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Abstract

Motivation: Network-based genome-wide association studies (GWAS) aim to identify functional

modules from biological networks that are enriched by top GWAS findings. Although gene func-

tions are relevant to tissue context, most existing methods analyze tissue-free networks without

reflecting phenotypic specificity.

Results: We propose a novel module identification framework for imaging genetic studies using

the tissue-specific functional interaction network. Our method includes three steps: (i) re-prioritize

imaging GWAS findings by applying machine learning methods to incorporate network topological

information and enhance the connectivity among top genes; (ii) detect densely connected modules

based on interactions among top re-prioritized genes; and (iii) identify phenotype-relevant modules

enriched by top GWAS findings. We demonstrate our method on the GWAS of [18F]FDG-PET meas-

ures in the amygdala region using the imaging genetic data from the Alzheimer’s Disease

Neuroimaging Initiative, and map the GWAS results onto the amygdala-specific functional interac-

tion network. The proposed network-based GWAS method can effectively detect densely con-

nected modules enriched by top GWAS findings. Tissue-specific functional network can provide

precise context to help explore the collective effects of genes with biologically meaningful interac-

tions specific to the studied phenotype.

Availability and implementation: The R code and sample data are freely available at http://www.iu.

edu/shenlab/tools/gwasmodule/

Contact: shenli@iu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Genome-wide association studies (GWAS) have been performed to

identify genetic markers such as single nucleotide polymorphisms

(SNPs) that are associated with common diseases. In brain imaging

genetics, an emerging field that studies how genetic variation influ-

ences brain structure and function, GWAS also have discovered

genes susceptible to brain imaging quantitative traits (QTs)

(Lambert et al., 2013; Saykin et al., 2015; Shen et al., 2014). Each

identified imaging QT locus (iQTL), however, often has a small

effect size and is hard to be individually interpreted. These iQTLs

can potentially interact with one another to jointly have an impact

on QTs. To address this challenge, integrative analysis of GWAS

data with prior-knowledge has gained recent attention to test collec-

tive effects of multiple genes on targeted phenotypes. Using biologi-

cal networks and pathways as prior knowledge, construction and

identification of functionally interacted network modules have been

performed to discover phenotype-relevant network modules

enriched by the GWAS findings. This promising strategy can poten-

tially enhance the statistical power of the GWAS and help biological

interpretation (Akula et al., 2011; Hirschhorn, 2009; Ideker and

Krogan, 2012; Jia et al., 2011; Wang et al., 2015).

Existing module identification studies typically search for dis-

ease- or QT-relevant modules by mapping GWAS statistics onto a

functional interaction network. After that, candidate modules are

formed across the entire network and evaluated on whether they are

enriched by the GWAS findings. A successful example is dense mod-

ule GWAS (dmGWAS) (Jia et al., 2011), which first loads gene-level

p-values onto human protein–protein interaction network as node

weights, then applies dense module searching strategy to identify

modules that locally maximize the proportion of genes with small

enough P-values. Network interface miner for multigenic interac-

tions (NIMMI) is another network-based GWAS approach (Akula

et al., 2011), where phenotype-relevant modules are constructed

from high-scored genes and their scores are computed by combining

GWAS P-values with node weights calculated based on their net-

work connectivity. The integrative protein-interaction-network-

based pathway analysis (iPINBPA) method is also a network-based

GWAS approach (Wang et al., 2015) and is an extension of the orig-

inal PINBPA (Baranzini et al., 2009). It starts from a seed and

expands the module by adding one neighbor at a time to reach an

aggregate score meeting a given statistical significance. Note that all

these approaches employ a bottom-up strategy that examines a large

number of candidate modules in order to identify enriched ones, and

their efficiencies could become suboptimal when large-scale net-

works are present.

Almost all the network-based GWAS are using tissue-free inter-

action networks such as the human PPI network without taking tis-

sue specificity into consideration. The precise functions of genes are

highly related to their tissue context, and human diseases often

result from the disordered interplay of tissue-specific processes

(Greene et al., 2015). Recently, tissue-specific genome-wide func-

tional interaction networks have been constructed in order to iden-

tify the changing functional roles of genes across tissues (Greene

et al., 2015). One application of tissue specific networks is to re-

prioritize disease-gene associations by constructing a support vector

machine (SVM) classifier to re-rank GWAS results based on tissue-

specific network information. This strategy is named as NetWAS,

and has been applied to analyze hippocampus volume in

Alzheimer’s disease and demonstrated that tissue-specific networks

could provide helpful context for understanding complex human

diseases (Song et al., 2016). Note that SVM classification requires

a pre-defined threshold to partition GWAS P-values into significant

and nonsignificant groups, and important information embedded in

the continuous spectrum of these P-values get lost during the

procedure.

