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Summary

Background—Bronchopulmonary dysplasia (BPD) results from alveolar simplification and 

abnormal development of alveolar and capillary structure. Survivors of BPD display persistent 

deficits in airflow and membrane and vascular components of alveolar gas diffusion. Despite being 

the defining feature of BPD, various neonatal hyperoxia models of BPD have not routinely 

assessed pulmonary gas diffusion.

Methods—To simulate the most commonly-utilized neonatal hyperoxia models, we exposed 

neonatal mice to room air or ≥90% hyperoxia during key stages of distal lung development: 

through the first 4 (saccular), 7 (early alveolar), or 14 (bulk alveolar) postnatal days, followed by a 

period of recovery in room air until 8 weeks of age when alveolar septation is essentially 

complete. We systematically assessed and correlated the effects of neonatal hyperoxia on the 

degree of alveolar–capillary structural and functional impairment. We hypothesized that the degree 

of alveolar–capillary simplification would correlate strongly with worsening diffusion impairment.
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Results—Neonatal hyperoxia exposure, of any duration, resulted in alveolar simplification and 

impaired pulmonary gas diffusion. Mean Linear Intercept increased in proportion to the length of 

hyperoxia exposure while alveolar and total lung volume increased markedly only with prolonged 

exposure. Surprisingly, despite having a similar effect on alveolar surface area, only prolonged 

hyperoxia for 14 days resulted in reduced pulmonary microvascular volume. Estimates of alveolar 

and capillary structure, in general, correlated poorly with assessment of gas diffusion.

Conclusion—Our results help define the physiological and structural consequences of 

commonly-employed neonatal hyperoxia models of BPD and informtheir clinical utility.
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INTRODUCTION

Bronchopulmonary dysplasia (BPD) is the most prevalent long-term consequence of 

extremely preterm birth.1 BPD is strongly associated with adverse neurodevelopmental and 

pulmonary outcomes with respiratory morbidities lasting well beyond childhood.2–4 The 

mechanical ventilation and supplemental oxygen required to support extremely preterm 

infants has been shown in human and animals studies to disrupt normal alveolar 

development leading to enlarged airspaces, reduced pulmonary microvasculature, and a 

diminished surface area for gas exchange.5–9 Despite improvement in clinical respiratory 

symptoms with time, BPD survivors have a reduced diffusing capacity of the lung for carbon 

monoxide (DLCO) with normal alveolar volume (VA) suggesting larger, more simplified 

alveoli.5,10

While animal models of BPD have assessed the structural consequences of neonatal lung 

injury, the functional consequences have not been well described. Various durations and 

degrees of neonatal hyperoxia have been used to effectively inhibit both alveolar and 

capillary development, resulting in reduced alveolar surface area and capillary density, but 

they have not assessed systematically the impact on alveolar–capillary function.11–14 

Because BPD is defined clinically as dependence on supplemental oxygen,15,16 it would be 

beneficial to assess not only the structural, but also the functional consequences resulting 

from commonly-employed neonatal hyperoxia models to inform their physiological 

relevance.

The pulmonary diffusing capacity, a functional measure of the alveolar capillary unit, is 

determined primarily by the alveolar surface area and the alveolar capillary volume.17–19 

When a gas molecule enters the alveolar space, it first diffuses across the alveolar membrane 

(membrane component), then enters the capillary space and reacts with red blood cell 

hemoglobin (vascular component). We and others have utilized a simple method to assess 

pulmonary gas diffusion per alveolar volume in rodents, termed the diffusion factor for 

carbon monoxide (DFCO), which is the relation between the uptake of carbon monoxide 

(CO) and the dilution of neon (Ne) during a single breath hold.20,21 Using a model of 

neonatal hyperoxia exposure for the first 7 postnatal days, we recently demonstrated that, 

despite recovery in room air, there are persistent structural changes induced by hyperoxia, 
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consisting of larger, more simplified airspaces with normal alveolar volume, that are 

accompanied by functional impairment as evidenced by significant reductions in adult 

