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ABSTRACT 

Eric Ashley Benson 

 

LOSS OF SIMPL INCREASES TNFα SENSITIVITY DURING HEMATOPOIESIS 

 

The innate and adaptive immune responses are critical for host survival.  The 

TNFα/NF-κB signaling pathway is a major regulator of the immune response.  The 

TNFα/NF-κB signaling pathway has also been proposed to play a role in the regulation of 

hematopoiesis.  In the TNFα signaling pathway, full induction of NF-κB (specifically the 

p65 subunit) dependent transcription is regulated by a co-activator SIMPL.  The 

biological significance of SIMPL in TNFα dependent responses is poorly understood.  To 

study SIMPL in vitro and in vivo in mammalian cells, a knockdown system utilizing 

shRNA (short hairpin RNA) was used.  Analysis of hematopoietic progenitor cells 

infected with a retrovirus encoding the SIMPL shRNA was used to study the role of 

SIMPL in hematopoiesis.  The ability of progenitor cells lacking SIMPL to grow and 

differentiate was not compromised.  In contrast in the progenitors cells lacking SIMPL, 

TNFα mediated inhibition of colony formation was significantly enhanced.  These 

growth inhibitory effects of SIMPL were not due to an increase in apoptosis.   
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The enhanced inhibitory affects were specific for TNFα and not found in other common 

hematopoietic inhibitors (TGF-β1 and IFNγ).  Results of this work reveal that SIMPL is a 

component of the hematopoiesis that is required for TNFα dependent effects upon 

myeloid progenitors.   
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I. Background and significance 

Hematopoiesis is the process of normal replication and maturation of all blood 

cell varieties in a host.  The innate immune response is critical for normal host defense, 

with the TNFα/NF-κB signaling pathway playing a major role.  The TNFα/NF-κB 

pathway also plays a less well understood role in the control of hematopoiesis.  Full 

transcriptional induction of NF-κB controlled genes, specifically hetero- or homodimers 

of NF-κB that contain p65, in the TNFα pathway requires the transcriptional co-activator 

SIMPL.  Insight into the function of SIMPL in TNFα signaling events have been gained 

using immortalized cell lines; however the role of SIMPL in a more physiological setting 

has not been studied. The goal of my thesis project was to test the hypothesis that SIMPL 

plays an integral role in the control of steady-state hematopoiesis.   

 

A. The Immune response 

 Mammals and multicellular organisms have the ability to react to pathogens.  For 

mammals, this reaction requires an immune system, which can be divided into the innate 

and the acquired immune responses.  The acquired immune response has specificity, and 

the ability to remember pathogens and to discriminate between self and non-self.  The 

acquired immune response includes B- and T-lymphocytes. In contrast, the innate 

immune response is a non-specific response against pathogens including microbes or 

macromolecules.  It does not have the ability to remember a pathogen. The innate 

immune response consists of physical barriers like the skin and mucous membranes, tears, 

granular and phagocytic cells and circulating factors like antibodies (IgM) and 

complement [6].  For example, during an innate immune response activated basophils and 
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eosinophils release granules containing metabolites (i.e. acid phosphatase, cathepsin, 

major basic protein); neutrophils phagocytose and release granular metabolites (i.e. 

collagenase, lysozyme, anti-bacterial basic proteins, myeloperoxidase) [7]; activated 

monocytes phagocytose pathogens/debris and release the cytokine tumor necrosis factor-

α (TNFα) and other soluble mediators.  TNFα is also released by epithelial cells in 

response to pathogen activation in the respiratory and gastrointestinal tracts [8].  TNFα is 

a pro-inflammatory cytokine that acts locally, depending on the local microenvironment, 

to stimulate production of various cytokines (granulocyte monocyte-colony stimulating 

factor (GM-CSF), granulocyte-colony stimulating factor (G-CSF), and chemokines, 

(interleukin-8; IL-8).  Cytokines and chemokines recruit and enhance neutrophil and 

monocyte function and increase the expression of adhesion molecules on endothelial cells 

permitting the attachment and margination of phagocytic cells into tissues [5, 9].  TNFα 

promotes tissue repair by stimulating production and release of angiogenic factors.  

Systemically, TNFα elicits fever production and acute phase protein production.  Thus, 

TNFα is a vital component of the host defense [5].  