With the above observations, we expand the NetWAS work into

a new framework to achieve two goals at one time: (i) introduce

regression models in addition to classification models for re-

prioritizing GWAS results with network information; (ii) use the re-

prioritized results to identify GWAS-enriched network modules. In

short, we propose an innovative phenotype-relevant module identifi-

cation method by integrating GWAS data and tissue-specific net-

work with effective machine learning models. First, in addition to

traditional NetWAS using SVM, we re-prioritize GWAS results by

constructing two regression models (support vector regression and

ridge regression) using tissue-specific functional interaction network

as features and continuous GWAS P-values as responses. We then

extract densely connected modules from top NetWAS findings based

on their functional interactions. Finally, GWAS findings are used to

test the enrichment significance on these candidate modules to iden-

tify phenotype-relevant ones.

Compared with traditional GWAS-based module identification

methods and SVM-based NetWAS, the novelty of the proposed new

framework is threefold: (i) Our framework expands the NetWAS

scope from re-prioritizing GWAS findings to module identification.

(ii) Our framework introduces regression models into NetWAS to

embrace the complete coverage of the continuous P-value spectrum.

(iii) Our framework offers a more efficient, top-down strategy to

identify phenotype-relevant network modules, given that the top

findings from NetWAS are designed to be both GWAS-enriched and

densely connected.

To show the effectiveness of the proposed framework, we compare

support vector regression (SVR) and ridge regression (Ridge) with

SVM to illustrate that continuous GWAS P-values supply more valua-

ble information than binary significant/non-significant labels. We also

compare the NetWAS re-prioritized results with original GWAS find-

ings to show that the former is more densely connected than the latter.

Identified modules are further tested for functional association by

KEGG pathway, Gene Ontology Biological Process and Online

Mendelian Inheritance in Man (OMIM) disease databases, to demon-

strate that tissue-specific networks may provide helpful context for

understanding the mechanisms behind complex diseases.

2 Materials and methods

To demonstrate the proposed NetWAS-based method for identifying

phenotype-relevant functional interaction modules, we apply it to

the amygdala imaging genetic analysis in the study of Alzheimer’s

disease (AD). The amygdala is located in the medial temporal lobe

region of the brain and has been implicated in emotional processes,

survival instincts and aspects of memory, especially for emotional

components. Analyses on amygdala have indicated that it is promi-

nently related to AD and its progression (Fjell et al., 2010; Palmer

et al., 2007; Poulin et al., 2011) and has been used to assist the clini-

cal diagnosis of AD (Tang et al., 2014). Studies on fluorodeoxyglu-

cose [18F]FDG-PET have demonstrated different usage patterns of

glucose metabolism in amygdala between AD and healthy control

subjects (Johnson et al., 2012).

2.1 Imaging data, genotyping data and GWAS
The imaging and genotyping data used for GWAS were obtained

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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database (adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test whether

serial magnetic resonance imaging (MRI), positron emission tomog-

raphy (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression

of mild cognitive impairment (MCI) and early Alzheimer’s disease

(AD). For up-to-date information, see www.adni-info.org.

Preprocessed [18F]FDG-PET scans were downloaded from the

LONI website (adni.loni.usc.edu), then aligned to each participant’s

same visit scan and normalized to the Montreal Neurological

Institute (MNI) space as 2� 2� 2 mm voxels. FDG measurements

of amygdala (left and right) were further extracted based on the

MarsBaR AAL atlas. Genotype data of both ADNI-1 and ADNI-

GO/2 phases were also obtained from LONI, and quality controlled,

imputed and combined as described in (Kim et al., 2013). 989 non-

Hispanic Caucasian participants (Table 1) with complete baseline

FDG amygdala measurements were studied.

Associations between amygdala measures and SNPs (allelic dos-

age) were examined by performing GWAS using PLINK (Purcell

et al., 2007), where a linear regression model with sex, age and edu-

cation as covariates was employed. To facilitate the subsequent

network-based analysis, a gene-level P-value was determined as the

2nd smallest P-value of all SNPs located in 620K bp of the gene

(Nam et al., 2010). In addition, 10 GWAS permutations were per-

formed to illustrate that only the original GWAS data yielded prom-

ising findings.

2.2 Amygdala-specific functional interaction network
Genome-wide functional interaction networks for specific human

tissues and cell types had been generated to specialize protein func-

tions and interactions of specific human tissues by integrating a col-

lection of datasets covering thousands of experiments contained in

more than 14 000 distinct publications (Greene et al., 2015). The

genome-scale maps provided a detailed portrait of protein func-

tional interactions in specific human tissues and cell lineages ranging

from B lymphocytes to the whole brain. Amygdala tissue-specific

genome-wide interaction network was downloaded from the

Genome-scale Integrated Analysis of gene Networks in Tissues

(GIANT) website (http://giant.princeton.edu/). A functional interac-

tion network among genes was extracted after mapping to GWAS

results. The weights of interactions range from 0 to 1, where larger

measures represent stronger interactions.