DFCO
.21

The purpose of this study was to relate the structural changes resulting from differing 

durations of hyperoxia exposure commonly utilized in the literature, which correspond to 

lung injury during critical stages of pulmonary development, to functional changes as 

measured by DFCO. We hypothesized that increasing the duration of initial neonatal 

hyperoxia exposure would result in more severe alveolar–capillary simplification, as 

evidenced structurally by reduced alveolar surface area and capillary volume, and 

physiologically by impaired pulmonary diffusion. Given that pulmonary diffusion is 

determined predominately by the surface area of the alveolar membrane and the pulmonary 

capillary volume,19,22 we focused our assessment of lung structure on alveolar surface area 

and estimates of pulmonary microvascular volume. The mean linear intercept (MLI), in the 

context of lung volume, estimates alveolar surface area, and assuming that changes in 

alveolar wall thickness are minimal, the volume fraction of the alveolar wall correlates 

roughly with alveolar complexity. We previously demonstrated that these estimates of 

alveolar–capillary structural development and DFco are correlated.21 Therefore, we 

predicted that the degree of alveolar–capillary simplification, as measured by the 

aforementioned stereological estimates of alveolar surface area and alveolar microvascular 

volume, would correlate strongly with the degree of diffusion impairment.

MATERIALS AND METHODS

Murine Neonatal Hyperoxia Exposure Model of BPD

All procedures were approved by the Institutional Animal Care and Use Committee of the 

Indiana University School of Medicine (protocol 10897) and were previously described.21 

For each individual experimental exposure, two or more litters of wild-type C57BL/6J mice 

<12 hr of age and born <12 hr apart were pooled and separated into two equal groups of up 

to eight mice. Half of the pups were placed in a 30″ × 20″ × 20″ propylene chamber in 

which the oxygen concentration was maintained at ≥90% O2 (BioSpherix, Lacona, NY), and 

the other half were maintained in room air (RA; 21% O2). Nursing dams were rotated 

between groups every 48 hr to prevent oxygen toxicity to the dams. Humidity and carbon 

dioxide levels were maintained within the ambient range of the facility. To determine the 

effect of hyperoxic injury during different stages of lung development, pups were 

continuously exposed to hyperoxia for the first 4, 7, or 14 postnatal (P) days, which 

corresponds to the murine saccular phase (P0-P4), early alveolarization (P7), and bulk 

alveolarization (P14). To simulate the period of clinical recovery typically observed in 

preterm infants through childhood and adolescence, mice were allowed to recover in RA 

until 8 weeks of age when alveolar septation is essentially complete,23 at which time all 

structural and functional analyses were performed.

Assessment of Diffusing Factor for Carbon Monoxide (DFCO)

DFCO was assessed with a 3000 Micro GC bench top gas chromatographer (INFICON, East 

Syracuse, NY) using 0.8 ml of test gas (0.5% Ne; 0.5% CO; 21% O2; balance nitrogen) to 
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inflate the lungs over a 6-second breath hold as previously described.21,24 The 6-second 

breath hold was used to minimize the potential for bradycardia which would potentially 

impact cardiac output. Although rare in our experience, any subject that experienced 

significant bradycardia (>10% of baseline) was excluded from analysis. Mice were 

anesthetized with 50 mg/kg pentobarbital i.p., an 18g, 0.05-inch catheter was placed in the 

mid trachea via tracheostomy and secured with suture, and mice were ventilated with a 

flexiVent (SCIREQ, Montreal, Canada) using 21% O2, tidal volume of 10 ml/kg at a rate of 

150 breaths/min, and positive end expiratory pressure of 3 cm H2O. Alveolar volume was 

estimated by the degree of neon dilution in the 0.8 ml test gas solution, following the 6-

second breath hold, as per the American Thoracic Society/European Respiratory Society 

Task Force 19 using the equation VA=VI (FI,Tr/FA,Tr) where VI is the volume of the inhaled 

test gas and FI,Tr/FA,Tr is the ratio of neon concentration before and after dilution of the test 

gas in the alveolar space. Although the volume of the conducting airways (the anatomical 

dead space) would certainly contribute to neon dilution, for simplicity we disregarded it in 

our calculations as we assumed anatomical dead space amongst all treatment groups was 

similar. Each measurement was separated by a 150 sec period of mechanical ventilation to 

ensure disappearance of carbon monoxide and neon from the previous measurement. After 

measuring the DFCO, a whole blood sample was obtained to determine hemoglobin and 

hematocrit concentration using a Hemavet (Drew Scientific, Waterbury, CT).