 

B. TNFα signaling 

 TNFα does share ~28% homology at the amino acid level with lymphotoxin-α 

(LTα) [10].  TNFα is primarily produced by macrophages, but also produced by 

fibroblasts, epithelial cells, T- and B-cells, while LTα is made by natural killer cells, B- 

and T-cells.  However, the action(s) of LTα in humans is generally undefined.  In general, 

TNFα is a pro-inflammatory mediator with the ability to stimulate cell differentiation and 

to a lesser extent apoptosis.  TNFα can be found as both soluble and membrane bound 
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forms.  Soluble TNFα (along with LTα) signals mainly through the type I TNF receptor 

(TNF-RI) and binds with a lower affinity to the type II TNF receptor (TNF-RII).  TNF-RI 

is found in most tissues whereas TNF-RII expression is more restricted and is found 

primarily in cells of the immune and hematopoietic system.  Soluble TNFα starts as a 

transmembrane, homotrimer that is cleaved by the metalloprotease, TNF alpha converting 

enzyme (TACE) to release a 51 kDa soluble trimer of TNFα.  Membrane bound TNFα is 

an uncleaved transmembrane homotrimer and is needed to fully activate signaling 

through TNF-RII.  TNF-RI and RII share 25% identity in their extracellular domains and 

are single membrane spanning receptors [5].  Classically, the TNFα controlled immune 

response occurs through activation of NF-κB (Nuclear Factor-κB) controlled gene 

expression which is mediated in large part through TNF-RI [5, 11].   

 

C. NF-κB, a transcription factor 

 The transcription factor NF-κB, through controlling the expression of growth 

factors and cytokines, plays a critical role in regulating embryonic development, immune 

and inflammatory responses [9, 11].  In mammals, NF-κB is found as a homo- or 

heterodimer composed of members of the rel family consisting of RelA (p65), p50/p105 

(NF-κB1), c-Rel, RelB, and p52/p100 (NF-κB2).  NF-κB contains a 300 amino acid rel 

homology domain (RHD), located at the amino-terminus that allows for protein-protein 

interactions, DNA binding, and it also contains a nuclear localization signal.  Only p65, 

relB, and c-rel contain a transactivation domain (TAD) which is located in the carboxyl-

terminus; p50 and p52 lack a TAD.  The TAD recruits co-activators and displaces 

repressors while promoting gene transcription [11].  NF-κB activity is regulated primarily 
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by cytoplasmic retention and removal from DNA.  Members of the IκB (Inhibitor of κB) 

family bind to and mask the nuclear localization signal in NF-κB (discussed in more 

detail later).  The IκB family consists of seven members including, IκBα, IκBβ, IκBγ 

which contain five to seven ankyrin repeats (33 amino acids) that bind the RHD of NF-

κB [11].   

 

D. NF-κB activation 

Initially, NF-κB is bound to IκB which inhibits NF-κB DNA binding activity and 

nuclear retention, by constantly shuttling the NF-κB /IκB complex in and out of the 

nucleus.  The classic model for NF-κB activation involves two IκB kinases (IKKs):  

IKKα and IKKβ plus IKKγ (NEMO) a non-catalytic protein that acts as a scaffold.  IKKα 

and/or IKKβ  phosphorylate IκBα and IκBβ on two amino terminal serine residues 

releasing bound NF-κB.  Phosphorylated IκB is then recognized by a SCF (skp, cullin, 

βTrCP1/2) ubiquitin ligase and is targeted for degradation by the proteasome.  Released 

NF-κB either enters or is retained in the nucleus and binds to DNA.  The transactivation 

domain of one of the rel dimers initiates transcription.  TNFα, along with a number of 

other cytokines can signal for changes in gene expression through NF-κB.  Current 

models predict that the signaling pathways downstream of cytokines/chemokines/growth 

factors known to activate NF-κB converge upon and activate the IKKs.  TNF RI 

induction of NF-κB appears to be IKKβ dependent.  How the IKKs are activated is not 

well understood (complete review [11]).             
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E. TNF-RI activation of NF-κB  

Classically, TNFα, through TNF-RI, activates the NF-κB heterodimer composed of p65 

and p50.  Upon TNFα binding to cell surface TNF-RI receptors, TNF-RI oligomerizes.  

