comparing Vaginal Microbiome Compositions Across Phenotypes

Based on the PERMANOVA test accounting for dependency between specimens from the 

same individual (n = 40), vaginal microbiome compositions were statistically different 

across the three phenotypes (p =.009). Figure 1 shows the dissimilarity of vaginal microbial 

profiles across phenotypes using the NMDS plot (a distance-based plot).

For off-menses biospecimens (n = 20), no differences in bacteria composition across the 

three phenotypes were seen (PERMANOVA p =.394). When comparing only the “mild 

localized pain” phenotype and the “multiple severe symptoms” phenotype off-menses, no 

significant differences were seen in OTU abundance or alpha diversities (p values > .05).

For on-menses biospecimens (n = 20), significant differences in vaginal microbiota across 

the three phenotypes were seen (PERMANOVA p = .006). When on-menses, compared to 

the “mild localized pain” phenotype, participants in the “multiple severe symptoms” 

phenotype had a lower level of Lactobacillus crispatus and a higher abundance of 
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Atopobium, Gardnerella, and Prevotella taxa (see Figure 1). Specifically, those in the 

“multiple severe symptoms” phenotype had a lower level of Lactobacillus crispatus (WRS 

tests: p values ≤ .038), and a higher abundance of four taxa: Atopobium vaginae (WRS tests: 

p values ≤ .012), Sneathia sanguinegens (WRS tests: p = 0.049, NB methods: p values 

≤ .045), Gardnerella vaginalis (WRS tests: p values ≤ .079; NB methods: p values ≤ .011), 

and Prevotella bivia (WRS test: p = .221, NB methods: p = .036). The on-menses alpha 

diversities (measured by Shannon and Simpson indices) were not significantly different 

between the “mild localized pain” phenotype and the “multiple severe symptoms” 

phenotype (p values > .05). In our small sample, the p values were not significant (p values 

> .05) when adjusting for multiple comparisons.

Comparing Changes in Vaginal Microbiome Compositions Across Phenotypes

For changes in bacterial relative abundance from off- to on-menses, we found no statistically 

significant difference between the “mild localized pain” phenotype (n = 12) and “multiple 

severe symptom” phenotype (n = 6; p values > .05). However, trends seen in Figure 2 

suggest that compared to the “mild localized pain” phenotype group, the “multiple severe 

symptom” phenotype group had a larger shift in lactobacilli and nonlactobacilli abundance 

from off- to on-menses. From off- to on-menses, women with the “multiple severe 

symptoms” phenotype had a larger decrease in the Lactobacillus spp. relative abundance and 

a larger increase in Prevotella and Gardnerella.

Discussion

By analyzing the vaginal microbiomes of 20 women on- and off-menses, we found 

differences across three dysmenorrhea symptom-based phenotypes in on-menses vaginal 

microbiome compositions. We also observed differences across phenotypes in vaginal 

microbiome change from off- to on-menses. To our knowledge, this was the first study 

linking the severity of dysmenorrhea and vaginal microbiome compositions at the time of 

menses.

The hypothesis that dysmenorrhea symptom-based phenotypes would be associated with 

vaginal microbiome compositions was supported by findings showing a higher abundance of 

vaginal lactobacilli during menstruation in the mild versus multiple severe phenotypes. High 

abundance of vaginal lactobacilli was associated with lower concentrations of pro-

inflammatory immune markers in vaginal fluid (Amabebe & Anumba, 2018; Fettweis et al., 

2019; Ma et al., 2012). Vaginal lactic acidh produced by lactobacilli elicits anti-

inflammatory responses and inhibits pro-inflammatory mediators (Fettweis et al., 2019; 

Hearps et al., 2017). Vaginal lactobacilli may protect some women from severe 

dysmenorrhea symptoms by limiting the growth of potentially pro-inflammatory bacteria 

and suppressing inflammation.

The hypothesis was also supported by findings showing a higher abundance of potentially 

pro-inflammatory bacteria (Prevotella, Atopobium, and Gardnerella) in the severe versus 

mild phenotype. These bacteria may promote the release of pro-inflammatory cytokines 

(Fettweis et al., 2019; Jean et al., 2019), alter host lipid metabolisms (Jean et al., 2019; 
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Srinivasan et al., 2015), or even result in chronic inflammation (Wiesenfeld et al., 2012), all 

of which may exacerbate dysmenorrhea symptoms.