Lung Histology and Morphometry

Immediately following functional analyses, the lungs were inflation-fixed, processed, and 

embedded in paraffin exactly as previously described.6 Morphometric analyses were 

performed on 7-μm thick transverse sections from the left lung stained with hematoxylin and 

eosin. Shrinkage effects due to paraffin embedding were assumed to be similar amongst the 

experimental groups, and the use of a reference volume and point-counting were employed 

to minimize its confounding effects. From 4–6 randomly-selected sections representative of 

the entire length of the lung, a minimum of 6–8 random total fields were photographed with 

a 5× objective and 12 total random fields that contained distal airspaces were photographed 

with a 20× objective on a Zeiss Axioshop2Plus microscope (Carl Zeiss Inc., Thornwood, 

NY). Images used for morphometric analysis and microvascular volume determination, 

taken at 20× objective, consisted of fields containing alveolar structures, avoiding large 

vessels, or conducting airways. The STEPanizer stereology tool, version 1.0 was used to 

determine alveolar surface area and calculate MLI as previously described.25,26 Pulmonary 

microvasculature was identified by immunohistochemical staining for the endothelial 

marker, von Willebrand factor (vWF; rabbit polyclonal anti-human vWF; dilution 1:2500;

[A0082]; Dako, Carpinteria, CA), using the Vectastain Elite ABC kit (Vector Laboratories, 

Burlingame, CA) with diaminobenzidine (Vector Laboratories) as previously described,6 and 

alveolar microvascular volume was estimated via the STEPanizer tool.

Statistical Analysis

Statistical analyses were performed using Prism software version 6.04 (GraphPad Inc., San 

Diego, CA). Comparisons between experimental groups (RA vs. hyperoxia) were made with 

one way ANOVA using Tukey’s multiple comparison post-test analysis. All data are 

presented as means±SEM (with n≥9 mice per group) and are representative of at least 2–3 

Cox et al. Page 4

Pediatr Pulmonol. Author manuscript; available in PMC 2017 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



independent hyperoxia exposures per time-point. A P-value <0.05 was considered 

statistically significant.

RESULTS

Neonatal Hyperoxia Impairs Alveolar–Capillary Diffusion

Analysis of adult alveolar–capillary function following neonatal hyperoxia demonstrated 

persistently impaired diffusion. Remarkably, impaired diffusion was evident with even the 

shortest duration of oxygen exposure (Fig. 1). Compared to RA controls, DFCO was 

similarly reduced following neonatal hyperoxia exposure from P0-4 to P0-7 (Fig. 1A). 

Animals exposed to neonatal hyperoxia from P0-14 demonstrated a reduction in DFCO that 

was significantly more severe compared to shorter durations of oxygen exposure. As 

calculated by neon dilution, neonatal hyperoxia from P0-4 to P0-7 resulted in similar small 

(~15%) but statistically significant increases in alveolar volume (VA) (Fig. 1B). However, 

VA was significantly increased by ~50% in animals exposed to prolonged (P0-14) hyperoxia 

(Fig. 1B). Hemoglobin values were not significantly different than RA controls following 

any duration of hyperoxia exposure (14.0 ± 0.3 g/dl (RA) vs. 13.2±0.4 g/dl (O2 P0-4) vs. 

14.5±0.4 g/dl (O2 P0-7) vs. 13.6 ± 0.3 g/dl (O2 P0-14); P > 0.05 vs. RA), verifying that 

differences in DFCO did not result from decreases in hemoglobin concentration.

Neonatal Hyperoxia Durably Reduces Alveolar Surface Area

Given the significant reductions we observed in alveolar–capillary diffusion capacity, we 

more closely examined alveolar surface area following neonatal hyperoxia. Representative 

adult lung histology is shown in Figure 2. Compared to mice raised in RA, mice previously 

exposed to hyperoxia from P0-4, P0-7, to P0-14 demonstrated increasing alveolar 

simplification (Fig. 2A–D). Compared to RA controls, mean linear intercept (MLI) of mice 

exposed to hyperoxia showed an almost stepwise increase proportionate to the duration of 

neonatal hyperoxia (Fig. 2E). Unlike estimates of VA, exposure to hyperoxia from either 

P0-4 or P0-7 had no significant effect on lung volume as measured by water displacement 