2.3 Alzheimer’s disease risk genes
A list of documented AD risk genes were collected to evaluate the

re-prioritization results from multiple machine learning models.

Here we integrated totally 66 AD-relevant genes collected from

three resources: 24 susceptibility genes from a large meta-analysis of

AD (Lambert et al., 2013), 15 AD-relevant genes from Online

Mendelian Inheritance in Man Disease database (OMIM), and 40

significant candidates from the AlzGene database (http://www.alz

gene.org/).

2.4 Module identification method
Our proposed phenotype-relevant module identification method is a

top-down approach integrating tissue-specific functional interaction

network and GWAS results. We hypothesize that GWAS significant

findings are enriched among nominally significant and functional-

relevant genes. Below, we describe the details of the proposed

method. See Figure 1 for the workflow.

2.4.1 NetWAS re-prioritization of GWAS results

Following (Song et al., 2016), we re-prioritized GWAS results by

integrating the amygdala-specific functional interaction network

using SVM-based NetWAS. Briefly, the functional network connec-

tivity matrix was used as feature data and significant/non-significant

status based on the nominal P<0.01 was used as class label.

In addition to SVM, we trained two separate regression models,

support vector regression (SVR) and ridge regression (Ridge). In

both models, we used the functional network connectivity matrix as

feature data and continuous GWAS P-values as responses. SVR,

different from SVM, does not require a pre-defined threshold to con-

vert P-values to a binary variable indicating significant/non-

significant status. SVR is designed to find a hyperplane that has a

deviation of at most e from the actual data. Ridge is a widely used

linear regression approach using the L2-norm based regularization

to stabilize the result.

To train SVM, SVR and Ridge models, we first selected a set of

genes with P-value<0.01, denoted as A, then randomly partitioned

the remaining genes (i.e. P-value � 0:01) into five equal groups

B
ðtÞ; t ¼ 1; . . . ; 5. We combined A with each B

ðtÞ to construct gene

set CðtÞ for model training. That is, gene-level P-values of CðtÞ were

used as responses (positive/negative labels for SVM), while interac-

tions between genes from CðtÞ and all genes from the functional net-

work were used as features. In experiments, we employed �logðpÞ
values instead of original P-values as regression response. For the

prediction part, the features are the entire interaction network

across all genes. Five models MðtÞ; t ¼ 1; . . . ;5 were trained for each

method 2{SVM, SVR, Ridge} and then applied to predict the

responses for all genes. Finally, genes were re-prioritized based on

their mean predictions (SVR and Ridge) or distances from hyper-

plane (SVM) across five sets of results. See Supplementary Materials

for detailed implementation.

To demonstrate the effectiveness of the patterns discovered from

the real data, we also trained these models on permuted GWAS

results using the same strategy. We used the area under the receiver

operating characteristic (ROC) curve (AUC) to compare the re-

prioritization performance obtained from the original GWAS data

with those from permuted GWAS data. Similar to (Song et al.,

2016), ROC curves and AUCs were calculated using 66 documented

AD candidates as gold standard positives (See Supplementary

Materials for more details). In addition, mean statistics of functional

Table 1. Participant characteristics: HC¼Healthy Control; SMC¼Significant Memory Concern; EMCI¼Early Mild Cognitive Complaint;

LMCI¼ Late Mild Cognitive Complaint; AD¼Alzheimer’s Disease

Subject HC SMC EMCI LMCI AD

Number 244 86 280 247 132

Gender (M/F) 124/120 34/52 159/121 146/101 79/53

Age (mean6std) 74.0265.72 71.8665.61 71.1667.29 72.3167.63 73.3267.34

Education (mean6std) 16.4462.66 16.8562.63 16.0662.66 16.2462.81 16.1962.72
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interaction measures among top genes were used to estimate the

functional relevance of these genes.

2.4.2 Identification of GWAS-enriched modules

The goal of the NetWAS re-prioritization is twofold: (i) The original

GWAS gene ranking is used to supervise the training of the classifi-

cation and regression models and ensure that the top genes in the re-

prioritization remain GWAS-enriched; (ii) tissue-specific functional

interaction connectivity matrix is used as data to train the models

and encourage genes with similar interactions to be re-prioritized

with similar ranks. Thus NetWAS is designed to yield top gene find-

ings that are both GWAS-enriched and densely connected; and these

top genes become the candidates for us to identify GWAS-enriched

network modules.