The cytoplasmic tail of TNF-RI contains a death domain that allows for protein-protein 

interactions.  Oligomerized TNF-RI binds TRADD (TNF RI-associated death domain 

protein) which in turn binds TRAF2 (TNF receptor-associated factor-2), RIP1(receptor 

interacting protein 1) and/or MEKK3 (Mitogen-activated protein kinase kinase kinase 3) 

leading to activation of downstream signaling events culminating in the activation of the 

IKK complex [12, 13].  TRAF2 is not required for TNF-RI dependent activation of NF-

κB, but is required for activation of the transcription factor AP1 and TNFα dependent 

apoptosis [11].  RIP1 is a serine/threonine kinase required for TNF-RI activation of NF-

κB but interestingly its kinase activity is not required [5, 11].  As mentioned previously, 

activated IKKβ phosphorylates IκBα.  Non-phosphorylated IκBα blocks the NLS (nuclear 

localization signal) of p65, the NF-κB component which contains the TAD.  The p50 

NLS is exposed and the NF-κB/IκBα complex shuttles in and out of the nucleus due to 

IκBα’s nuclear export sequence (NES).  This limited nuclear import of p65/p50 may 

account for the basal transcriptional activity of the complex.  Phosphorylated IκBα 

releases NF-κB allowing it to trans-locate into the nucleus, and subsequent upregulation 

of κB controlled genes; phospho-IκBα is ubiquinated and degraded [11].  
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Figure 1.  TNFα sigaling to NF-kB and SIMPL co-activation.  

TNFα activates NF-kB through the IKKs and SIMPL is required for full activation 

of NF-kB through a yet clarified alternate pathway. 
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  As schematically depleted shown in Figure 1, full activation of NF-κB controlled 

genes through TNF-RI requires a transcriptional co-activator called SIMPL (signaling 

molecule that associates with mPLK) which was discovered in the Harrington lab [14, 

15].  SIMPL is a p65 specific co-activator that contains a carboxyl terminal nuclear 

localization signal.  Interleukin-1 receptor associated kinase 1 (IRAK-1, also known as 

mouse pelle like kinase mPLK) is a serine/threonine kinase with an amino-terminal death 

domain that is also involved in full activation of NF-κB transcriptionally contolled genes.  

IRAK-1 can be detected in TNF-RI containing complexes and can phosphorylate SIMPL 

[16].  Analysis of cells derived from IRAK-1 null mice have demonstrated a requirement 

for IRAK-1 in TNF-RI activation of NF-κB [17].             

                                                   

F. SIMPL 

As mentioned earlier, SIMPL was identified in the Harrington lab.  A SIMPL 

mutant (∆SIMPL) that lacks the first 80 amino acids was generated to study the role of 

SIMPL in TNFα signal transduction.  Using ∆SIMPL, we determined that TNFα 

dependent signaling through TNF-RI to NF-κB was dependent on SIMPL [15].  IKKα 

and IKKβ induction of NF-κB activity was significantly diminished in the presence of the 

∆ SIMPL mutant, and catalytically inactive IKKα or IKKβ diminished wild type SIMPL 

activity.  Over-expression of ∆SIMPL induced apoptosis showing a critical role for its 

ability to signal to NF-κB.  SIMPL signaling was shown to be TNFα specific in NF-κB 

reporter assays.  Further study revealed that SIMPL functions as a specific p65 co-

activator in the TNF-RI pathway [14, 15].   
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 SIMPL is the focus of this study, which is aimed at determining the role of 

SIMPL in TNFα driven physiological responses.  Thus far SIMPL has been shown to be 

involved in TNF-RI activation of NF-κB, but a physiological/phenotypic role for SIMPL 

has not been elucidated.  There is evidence for TNFα and NF-κB involvement in blood 

cell development and differentiation (hematopoiesis) which intuitively involves the cells 

of the immune system.  NF-κB, specifically p65, has been shown to be necessary for 

normal, steady-state, blood cell development [18, 19].  Thus, focusing on the role of 

SIMPL in hematopoiesis represents an ideal starting point for exploring the physiological 

role of SIMPL. 

 

G. Role of TNF-RI dysregulation, a role for TNF-RII 

   TNFα induces apoptosis understand certain conditions.  Signaling through TNF-

RII usually enhances a TNF-RI signal and only in a limited manner signals for NF-κB 

activation independent of TNF-RI [20].  As discussed above TNFα binds to TNF-RI 

leading to oligomerization of  TNF-RI and binding of TRADD, TRAF2 and other 

signaling pathway components, culminating in activation of the IKK complex.  TNF-RI 

normally inhibits apoptosis through TRAF2 dependent recruitment of the anti-apoptotic 

proteins including cellular inhibitor of apoptosis 1 and 2 (cIAP1 and cIAP2).  cIAP1/2 

each contain a caspase inhibitory Baculoviral IAP Repeat (BIR) domain.  The TNF-

RI/TRAF2/cIAP complex protects TNF-RI from receiving or triggering apoptotic signals.  