Findings suggest additional plausible mechanisms in dysmenorrhea that nurse scientists 

could explore. During menstruation, the breakdown of endometrial tissues releases 

phospholipids from cell membranes. Phospholipids are converted into arachidonic acid and 

then into prostaglandins (Iacovides et al., 2015). Certain vaginal bacteria such as 

Gardnerella may ascend to the uterus (Goldenberg et al., 2000; Swidsinski et al., 2013; 

Wiesenfeld et al., 2012) and secrete phospholipase A2 to act on uterine membrane 

phospholipids (Jean et al., 2019; Jones & Al-Mushrif, 1997), resulting in additional 

prostaglandin release (Bennett et al., 1990; Yang et al., 2015). Prostaglandins cause uterine 

muscle contractions, ischemia, hypoxia, and sensitization of nerve endings, all of which 

contribute to menstrual pain (Dawood, 2006). Prostaglandins may get into the circulation 

(Durham et al., 2010; Lundström & Green, 1978) and may contribute to gastrointestinal 

symptoms (e.g., nausea, vomiting, bloating, change in bowel frequency; Dawood, 2006; 

Heitkemper et al., 1991). In addition to promoting the release of prostaglandins, certain 

vaginal bacteria can stimulate the release of pro-inflammatory cytokines (Fettweis et al., 

2019; Jean et al., 2019). Pro-inflammatory cytokines interact with each other and with 

prostaglandins (Yang et al., 2015), potentially amplifying inflammation and dysmenorrhea 

symptoms.

The study provides important information about the temporal stability of the vaginal 

microbiome in relation to dysmenorrhea. Outside of the context of dysmenorrhea, equivocal 

evidence exists regarding the stability of the vaginal microbiome during a menstrual cycle. 

In some studies, the vaginal microbiome community composition was relatively stable 

(Bradley et al., 2018; Chaban et al., 2014), while in others, it changed during menses 

(Eschenbach et al., 2000; Gajer et al., 2012). In addition to sample size and methodology 

differences, discrepancies in results may be due to the interindividual variability in vaginal 

microbiome stability. In fact, research shows that vaginal microbiome stability during 

menses varies considerably among individuals (Gajer et al., 2012; Hickey et al., 2013). For 

some women, changes in potentially pro-inflammatory bacteria (e.g., Prevotella and 

Gardnerella) and beneficial lactobacilli from off-menses to on-menses may be associated 

with a pro-inflammatory profile on-menses. Given individual differences in vaginal 

microbiome stability, it is important to consider vaginal microbiome dynamics in future 

research. Collecting samples on- and off-menses will allow researchers to account for 

temporal variations and further study how vaginal microbiome stability affects women’s 

health. Such knowledge may inform the development of personalized interventions, 

including those that women could use at home or those that might need to be prescribed by a 

nurse practitioner or other provider.

We acknowledge some study limitations. This small pilot study was limited in size, age, and 

ethnic diversity. Our sample size prohibited us from grouping individuals into symptom-

based phenotypes using latent class analysis. We assessed health behaviors but did not 

control for potential confounders (e.g., race, sexual behaviors, douching, menstrual products 

use) given the limited sample size and variation. Some phenotypic comparisons were not 
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significant when adjusting for multiple comparisons. Our results show the need for further 

research in a larger and more diverse group of women.

Conclusion

To our knowledge, this was the first study to examine relationships between dysmenorrhea 

symptom-based phenotypes and vaginal microbiome. Women with more severe 

dysmenorrhea symptom burden had a vaginal microbial profile with lower proportions of 

lactobacilli and higher proportions of potentially pro-inflammatory bacteria when on-

menses. We also observed trends of differences across phenotypes in vaginal microbiome 

change from off- to on-menses. This pilot study provides important preliminary data for 

future research on mechanisms of dysmenorrhea, so new and individualized interventions 

can be developed.
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Figure 1. 
Vaginal Microbiome On-menses Differed Across Phenotypes

OTU: operational taxonomic unit. Each row represents an OTU. Each column represents an 

individual vaginal swab sample. The density of the color in each cell represents the relative 

abundance of the taxon in that sample. Darker colors indicate higher abundance. When on-

menses, compared to the “mild localized pain” phenotype, participants in the “multiple 

severe symptoms” phenotype had a lower level of Lactobacillus crispatus and a higher 

abundance of Atopobium, Gardnerella, and Prevotella taxa.
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Figure 2. 
Vaginal Microbiome Change from Off-Menses to On-Menses

The lines in each plot connect the means of the relative abundance of specific bacteria from 

off- to on-menses. Trends seen in this figure suggest two findings. First, compared to the 

“mild localized pain” phenotype group, the “multiple severe symptom” phenotype group had 

a larger shift in lactobacilli and non-lactobacilli abundance from off- to on-menses. Second, 

from off- to on-menses, women with the “multiple severe symptoms” phenotype had a larger 

decrease in the Lactobacillus spp. relative abundance and a larger increase in Prevotella and 

Gardnerella.
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