We performed clustering on these top genes to first identify can-

didate modules. Since one gene could play roles in multiple path-

ways or functional modules, we applied the Link Clustering

algorithm (Ahn et al., 2010) to detect communities as groups of

links rather than nodes. The resulting candidate modules consisted

of only top NetWAS genes and could overlap each other. After that,

top GWAS findings were used to test each candidate module. Only

those modules significantly enriched by the GWAS results were iden-

tified as phenotype-relevant ones. See Supplementary Materials for

details.

As mentioned earlier, many existing network-based GWAS

approaches employ a bottom-up strategy that examines a large num-

ber of candidate modules in order to identify enriched ones, and

their efficiencies could become suboptimal when large-scale net-

works are present. Our module identification approach proposed

above overcomes this limitation. On one hand, it examines only a

small number of candidate modules generated from clustering the

top NetWAS findings. On the other hand, the NetWAS strategy is

designed to yield promising candidate modules with strong potential

to be densely connected and phenotype-relevant.

2.4.3 Functional evaluation and visualization

To determine the functional relevance of the identified modules, we

tested whether genes from each module were overrepresented for

specific neurobiological functions, signaling pathways or complex

neurodegenerative diseases. We performed three types of functional

annotation analyses using KEGG pathway, Gene Ontology

Biological Process (GO-BP) and OMIM disease databases respec-

tively. For identified modules, they could be visualized directly or

extended to include neighboring genes in the tissue-specific

functional interaction network. We selected one example module

and visualized it as well as its extension using GIANT (http://giant.

princeton.edu/) to show its dense functional interactions.

3 Results

We applied our NetWAS-based module identification framework,

using amygdala-specific functional interaction network, to the

GWAS findings of the FDG-PET measures in the left and right

amygdala regions in an AD study. We compared the performances

of different machine learning models, as well as those using the orig-

inal and permuted GWAS results. We evaluated the functional rele-

vance of the identified modules and discussed their relationships

with neurobiological or neurodegenerative funtions and diseases.

Below we report and discuss our results.

3.1 GWAS of amygdala QTs
GWAS were performed to examine genetic associations between

5 574 300 SNPs and FDG measures in the left and right amygdalas.

Using P�5E-8 as the threshold, nine SNPs were identified to be sig-

nificantly associated with the average FDG-PET measure in the left

amygdala (see Supplementary Fig. S1 in the Supplementary

Materials for the Manhattan plot), including two within the APOE

gene (rs429358 with P¼1.99E-11, rs769449 with P¼3.28E-09),

one within the SDK1 gene (rs148359108 with P¼2.02E-09), one

between the APOE and APOC1 gene (rs10414043 with P¼8.56E-

09), and five within the APOC1 gene (rs7256200 with P¼8.56E-

09, rs12721051 with P¼1.11E-08, rs56131196 with P¼1.11E-08,

rs4420638 with P¼1.11E-08 and rs73052335 with P¼3.50E-08).

No significant findings were identified on the right side.

After mapping the 2nd smallest SNP-level P-values to genes

(Nam et al., 2010) using hg19 gene annotation, gene-based P-values

were obtained for 24 766 genes and transcripts. Using P� (0.05/

24 766)¼2.02E-6 as the threshold, the APOC1, APOE, PVRL2,

TOMM40 and APOC1P1 genes were identified to be significantly

associated with the average FDG-PET measure in the left amygdala.

Note that PVRL2 and APOC1P1 were identified since some of sig-

nificant SNPs were within 620K bp of their boundaries. In addition,

we compared the 2nd smallest strategy with three other gene-based

association approaches (see Supplementary Materials).

All the findings except SDK1 are either from or proximal to the

APOE region, which is the best known genetic risk region in AD.

SDK1, which is located in 7p22.2 and encodes protein sidekick-1

(a member of the immunoglobulin superfamily), shows an

Fig. 1. The workflow for identifying functional interaction modules from the tissue-specific network using GWAS findings
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association with the average FDG-PET measure of left amygdala,

including a significant hit at the SNP level (rs148359108 with

P¼2.02E-09), and a nearly significant one at the gene level

(P¼3.35E-06). SDK1 was shown to specifically phosphorylate 14-

3-3f at serine 58 (Hamaguchi et al., 2003), where the latter played

an important role in amygdala cell death (Jeong et al., 2010). SDK1

also showed high expression in medial amygdala relative to other

tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene

Expression Profiles dataset (http://www.brain-map.org/). The con-

nection between SDK1 and AD-related amyloid and glucose metab-

olism markers in the amygdala region warrants further

investigation.