Interestingly, TNF-RII promotes apoptosis by competitively sequestering cIAP1 and 

cIAP2 TNF-RII bound TRAF2, thus allowing for caspase-8 mediated initiation of 

apoptosis.  Specifically, cIAPs block the ability of activated caspase-8 from converting 
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pro-caspase-3, through cleavage, to activate caspase 3.  The activated caspase-3 both 

activates caspase-8 through cleavage of the pro form, and activates apoptosis.  Caspase-8 

also leads to the release of cytochorome c from the mitochondria.  TNF-RII co-

stimulation increases TNF-RI dependent caspase-8 activation.  The carboxyl terminal 

domains of cIAP1 and cIAP2 each contain a RING finger E3 ubiquitin ligase enabling 

cIAP1 to ubiquinate and target TRAF2 for degradation TRAF2 (Figure 2).  Thus, cIAPs 

have a pro-apoptotic function when TNFα binds to TNF-RII.  As cellular levels of 

TRAF2 are depleted, the competition between the TNF receptors for TRAF2 increases.  

This mechanism provides a viable way to control a dysregulated TNFα/ NF-κB signal.  

The TNFα/ NF-κB pathway has a number of NF-κB induced feedback inhibitors and 

activates the expression of a number of anti-apoptotic genes [5, 21].  If NF-κB cannot 

signal due to a loss of component in the pathway, then potentially, TNF-RII will bind 

cellular anti-apoptotic factors.  The diminished production of cIAPs will lead to a net loss 

in cellular anti-apoptotic activity and apoptosis would be predicted to occur.  Thus, 

SIMPL acting as a co-activator in this pathway will have a major role in the control of the 

TNFα induced NF-κB (p65/p50) signal and its’ effects can evaluated by studying the 

effect of SIMPL upon induction of apoptosis. 

 

H. Basics of hematopoiesis     

 Hematopoiesis, most often studied in animal models, in particular mice, is an 

enormous field.  I will discuss hematopoiesis in general here and focus in the results and  
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Figure 2.  Dose dependent effects of TNFα. 

Low dose TNFα leads to an increase cIAP gene expression that blocks an apoptotic 

response.  High dose TNFα elicits activation of TNF-RI and TNF-RII leads to 

activation of an apoptotic response.   

 

 

 

(adapted from [5])  
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discussion sections on specific parts of hematopoiesis as information on SIMPL is 

elucidated experimentally.   

Hematopoiesis is the process of development and formation of blood cells 

throughout the life of the animal.  On any given day, approximately 2 x 10
10
 white blood 

cells and 2 x 10
11
 red blood cells are turned over.  Blood cell development starts with 

hematopoietic stem cells (HSCs), which are pluripotent cells that have the ability to self-

renew and proliferate.  HSCs have the potential to develop into any of the mature 

circulating hematopoietic cell types including neutrophils, basophils, erythrocytes, 

megakaryocyte, mast cells, dendritic cells, macrophage/monocytes, and lymphocytes.  In 

a simplified view, during development, HSCs can differentiate into Multipotential 

Progenitors (MPP) that retain the ability differentiate into any blood cell type given the 

right growth factors, microenviroment, and/or cytokines.  In contrast to HSCs, MPPs lack 

the ability to indefinetly self-renew.  The first major choice for a HSC is whether  one 

daughter cell should differentiate into either a common lymphoid or a common myeloid 

precursor (progenitor) [3, 22]  (Figure 3).  

Since my studies focused on myeloid development (occurs mostly in bone 

marrow), the rest of this discussion will focus on the control of myeloid hematopoiesis.  

Lymphocyte development and differentiation will be briefly discussed later.  Most of the 

knowledge regarding the process of blood cell differentiation has been, and continues to 

be, gained from work done using an in vitro colony progenitor assay.  In this assay 

freshly isolated bone marrow cells are plated at a single cell density in a semi-solid  
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Figure 3.  Mouse Hematopoiesis.  

Highlights the flow of differentiation starting with the bone marrow stem 

cell.  