(Fig. 2F). However, exposure to hyperoxia from P0-14 resulted in a significant 29% increase 

in lung volume compared to RA control mice (Fig. 2F). Estimates of VA by neon dilution 

correlated reasonably well with estimates of lung volume by water displacement (r2 = 0.599, 

P < 0.0001). Consequently, compared to RA controls, the total alveolar surface area was 

similarly and significantly reduced in all hyperoxia-exposed animals (Fig. 2G). Likewise, 

following any exposure to hyperoxia, the volume of the alveolar wall (Vaw) was similarly 

and significantly decreased by at least 20% compared to RA controls (0.062±0.002 ml [RA] 

vs. 0.046±0.002 ml [O2 P0-4] vs. 0.050±0.003 ml [O2 P0-7] vs. 0.046±0.003 ml [O2 P0-14]; 

P < 0.0001 vs. RA) (not shown). Therefore, despite having significantly larger distal 

airspaces compared to animals exposed to shorter durations of hyperoxia, animals exposed 

to neonatal hyperoxia from P0-14 had similar alveolar wall volumes and a relative 

preservation of alveolar surface area owing to the significant increase in lung volume.

Assessment of pulmonary microvascular volume is shown in Figure 3. Although there was a 

downward trend in pulmonary microvascular volume after neonatal hyperoxia exposure 

from P0-4 to P0-7, it was not statistically significant compared to RA. Only hyperoxia 
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exposure from P0-14 resulted in a significantly decreased pulmonary microvascular volume 

when compared to RA controls.

Assessment of alveolar development has largely relied on morphometric and not 

physiological analysis. We therefore, correlated our structural and functional endpoints to 

determine if structure alone can estimate functional diffusion (Fig. 4). None of our 

stereological assessments of alveolar structure were strongly correlated with alveolar 

function. There was a weak but statistically significant correlation between MLI and DFCO 

(r2 = 0.282, P < 0.01) (Fig. 4A), as well as between DFCO and the volume fraction of the 

alveolar septal wall (r2 = 0.224, P < 0.01) (Fig. 4B). Total alveolar surface area correlated 

poorly with DFCO (r2 = 0.084, P > 0.05) (Fig. 4C), and, likewise, there was no significant 

correlation between DFCO and pulmonary microvascular volume (r2 = 0.001, P > 0.05) (Fig. 

4D). Given that DFCO estimates gas diffusion per lung volume, we also assessed the 

correlation between DFCO and stereological estimates of lung structure corrected for lung 

volume. There was a weak but statistically significant correlation between DFCO and 

alveolar surface area per lung volume (r2 = 0.358, P < 0.001) (Fig. 4E). However, there was 

no significant correlation between DFCO and pulmonary microvascular volume per lung 

volume (r2 = 0.036, P > 0.05) (Fig. 4F).

DISCUSSION

The objective of this study was to correlate commonly-employed measures of distal lung 

structural development with alveolar–capillary function following increasing durations of 

neonatal hyperoxia during critical windows of alveolar development. Importantly, we have 

demonstrated that even brief hyperoxic lung injury, limited to postnatal saccular lung 

development, is sufficient to significantly impair development of alveolar surface area and 

reduce functional gas diffusion. Surprisingly, structural estimates of alveolar development 

and assessments of functional diffusion correlated poorly. Our approach lends clinically 

significant functional insight into commonly-employed murine neonatal hyperoxia models 

of BPD, as well as potentially informs pathophysiology of any lung disease that impacts 

alveolar–capillary function.

The defining feature of BPD following extremely preterm birth is prolonged dependence on 

supplemental oxygen.15,16 Despite clinical improvement, children, adolescents, and adults 

recovering from BPD continue to have functional lung impairment with reduced pulmonary 

diffusing capacity.5,10,27–31 Following neonatal hyperoxia exposure, we demonstrated that 

adult mice have a reduced DFCO, signifying a similar impairment in pulmonary gas 

diffusion. Regardless of the duration of hyperoxia, alveolar gas transport was significantly 

inhibited by neonatal hyperoxia exposure. Although chronic exposure (P0-14) resulted in the 

largest decline in DFCO, impaired alveolar–capillary diffusion was nearly as severe with 

brief (P0-4) exposure. The similar reductions in diffusion are likely the result of similar loss 