3.2 NetWAS re-prioritization
Amygdala-specific functional interaction network among 25 825

nodes was downloaded from GIANT, with interaction weights rang-

ing from 0 to 1. There were totally 20 168 nodes used in our analysis

after matching GWAS genes and transcripts with those from the net-

work. After preprocessing, we obtained an amygdala-specific

genome-wide functional interaction matrix with size of 20 168� 20

168 and two lists of 20 168 gene-level P-values for left and right

amygdala QTs respectively. In addition, GWAS were performed 10

times on permuted data for each of the bilateral amygdala measures.

The same procedure was applied to the permuted data as the real

data, in order to demonstrate that only the GWAS findings from the

real data yielded promising results.

Five sets of regression predictions by SVR and Ridge or classifica-

tion decision values by SVM (i.e. distances from the separating hyper-

plane) were obtained from running these machine learning models

using functional interaction connectivity matrix as the feature data

and the GWAS results as regression responses or classification labels.

For each model, genes were re-prioritized based on their average

regression predictions or classification decision values across five

experiments, on both original and permuted GWAS results.

As we hypothesized, top predictions would conserve both strong

functional interaction and high phenotype-relevance (i.e. AD-

relevance in this work, given amygdala FDG measures as promising

AD biomarkers). We compared the re-prioritization performances

of three machine learning models and GWAS using both original

and permuted data.

Figure 2(A, B) shows the ROC curves and the AUC performan-

ces. For the original data, the re-prioritization results of all three

NetWAS models demonstrated much higher concordance with

documented AD risk genes than the GWAS findings. This indicates

that integration of tissue-specific functional interaction network

with GWAS can promote the identification of phenotype-relevant

genes. For the permuted data, where the mean and standard devia-

tion of AUCs together with one example ROC are shown for each

model, no high concordance with AD genes was achieved by either

GWAS or any NetWAS model. This suggests that the NetWAS pro-

cedure is not biased and only original data can yield meaningful

findings. In addition, original GWAS and permuted GWAS obtained

similar AUCs, showing the limited power of GWAS alone on the

detection of disease risk markers. Ridge, although showing similar

AUC with SVR and SVM, gained higher true positive rate and lower

false positive rate at the beginning of the ROC. That is, Ridge gained

higher concordance when taking look at top re-prioritized results.

Figure 2(C, D) shows the mean functional interaction of the top

findings. We used a series of thresholds from top 50 to top 3000 (of

note, �3000 genes with P-value<0.01 were identified for either left

or right amygdala) to extract different scales of top genes as well as

their interaction matrix. NetWAS approaches, no matter whether

using original or permuted data, clearly demonstrated denser inter-

actions among top findings than GWAS. This confirms our hypothe-

sis that NetWAS yields more densely connected top findings.

3.3 Amygdala-relevant top predictions
We investigated top 50 re-prioritized genes obtained from three

machine learning models, and compared their functional interac-

tions in detail. Figure 3(A, B) showed heatmaps of interaction rela-

tionships among top genes and interaction networks based on

different thresholds for left and right amygdalas, respectively.

Taking left amygdala as example, each row shows results from dif-

ferent methods: Ridge, SVR, SVM and GWAS. Heatmaps show

interaction matrices using the data from amygdala functional net-

work without any filtering. Two interaction networks among top 50

genes after filtering out weak interactions using different scales (here

using weights � 0.1 and 0.2 as thresholds) are shown. In interaction

networks, nodes are colored by their ranks in the original GWAS.

Both heatmaps and networks show much denser interactions

among top 50 findings from three models than original GWAS

under any scale of filtering. That facilitates the promise of our pro-

posed method for comprehensively examining the disease-relevant

genes and interactions between them. Ridge, compared with SVR

and SVM, yielded much higher interactions (network density across

multiple scales) and also obtained more GWAS top genes (more

nodes are colored by top GWAS findings). This, combined with sta-

tistics summary from Figure 2, indicates the outstanding perform-

ance of Ridge.

3.4 Amygdala-relevant modules
The results shown above demonstrate the phenotype-relevance and

dense functional interactions of the top findings obtained from inte-

grating amygdala-specific interaction network and amygdala FDG

GWAS result. We identified candidate network modules based on

the interaction matrix of these top findings to make sure that they

conserved high within-module connectivity. We analyzed top 50

findings from Ridge-based NetWAS given its prominent perform-

ance. In candidate module identification, only interactions with

weights � 0.1 were considered while weak connections were

removed. We identified five modules: four from left amygdala, and

one from right amygdala. All five modules were significantly

enriched by top 50 GWAS findings. Supplementary Table S1 (see

Supplementary Materials) shows details of these modules.