Adapted from [3, 4] 
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matrix in the presence of a cytokine/growth factor cocktail.  Seven to fourteen days later, 

the numbers of colonies (>50 cells) are quantitated.  Each colony is derived from one 

progenitor or HSC.  The common myeloid progenitor can give rise to colony forming 

unit-granulocyte erythrocyte macrophage megakaryocyte (CFU-GEMM) colonies (which 

was named for the differentiated cell types formed in the colony).  Therefore CMPs can 

form every myeloid cell type (Figure 3).  Thus, the colony assay is a way to identify the 

type of progenitors present in bone marrow.  Hematopoietic stem cells and MPPs can 

also be identified by the presence of cell surface markers.  For example, c-kit, the 

receptor for stem cell factor (also known as steel factor, SCF) is a common marker for 

HSCs and MPPs.  Other cell surface makers are also used to further distinguish HSCs and 

MPPs (as will be elucidated later).  Also, HSCs and MPPs can be given colony 

stimulating factors (CSFs) that can force the precursors down specific pathways in order 

to study the development of specific hematopoietic cell types like differentiated myeloid 

cell types [3, 22-25].  Therefore, SIMPL that is proposed to be involved in hematopoiesis 

can be exquistely explored by using the various combinations of variables including 

multiple growth factors, and hematopoeitic cell types.  The outcomes to these 

experiments will be visualized as disruptions in hematopoeisis, including from disruption 

in colony formation, growth inhibition, apoptosis, pressure selection, and developmental 

problems.   

 

I. Evidence for TNF-RI/NF-κB involvement in differentiated hematopoietic cell types 

As described previously, SIMPL is critical for full activation of NF-κB (p65/p50) 

allowing for enhanced transcription of p65/p50 controlled genes through TNF-RI.  
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Therefore, evidence that shows involvement of the TNFα/NF-κB pathway in 

hematopoiesis implicates a role for SIMPL in hematopoiesis.  I will present evidence for 

this involvement beginning with the most differentiated cell types and work background 

to the immature precursors including HSCs. Analysis of mice lacking TNFα/NF-κB 

signaling pathway components has confirmed the role of this pathway in the generation 

of more differentiated hematopoietic cell types.  These mature cell types include B and T 

cells, macrophages, monocytes, neutrophils, and red blood cells.   

When TNFα is knocked-out in mice a number of problems occur.  TNFα deficient 

mice fail to develop normal class switching from IgM to IgG in B-cells, and do not 

develop germinal centers in the spleen when presented with a T-cell dependent antigen 

such as sheep red blood cells (SRBC) [26].  This demonstrates a role for TNFα in B and 

T-cell lymphopoiesis.  Mice lacking TNF-R1 and/or TNFα die after an oral injection with 

Toxoplasma gondii infected macrophages; B-cell interactions are known to be necessary 

for the response to T. gondii.  However, TNF-RII knockout mice do not die after the 

same challenge; highlighting a TNF-RI dependent involvement in this immune responses 

[5].  Originally RelA (p65) knockout mice were thought die from poor liver development 

at embryonic age 15-16 [9].  Mice lacking both TNF-RI and RelA, survive to day 10 

(after birth), at which point, they died from immature neutrophil invasion of the liver; 

highlighting an inherent defect myelopoiesis with the loss of RelA (p65).  This result 

suggests that p65 protects the developing embryo from TNFα induced apoptosis.  These 

data highlight two additional points that are frequently over looked.  One, based upon 

inference is that TNFα levels are present during early embryogenesis.  Two, lack of TNF-

RI leads to immature neutrophil invasion of the liver in the absence of pathogenic 
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challenge, thus hinting at a role for the TNF-RI pathway in the regulation of steady-state 

hematopoiesis [27].  TNFα through p65 controls a number of growth factors necessary 

for differentiation.  Expression of the GM-CSF along with M-CSF, IL-2 and G-CSF, 

genes are under p65 control and their protein products, are important for hematopoietic 

differentiation and development (i.e. neutrophils and macrophages) [28-31].  GM-SCF is 

a good example; analysis of the p65 knockout revealed that production of granulocyte-

macrophage colony stimulating factor (GM-CSF) required TNFα induction of p65 to 

induce expression of GM-CSF above basal levels [9].  Another study confirmed that GM-

CSF is a TNFα responsive gene and that the GM-CSF gene promoter contains NF-κB 

sites [26, 32].   

  RelA (p65) has been linked to the normal development of T and B cells [33].  T- 

and B-cells derived from the p65 knock-out mice have a decreased poliferative ability 

upon challenge with various stimuli including Con A, anti-CD3, anti-IgM, 

lipopolysaccharide (LPS) and phorbol mysteric acid (PMA) [34].  B-cells from RelA-/- 

mice treated with TNFα have an increased sensitivity to apoptosis.  Mice lacking 

RelA(p65) and NF-κB1(p50) (the heterodimer activated through TNF-RI) do not generate 

B and T lymphocytes [33].  Thus, mature hematopoietic B and T cells, neutrophils and 

macrophages require both functional TNF-RI and p65.  