of alveolar surface area, as evidenced by similar decreases in alveolar surface area and septal 

wall volume regardless of the duration of hyperoxia. Mild alveolar fibrosis observed 

following chronic hyperoxia (not shown) may explain why the efficiency of alveolar–

capillary diffusion in these animals, noted especially after 14 days of hyperoxia, was further 

reduced. Furthermore, we made an assumption that anatomical dead space amongst all 
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exposure groups was similar. However, although anatomical volume was not measured, 

reports have noted abnormal development and function of the conducting airways following 

neonatal hyperoxia.32,33 Therefore, it is possible that increased volume of the anatomical 

dead space could impact our estimates of DFco and alveolar volume and account for some 

of the differences we observed. However, given the relatively large changes in alveolar 

volume (which directly correlated with changes in total lung volume), a significant effect 

due to increased anatomical dead space volume is unlikely. Finally, although we were not 

able to assess for such here, recent evidence suggests that infants with the most severe forms 

of BPD can develop pre-capillary arteriovenous anastomoses, which would further impede 

pulmonary diffusion efficiency.34

Although DFCO was reduced with all durations of neonatal hyperoxia, we were surprised 

that only prolonged hyperoxia (which may not be developmentally relevant to the clinical 

scenario) resulted in reduced pulmonary microvascular volume. Likewise, despite capillary 

volume, by definition, being a major component of total pulmonary diffusion,17 pulmonary 

microvascular volume and DFCO correlated poorly. It has been recently reported that 

extremely preterm infants formerly diagnosed with BPD demonstrated proportional 

reductions in both membrane and vascular components of pulmonary diffusion, consistent 

with autopsy studies demonstrating larger, fewer alveoli with reduced pulmonary capillary 

volume.8,9,28 Likewise, in an animal model of BPD, we formerly demonstrated that 

pulmonary micro-vessels per high-powered field were reduced, which would correlate with a 

reduction in microvascular density per alveolar volume.21 Our current analysis goes one step 

forward and provides a stereological approach to quantitate microvascular volume more 

carefully, which accounts for differences in lung volume that cannot be ascertained by two-

dimensional analysis as is commonly employed. One limitation of our assessment of 

pulmonary capillary volume is the use of von Willebrand staining, which identifies both 

small venuoles and arterioles, and may not be an appropriate surrogate of the pulmonary 

capillary bed.35 Although assessment of capillary structure, via direct visualization of 

capillary structure and/or micro-CT, may have provided a more accurate estimate of 

alveolar–capillary membrane surface area, our objective was to assess commonly-employed 

methods of assessing pulmonary microvasculature, of which von Willebrand staining has 

been reported frequently. Moreover, it is the capillary volume, in combination with the 

membrane surface area, which determines total pulmonary diffusion. Ideally, physiological 

resolution of both components, as has been shown in infants recovering from BPD,28 would 

provide the most accurate estimates of their individual contributions. Additionally, given that 

we previously showed that exposure to neonatal hyperoxia leads to elevations in adult 

cardiac output as a potential compensatory response to reduced alveolar surface area,36,37 it 

is possible that smaller reductions in alveolar microvascular volume with shorter durations 

of neonatal hyperoxia were partially compensated and therefore, were not detected by 

DFCO. Finally, the loss of microvascular volume may help explain why animals exposed to 

prolonged neonatal hyperoxia, despite having similar reductions in alveolar surface area 

compared to shorter durations of neonatal hyperoxia, demonstrated significantly more 

impairment in gas diffusion.

Many prior studies have examined the effect of various durations of neonatal hyperoxia 

(most commonly continuing through the first 4–14 postnatal days) on alveolar lung 
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development.11,12,14,33,38–40 However, despite the diagnosis of BPD being based on the 

physiological need for oxygen, previous models have not adequately assessed the 

relationship between alveolar–capillary structure and diffusion function. Moreover, it has 

been common practice to infer loss of alveolar surface area based on an increase in mean 

linear intercept (MLI), a two-dimensional assessment of lung structure, despite calls to 

carefully quantitate distal lung structure by stereology.25 Similar to previous reports,14,41 our 

results demonstrate a stepwise increase in MLI proportionate to cumulative neonatal 

hyperoxia exposure. However, our stereological estimates of alveolar surface area, which 

unlike MLI account for differences in lung volume,25,26 clearly reveal a similar decrease in 

alveolar surface area whether the insult is confined to saccular (P0-4), saccular/early alveolar 

(P0-7), or the entirety of postnatal saccular and bulk alveolar (P0-14) lung development. 