In this work, we applied our method on only top 50 predictions

and used a relatively stringent selection of GWAS significant find-

ings (top 50) to test phenotype-relevance of the candidate modules.

In practice, we could include more top predictions into module iden-

tification to obtain more candidate modules and also take a larger

number of GWAS top findings into enrichment test to relax pheno-

type-relevance.

3.5 Functional annotation of the identified modules
Functional annotation was performed to further investigate func-

tional relevance of the identified modules. We performed pathway

enrichment analysis from three aspects: (i) functional pathways, (ii)

GO terms and (iii) diseases, based on KEGG pathway, GO-BP and

OMIM disease databases respectively.

Supplementary Figure S2 (see Supplementary Materials) shows the

KEGG pathway enrichment results mapped to 19 categories. From the

results, two modules from left amygdala and one module from right

amygdala have a number of significant functional enrichments, while
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the other two modules of left amygdala do not have obvious KEGG

functional enrichment. Several enriched pathways are directly related to

the neurodegenerative disease and its development, e.g. Alzheimer’s dis-

ease enriched in Modules 03 and 04 and Huntington’s disease enriched

in Module 04. A number of pathways from three large categories are

enriched by one or more modules, and these categories are endocrine

system, nervous system and signal transduction. These major categories

have been studied and shown close relation to AD. For example, the

endocrine and the nervous system were highly related as hormones

played a role in maintaining brain homeostasis at the senile age which

might help explain the gender difference in AD (Blair et al., 2015;

Mielke et al., 2014; Peri and Serio, 2008). Signal transduction like

calcium signaling pathway (Modules 04 and 05) playing key role in

short- and long-term synaptic plasticity, had shown abnormality in

many neurodegenerative disorders like Alzheimer’s disease, Parkinson’s

disease, amyotrophic lateral sclerosis (ALS), Huntington’s disease and so

on (Bezprozvanny, 2009). Neuroinflammation emerged as an important

component of AD pathology recently, and immune system indicated a

crucial role in the progression of AD (Heneka et al., 2015). Platelet acti-

vation, enriched in Modules 04 and 05, had been studied about its

involvement in neuroinflammatory diseases such as AD through enzy-

matic activities to generate amyloid-b peptides (Gowert et al., 2014).

Supplementary Figure S3 (see Supplementary Materials) shows

top GO-BP enriched terms for all five modules. As Modules 03-05

had significantly enriched a large number of GO-BP terms, only top

20 of each module were selected. Here only GO-BP terms that are

significantly enriched (corrected P-value<0.05) by>1 module are

listed and linked with corresponding modules. Here we observe that

a large number of BP terms are related to neurological system proc-

ess (e.g. cognition, learning), behavior (e.g. learning or memory),

nervous system development (e.g. positive regulation of neuron pro-

jection development) and signal (e.g. regulation of synaptic trans-

missions). All of these have direct or indirect relationships with

neurodegenerative diseases or phenotypes.

OMIM disease enrichment analysis results are shown in

Supplementary Table S2 (see Supplementary Materials), where three

modules (Modules 01, 02 and 04) are significantly enriched by vari-

ous types of diseases including heart disease (Myocardial infarction),

cancer (Prostate cancer), mental disorders (Autism), eye disease

(Macular degeneration) and neurodegenerative diseases

(Alzheimer’s disease). A number of studies suggested that there exist

connections between heart diseases and dementia including AD

(Heneka et al., 2015; Licastro et al., 2011). Epidemiological studies

had shown a reciprocal inverse relationships between cancer and

neurodegeneration according to abnormal cell growth and cell loss

in common (Nudelman et al., 2014; Realmuto et al., 2012).

3.6 Module visualization and extension
Given the identified phenotype-relevant modules, we visualized

functional interactions among genes as a network and extended the

module by including genes having close connections with elements

inside the module. We show Module 04 as an example given its

Concordance between GWAS/NetWAS findings and the documented AD genes (shown as ROC curve)
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Fig. 2. Performance evaluation of re-prioritization results. (A–B): ROC curves with AUC results on left and right amygdalas, respectively, to measure the concord-

ance between the GWAS/NetWAS findings and the documented AD genes. For each analysis on permuted GWAS, the mean and standard deviation of AUCs

together with one example ROC are shown. (C–D): Mean interaction measures among top N findings (N ranging from 50 to 3000) on left and right amygdalas,

respectively
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small size as well as functional enrichment performance.

Supplementary Figure S4(A) and (B) in Supplementary Materials

respectively show Module 04 and an expanded version of Module

04 by including additional genes with minimum relationship confi-

dence 0.2 using GIANT. Functional annotation of the expanded ver-

sion of Module 04 has been tested and shown in Supplementary

Table S3 in Supplementary Materials.