 

J. NF-κB (p65/p50) involved with terminal precursors of differentiated cell types 

Terminal precursors are mature blast cells that can differentiate into a limited 

range of differentiated cells (as illustrated in Figure 4). The p65/p50 complex is the 
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predominant form of NF-κB in pre-B cells [34].  Schematics of the expression pattern of 

NF-κB involvement in T and B cell differentiation are presented in Figures 4 and 5.  

RelA (p65) and p50 are also involved in normal erythropoiesis.  BFU-E are the mature 

blasts that eventually terminally differentiate into red blood cells.  RelA (p65) and p50 

have high expression levels and are localized in the nucleus of day 10 blast forming unit-

erythrocyte (BFU-E) cultures.  There is a decline in cellular p65 and p50 levels by day 14.  

These data highlight the  involvement of p65/p50 in early erythrocyte formation.  

Mechanistically this may reflect the fact that the c-myc, and c-myb genes, which are 

important in erythroid proliferation contain NF-κB binding sites in their promoters.  

Taken together, p65 along with TNFα are intimately involved in every facet of mature 

terminally differentiated hematopoietic cell development.  

 

K. Understanding TNFα in immature progenitor and hematopoietic stem cells 

 

1. Overview 

The more immature hematopoietic cells require a more extensive explanation of 

their ability to form many hematopoietic cells types.  Therefore a more extensive review 

of TNFα involvment in early immature precursor will be provided.  Insight into an 

understanding of hematopoietic stem and progenitor cells reveals TNFα’s global effects 

on hematopoiesis.  Insight into the global effects of TNFα will highlight specific 

conditions that SIMPL may modulate.  TNFα can potentially inhibit hematopoietic stem 

cells or hematopoietic progenitor cells at 3 critical stages: survival,  proliferation and 

differentiation.  Insight  into the role of TNFα will be best described by separating the 
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roles of proliferation, survival, and differentiation. Blocking survival is inhibiting the 

HSC or progenitor from living; cell death can occur through apoptosis or necrosis.  

Inhibiting proliferation entails blocking the ability of immature precursors to expand and 

possibly, in the case of the HSC, self renew.  Expansion is not necessarily differentiation 

and should be considered different from self-renewal.  Blockage of differentiation 

inhibits the immature cell type from becoming a more mature cell type that will have 

increasingly limited options for expansion and functionality.   

TNFα’s effects on immature hematopoietic precursors have been studied in both 

human and mouse model sysems, and an overview of both is provided.  Key to 

understanding studies in the role TNFα plays in hematopoiesis, human TNFα activates 

human TNF-RI and TNF-RII in a concentration dependent manner.  Soluble mouse 

TNFα (mTNFα) activates mouse TNF-RI and TNF-RII to the same extent that soluble 

human TNFα activates human TNF-RI and TNF-II.  Human TNFα binds to and activates 

mouse TNF-RI; mouse TNFα does not bind to either human TNF-RI or TNF-RII.  

 In the human hematopoietic system HSCs can be defined by the cell surface 

markers CD34 and CD38; HSCs are CD34
+
 and CD38

-
; by itself CD34

+
 alone defines the 

immature progenitor which contains a small subset of HSCs.   

In mouse hematopoietic populations, HSCs are defined as lin
-
sca

+
ckit

+
 while 

HPCs defined as lin
-
sca

-
ckit

+
.  HSCs and HPCs are the two most important subsets of 

hematopoietic cells because they can give rise to all the myeloid and lymphoid cells.  In 

the literature conclusions on hematopoiesis have been drawn using cells expressing a 

combination of these markers, and these studies will be described herein to gain insight 

into influence TNFα has on the hematopoietic system.     



 

 20 

The  advantage of using mice is the ability to the remove a gene of interest (i.e. 

TNFα) to better define the role of the gene product.  The myeloid microenvironment 

involves cytokines, chemokines, growth factors, and cell-cell interactions (stromal layers). 

Each can be studied in the mouse system by gene manipulation.  A second advantage of 

mice is that in vivo tests can be performed that cannot occur in humans.  Thirdly, there is 

a complete range of organ systems to study the phenotypic impact of manipulating 

hematopoietic system.  Thus in mouse models, the roles of TNFα in the 

microenvironment and the role of cell type specificity has been and can be more easily 

explored.  A disadvantage is the wealth of information caused from all the potential ways 

to explore the effects of TNFα in mouse models makes a comprehensive study, as was 

done by Dybedal and coworkers [35] for TNFα in human early hematopoiesis, difficult.  

The comprehensive picture of TNFα on hematopoiesis presented below is derived from 

several different publications. 