Likewise, estimation of the volume of the alveolar wall (V(aw)) following all three hyperoxia 

exposures was similarly reduced. Despite the significant increase in MLI with chronic 

neonatal hyperoxia exposure through day 14, an increase in lung volume resulted in the 

relative preservation of alveolar surface area and septal wall volume compared to those 

animals exposed to shorter durations of neonatal hyperoxia. Our findings suggest that the 

effects of neonatal hyperoxia on alveolar septal development are significant very early on, 

where even relatively brief exposures (P0-4) are sufficient to significantly reduce the surface 

area for gas exchange. Although our results reinforce the notion that MLI alone may not be 

adequate to describe the structural changes following hyperoxia exposure, we demonstrate 

that MLI did correlate significantly with DFCO. Thus, our data would support the notion that 

MLI may be a reasonable surrogate for functional diffusion. However, it is important to note 

that none of the measures of distal lung development, including MLI, correlated tightly with 

DFCO, suggesting that it is imperative to compliment structural assessment with functional 

measures. Furthermore, given that we only observed loss of pulmonary microvascular 

volume with prolonged hyperoxia (14 days) and that our assessments of pulmonary 

microvascular development were not significantly correlated with DFCO, our data highlights 

the need to more carefully evaluate current methods which assess microvascular 

development in models of BPD, and develop functional methods to more clearly delineate 

the contribution of the microvasculature to functional gas exchange.

The strength of the neonatal hyperoxia model is its consistent ability to inhibit alveolar 

development, and alveolar simplification is a major and consistent finding in human 

BPD.8,42 However, the murine neonatal hyperoxia model does not recapitulate every aspect 

of human BPD. Infants dying of BPD demonstrate significant interstitial thickening and 

inflammation, features that are not consistently present and of varying magnitude in rodent 

hyperoxia models.8,9,43 Thus, the current model, may not account for ongoing inflammation 

and alveolar wall thickening, both of which could impact pulmonary diffusion. While human 

BPD is associated with mechanical ventilation and exposure to supplemental oxygen, the 

liberal use of oxygen and, therefore, the degree of oxidative stress, has been reduced. Thus, 

the degree of hyperoxia used in murine models, as compared to current-era practices, may be 

less clinically relevant. It is important to note that the murine lung, at birth, is designed to 

develop normally in an environment of 21% oxygen, which is hyperoxic relative to the 

hypoxic intrauterine environment in which a human lung at the same stage typically 

develops. Therefore, it is plausible that the neonatal mouse may require much higher degrees 
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of hyperoxia to recapitulate the same degree of oxidative stress. We utilized >90% oxygen as 

this is the level at which we have documented that despite recovery, alveolar structural and 

functional changes persist.6,21 Furthermore, the resulting alveolar simplification with 

minimal-to-mild fibrosis is similar to the histopathological changes in the limited autopsy 

samples from children with post-surfactant-era, “new BPD.8” Likewise, the impairments in 

alveolar–capillary function we demonstrate with the current model are similar to those 

reported in longitudinal studies of children and adolescents recovering from modern-era 

BPD.10,28,30 Although not without important caveats, the murine neonatal hyperoxia, 

therefore, continues to be a useful pre-clinical model of the structural and functional 

consequences of clinical BPD today.

The method of using DFco to estimate pulmonary diffusion function may not be as precise 

as the clinically-determined values of DLco due to the relatively small size of the mouse and 

the small volume of test gas that can be delivered. The DFco relies on the ratio of carbon 

monoxide uptake to neon dilution to account for “contamination” with ambient air 

introduced to the sample during the procedure and via anatomical dead space. Therefore, the 

DFco more closely approximates pulmonary diffusion per alveolar volume (DLCO/VA), 

which is conceptually different than DLCO which is an absolute measure of diffusion.19,44 

Given the increase in alveolar volume that we observed with increased duration of neonatal 

hyperoxia, it is important to account for changes in alveolar volumes when comparing CO 

uptake between groups. Increased alveolar volume results in increased dilution of CO and 

potentially provides, in a structurally normal lung, increased surface area for diffusion. 