4 Discussion

We have proposed a top-down module identification method by

integrating tissue-specific functional interaction network with imag-

ing GWAS results to detect phenotype-relevant modules for better

mechanistic understanding of complex diseases. At the global level,

machine learning models were applied to re-prioritize genes which

facilitates the detection of genes with both phenotype-relevance and

dense interactions. After that, candidate modules were extracted

using link community clustering algorithm. At the local level, each

candidate module was tested for enrichment significance using

GWAS findings. This study is among the first to incorporate tissue-

specific context with GWAS data to understand underlying func-

tional relevance in a precise way.

Our strategy is different from previous network module identifi-

cation methods that define and examine candidate modules by form-

ing sub-networks based on individual genes (e.g. genes with

promising P values or high scores). We start from the whole interac-

tion network to re-rank genes so that the top findings are not only

densely connected and but also enriched by highly scored genes.

Machine learning methods can facilitate the re-prioritization using

network data as features. This step makes use of both the functional

network information and GWAS discoveries to ensure the

phenotype-relevance and dense connection of the top re-prioritized

genes. The second step is designed simply for assigning an enrich-

ment score to each candidate module so that modules not enriched

by GWAS findings can be filtered out. We treat the whole process as

a single discovery step. In order to validate the findings, replication

analysis in independent cohorts should be performed.

As to the NetWAS comparison among three machine learning

based models on our data, Ridge performed better than SVR, and

SVR generally outperformed SVM. This suggests that continuous

GWAS P-values supply more valuable information than binary

significant/non-significant labels. Re-prioritization results show the

strength of the NetWAS framework from another perspective that

top predictions hold denser interactions and are matched to more

disease risk genes than GWAS findings. Our experimental results on

permuted data also suggests that the NetWAS procedure is not

biased and only original data can yield meaningful findings.

Given that we only have one tissue-specific network available for

the studied phenotype, we are limited on validating the stability of

the findings. In the future, if multiple tissue-specific interaction net-

works can be obtained independently for a studied tissue, stability

study can be performed to check whether similar network modules

can be identified from multiple networks.

5 Conclusions

We have proposed a top-down module identification method by

integrating tissue-specific functional network with imaging GWAS

A B

Fig. 3. Comparison of top 50 findings by three NetWAS re-prioritization methods (Ridge, SVR and SVM) and the original GWAS. (A) and (B) represent results on

left and right amygdalas, respectively. Heamaps show the complete interaction matrix of top predictions. Circular networks show interactions between genes

after filtering weak connections. Nodes in circular network are colored by their ranking in the original GWAS
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results. We have demonstrated its effectiveness using real data from

an imaging genetics study in Alzheimer’s disease. Modules identified

from our method conserve both dense interactions and high

phenotype-relevance, showing the promise of the proposed method.

This work can be further expanded towards several future direc-

tions. For example, one direction is to compare the proposed

method with other existing module identification strategies to fur-

ther evaluate its performance. Another direction is to apply this

method to other tissues and brain regions for revealing tissue-

specific genetic mechanisms for complex brain disorders.

Acknowledgements

See ADNI Acknowledgements in Supplementary Materials.

Funding

At Indiana University, this work was supported by National Institute of

Health R01 EB022574, R01 LM011360, U19 AG024904, U54 AG054345,

R01 AG19771, P30 AG10133, UL1 TR001108, R01 AG 042437, R01

AG046171, R03 AG050856 and R00 LM011384; NSF IIS-1117335; United

States Department of Defense W81XWH-14-2-0151, W81XWH-13-1-0259

and W81XWH-12-2-0012; National Collegiate Athletic Association

14132004; Indiana Clinical and Translational Sciences Institute Strategic

Pharma-Academic Research Consortium for Translational Medicine

Program; and Alzheimer’s Association, Michael J Fox Foundation and

Alzheimer’s Research UK BAND project. At University of Pennsylvania, the

work was supported by National Institute of Health R01 LM011360, R01

LM009012 and R01 LM010098.

Conflict of Interest: none declared.

References

Ahn,Y.Y. et al. (2010) Link communities reveal multiscale complexity in net-

works. Nature, 466, 761–764.

Akula,N. et al. (2011) A network-based approach to prioritize results from

genome-wide association studies. PloS One, 6, e24220.

Baranzini,S.E. et al. (2009) Pathway and network-based analysis of genome-

wide association studies in multiple sclerosis. Hum. Mol. Gen., 18,

2078–2090.

Bezprozvanny,I. (2009) Calcium signaling and neurodegenerative diseases.

Trends Mol. Med., 15, 89–100.