 

2. TNFα inhibits proliferation of precursor hematopoietic cells 

A comprehensive paper that explored TNFα effects on survival and proliferation 

(at two of the three possible sites of inhibition) of human HSCs was done by Dybedal and 

co-workers [35].  To promote the survival, self-renewal and expansion of human HSCs, 

serum-free media supplemented with a mix of cytokines which included: c-kit (KL), flt3 

ligand (FL), thrombopoietin (Tpo), and interleukin-3 (IL-3) was used.  From here on this 

media is referred to as KFT3.  These liquid culture conditions allow the human HSCs to 

maintain normal function, thus the HSCs can still proliferate and differentiate when 

placed in a differentiation assay.  The serum-free condition eliminates exogenous 
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cytokine contamination.  By using the KFT3 combination in the presence or absence of 

human TNFα, the authors showed that TNFα inhibited human hematopoietic stem cell 

proliferation but not their survival.  To show this, human HSCs from cord blood or bone 

marrow were incubated with KFT3 and TNFα (20 ng/mL; 5 or 8 days) and were 

compared to KFT3 without TNFα.  The clonal proliferation of TNFα treated HSCs from 

cord blood or bone marrow were diminished by ~65% and 67% respectively.  The growth 

inhibition by TNFα could be caused by subpopulations of HSCs dying or by all the HSCs 

not growing.  To answer this question the authors examined the ability of the HSCs to 

clonally proliferate at the single cell level in the presence of TNFα.  Surprisingly, every 

single cell could form a clone, except the clonal size was greatly reduced when compared 

by cell number.  In this experiment the colonies were not made up of differentiated cell 

types because factors were not given to support differentiation or mature cell growth.  

More specifically KFT3 treated HSCs clonal population ranged from 50 cells <10%, 10-

50%, and 50-100% coverage of a dish, while those treated with KFT3 and TNFα ranged 

from 3- 9 cells, 10-49 cells and 50 cells <10% coverage [35].  In parallel to the human 

HSC experiment, mouse HSCs (lin
-
sca

+
c-kit

+
) placed as single cells per well and treated 

with IL-3, SCF and mTNFα, TNFα inhibited clonal expansion as compared to control 

(non-TNFα treated) [36].  Similarly in 12 day single cell liquid culture expansion assays 

done with a mix population of mouse HSCs and HPCs (lin
-
sca

+
) and even more mature 

HPCs (lin
-
sca

-
), clonal proliferation was inhibited with mTNFα as compared to control 

[37].  These data reveal that HSCs can divide at least once in the presence of TNFα 

before becoming sensitive to the growth inhibitory effects of TNFα, and that progenitor 

clonal proliferation can also be inhibited.   
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Dybedal and co-workers used an in vivo method to test if human TNFα treated 

human HSCs proliferative clones were functionally capable of bone marrow 

reconstitution.  In these experiments the goal is three part.  One is to confirm that TNFα 

inhibits proliferation; two is to determine if the proliferation is reversible; and three is to 

begin to address HSC functionality. The inability of the TNFα treated HSCs to 

reconstitute bone marrow would confirm a loss of proliferation, suggest inhibition of 

differentiation, and question self-renewal.  Briefly, these experiments consisted of using 

sub-lethally irradiated NOD/SCID (non-obese diabetic-severe combined 

immunodeficient; NON/SCID) mice engrafted with the human HSCs.  NOD/SCID mice 

are ideal for these studies as they lack T and B cells that would normally recognize 

human cells as foreign.  Sub-lethal irradiation of the mice should limit proliferation and 

differentiation and inhibit currently cycling mouse HSCs; the host HSCs will eventually 

begin to divide again as the low dose of irradiation is not lethal.  This is advantageous 

because comparisons of growth between different treated groups of human HSCs can be 

competitively compared to the mouse HSC (normalize for growth).  In the experiment, 

the engrafted HSCs had been  cultured (to allow for clonal expansion) for 2 or 8 days in 

KFT3 in the presence or absence of TNFα.  The cells were then transplanted into sub- 

lethally irradiated NOD/SCID mice.  6 weeks later, the NOD/SCID mice bone marrow 

was harvested and analyzed by fluorescence activated cytometry using mouse versus 

human specific cell surface markers.   

In the first group of transplant experiments, only 1 out of 9 mice that received 

human HSCs treated in vitro with TNFα (20 ng/mL) for at least 5 days were reconstituted 

and in that one animal only 1.1% of the blood cells were human HSCs.  In the non-TNFα 
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group all 9 mice were reconstituted, with 25% of the cells consisting of human HSCs.  