These important distinctions must be accounted for when attributing differences in DLCO to 

differences in alveolar structure. Clinically, both DLCO and DLCO/VA are reduced in infants 

formerly diagnosed with BPD, suggesting reduced efficiency of diffusion per alveolar 

volume due to decreased surface area and/or reduced capillary volume.5,10,27–30 Despite the 

limitations of DFCO, it provides a simple, cost-effective, and convenient method to assess 

pulmonary diffusion in small animals and lends valuable insight into functional impairment.

In summary, we have demonstrated that, whether limited to the saccular or continued 

throughout saccular and bulk alveolar postnatal lung development, neonatal hyperoxia 

results in similar reductions of alveolar surface area and alveolar septal volume. 

Consequently, exposure to neonatal hyperoxia in the saccular period is sufficient to 

significantly impair functional alveolar–capillary gas diffusion efficiency. However, with 

prolonged, chronic neonatal hyperoxia (perhaps beyond the clinically-relevant period), there 

is significantly increased alveolar and total lung volume. Importantly, morphometric 

estimates of alveolar development and direct assessment of alveolar–capillary function are 

poorly correlated. Clinically, the majority of infants that develop BPD experience the bulk of 

lung injury during saccular and early alveolar lung development, suggesting that neonatal 

hyperoxia models employing exposures beyond the first 4–7 postnatal days may be less 

clinically relevant.
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Fig. 1. 
Impact of neonatal hyperoxia on pulmonary diffusion and alveolar volume. (A) Assessment 

of the diffusion factor for carbon monoxide (DFCO) at 2 months of age in animals 

continuously raised in room air (RA), or initially exposed to neonatal hyperoxia (≥90% O2) 

for the first 4, 7, or 14 days after birth followed by recovery in RA. (B) Assessment of 

alveolar volume by neon gas dilution. Values are expressed as means±SEM. ***P < 0.001 

versus RA, **P < 0.01 versus RA, #P < 0.05 versus O2 P0-4, ###P < 0.001 versus O2 

P0-4, $$$P < 0.001 versus O2 P0-7 by one way ANOVA using Tukey’s multiple comparison 

post-test analysis. Results are representative of three independent experiments. n = 10 (RA), 

10 (O2 P0-P4), 18 (O2 P0-P7), 9 (O2 P0-P14).
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Fig. 2. 
Development of Alveolar surface area following neonatal hyperoxia. (A–D) Representative 

hematoxylin/eosin stained lung sections at 2 months of age in animals continuously raised in 

(A) RA, or initially exposed to neonatal hyperoxia (≥90% O2) from (B) P0-4, (C) P0-7, or 

(D) P0-14, followed by recovery in RA. Assessment of (E) mean linear intercept (MLI), (F) 

left lung volume by water displacement, and (G) alveolar surface area. Original images 

obtained with 20× objective. Scale bar = 50μm. Values are expressed as means±SEM. ***P < 

0.001 versus RA, ###P < 0.001 versus O2 P0-4, $$$P < 0.001 versus O2 P0-7) by one way 

ANOVA using Tukey’s multiple comparison post-test analysis. Results are representative of 

three independent experiments. n = 19 (RA), 10 (O2 P0-P4), 12 (O2 P0-P7), 9 (O2 P0-P14).
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Fig. 3. 
Effect of Neonatal hyperoxia on pulmonary microvascular development. Pulmonary 

microvascular volume was assessed using stereological analysis on von Willebrand-stained 

lung sections to identify vessels 20–50μm in diameter. Values are expressed as means

±SEM. *P < 0.05 versus RA by one way ANOVA using Tukey’s multiple comparison post-

test analysis. Results are representative of three independent experiments. n = 11 (RA), 10 

(O2 P0-P4), 12 (O2 P0-P7), 9 (O2 P0-P14).
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Fig. 4. 
Correlation between estimates of distal lung alveolar–capillary simplification and functional 

impairment. Correlation of mean linear intercept (MLI) (A), volume fraction of the alveolar 

septal wall (B), alveolar surface area (C), pulmonary microvascular volume (D), alveolar 

surface area per lung volume (E), and pulmonary microvascular volume per lung volume (F) 

with DFCO. Analysis performed using simple linear regression.
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