Blair,J.A. et al. (2015) Hypothalamic-pituitary-gonadal axis involvement in

learning and memory and Alzheimer’s disease: more than just estrogen.

Front. Endocrinol., 6, 45.

Fjell,A.M. et al. (2010) CSF biomarkers in prediction of cerebral and clinical

change in mild cognitive impairment and Alzheimer’s disease. J. Neurosci.,

30, 2088–2101.

Gowert,N.S. et al. (2014) Blood platelets in the progression of Alzheimer’s dis-

ease. PloS One, 9, e90523.

Greene,C.S. et al. (2015) Understanding multicellular function and disease

with human tissue-specific networks. Nat. Genet., 47, 569–576.

Hamaguchi,A. et al. (2003) Sphingosine-dependent protein kinase-1, directed

to 14-3-3, is identified as the kinase domain of protein kinase C delta.

J. Biol. Chem., 278, 41557–41565.

Heneka,M.T. et al. (2015) Innate immunity in Alzheimer’s disease. Nat.

Immunol., 16, 229–236.

Hirschhorn,J. (2009) Genomewide association studies-illuminating biologic

pathways. N. Engl. J. Med., 360, 1699–1701.

Ideker,T. and Krogan,N.J. (2012) Differential network biology. Mol. Syst.

Biol., 8, 565.

Jeong,E.A. et al. (2010) Phosphorylation of 14-3-3zeta at serine 58 and neuro-

degeneration following kainic acid-induced excitotoxicity. Anat. Cell Biol.,

43, 150–156.

Jia,P.L. et al. (2011) dmGWAS: dense module searching for genome-wide

association studies in protein–protein interaction networks. Bioinformatics,

27, 95–102.

Johnson,K.A. et al. (2012) Brain imaging in Alzheimer disease. Cold Spring

Harb. Perspect. Med., 2, a006213.

Kim,S. et al. (2013) Influence of genetic variation on plasma protein levels in

older adults using a multi-analyte panel. PLoS One, 8, e70269.

Lambert,J.C. et al. (2013) Meta-analysis of 74,046 individuals identifies 11

new susceptibility loci for Alzheimer’s disease. Nat. Genet., 45, 1452–1458.

Licastro,F. et al. (2011) Sharing pathogenetic mechanisms between acute myo-

cardial infarction and Alzheimer’s disease as shown by partially overlapping

of gene variant profiles. J. Alzheimers Dis., 23, 421–431.

Mielke,M. et al. (2014) Clinical epidemiology of Alzheimer’s disease: assessing

sex and gender differences. Clin. Epidemiol., 6, 37–48.

Nam,D. et al. (2010) GSA-SNP: a general approach for gene set analysis of

polymorphisms. Nucleic Acids Res., 38, W749–W754.

Nudelman,K.N.H. et al. (2014) Association of cancer history with

Alzheimer’s disease onset and structural brain changes. Front. Physiol., 5,

423.

Palmer,K. et al. (2007) Predictors of progression from mild cognitive impair-

ment to Alzheimer disease. Neurology, 68, 1596–1602.

Peri,A. and Serio,M. (2008) Neuroprotective effects of the Alzheimer’s

disease-related gene seladin-1. J. Mol. Endocrinol., 41, 251–261.

Poulin,S.P. et al. (2011) Amygdala atrophy is prominent in early Alzheimer’s

disease and relates to symptom severity. Psychiatry Res. Neuroimag., 194,

7–13.

Purcell,S. et al. (2007) PLINK: a tool set for whole-genome association and

population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575.

Realmuto,S. et al. (2012) Tumor diagnosis preceding Alzheimer’s disease

onset: is there a link between cancer and Alzheimer’s disease?. J. Alzheimers

Dis., 31, 177–182.

Saykin,A.J. et al. (2015) Genetic studies of quantitative MCI and AD pheno-

types in ADNI: progress, opportunities, and plans. Alzheimers Dement., 11,

792–814.

Shen,L. et al. (2014) Genetic analysis of quantitative phenotypes in AD and

MCI: imaging, cognition and biomarkers. Brain Imaging Behav., 8,

183–207.

Song,A. et al. (2016) Network-based analysis of genetic variants associated

with hippocampal volume in Alzheimer’s disease: a study of ADNI cohorts.

BioData Min., 9, 3.

Tang,X.Y. et al. (2014) Shape abnormalities of subcortical and ventricular

structures in mild cognitive impairment and Alzheimer’s disease: detecting,

quantifying, and predicting. Hum. Brain Mapp., 35, 3701–3725.

Wang,L.L. et al. (2015) PINBPA: Cytoscape app for network analysis of

GWAS data. Bioinformatics, 31, 262–264.

Tissue-specific network-based GWAS to identify functional interaction modules 3257

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,