However, if the human HSCs were expanded for only 2 days (a time frame too short for 

HSCs to proliferate in culture), instead of 5 days and exposed to TNFα, 6 out of 8 mice 

were reconstituted with percentage of engraftment similar to control.  It was hypotheisze 

and confirmed that 2 day TNFα exposure was not effecting HSC because they were not 

proliferating.  They found that HSCs given Tpo, which prevents proliferation and 

promotes survival, were impervious to the 5 day exposure with TNFα.  In the human 

studies, no increase in apoptosis was detected, as determined by annexin V and 7-AAD 

staining, in the TNFα treated cells.  These results hint at a cell cycle regulation of HSCs 

by TNFα, which as been seen in mice.  In mouse studies using BrdU incorporation and 

propidium iodide staining, both lin
-
sca

+
c-kit

+
 (HSCs) and lin

-
sca

-
c-kit

+
 (HPCs) 

populations were shown to be arrested at the G1/G0 stage of cell cycle (50% mTNFα 

treated vs. 18% control HSCs and 40% mTNFα treated vs. 24% control SPCs) [36].  

These data along lend further support to the overall hypothesis that TNFα can function as 

a cell cycle inhibitor [38-41]. 

Assessing the data reveals that TNFα requires proliferation for it to have an effect 

on hematopoietic precursors.  Further, the effects of TNFα are dependent not only on 

concentration, but also length of exposure.  For example, after short term exposure to 

TNFα,  HSCs to retain normal function; normal function is the ability to reconstitute bone 

marrow which requires survival, proliferation, and differentiation of HSCs.     

Others have found that the effect(s) of TNFα is reversible, but in those studies the 

HSCs were exposed to short term TNFα for 2 days. But taken with the above data these 

HSCs probably did not proliferate.   Dybedal and co-workers found that the effect of the 
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5 day exposure to TNFα on HSC engraftment ability could not be reversed with a 

subsequent 2 day treatment with anti-TNFα before transplantation.  Of the 5 mice 

transplanted for each condition, only one given the TNFα antibody was successfully 

reconstituted, and only 0.1% of those transplanted cells were derived from the human 

HSCs.  These data suggest strongly that the HSCs were not maintaining their pluripotent 

nature in the presence of TNFα.   

Overall, these data suggest there is a natural balance or gradient of TNFα that 

must be maintained in order to neither irreversibly inhibit HSC proliferation nor allow for 

uncontrolled expansion.  Uncontrolled expansion has been shown for HSCs derived from 

TNFα-/- mice that are grown on stromal cells, the TNFα-/- derived HSCs live 4 times 

longer than wild type HSCs.  Intringuingly, near irreversible HSC proliferation occurs in 

diseases that expose bone marrow to chronically high levels of TNFα such as 

myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and aplastic anemia.   

 

3. TNFα promotes differentiation of hematopoietic precursors 

a. Overview 

The TNFα treated HSCs are not undergoing apoptosis, but the cell cycle is 

inhibited suggesting that hematopoietic differentiation is being affected through 

inhibition of proliferation.  Differentiation requires HSCs and HPCs to mature through 

rounds of proliferation followed by narrower choices of differentiation then the more 

mature cells proliferate and differentiate further.  Each subsequent round of maturation 

leads to a decreased ability to proliferate and fewer options of cell types to mature into.  

Thus, differentiation tests the functionality of a precursor.  For illustration, expansion of 
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HSCs without differentiation to mature cell types leaves the host pancytopenic (anemic, 

leukopenic, thrombocytopenic).  However, differentiation has two contexts that need to 

be explained and explored.  In the first scenario, explained thus far, the HSC or HPC 

undergoes clonal expansion in the presence of TNFα (5 or more days), and then the 

expanded clones are put into a methylcellulose differentiation/proliferation colony assay.  

This would test if the HSC or HPC has already differentiated thus either limiting the 

amount of proliferation and/or limiting the type of mature cell type it can become.  The 

second scenario, is one in which TNFα is added to HSCs or HPCs at the same time the 

cells are placed into a methylcellulose differentiation/proliferation colony assay.  Colony 

counts in methylcellulose differentiation/proliferation colony assay are not made until 7-

14 days (depending on specific experiment) after plating.  Assuming the previous work 

on TNFα was correct, then TNFα would not take effect for 2 days (for HSCs) and not be 

potentially irreversible for the first 5 days.  Thus, in the second scenario, it would be 

expected for the HSCs or immature HPCs to expand/proliferate and differentiate before 

TNFα starts to inhibit the proliferation or expansion.   

 

b. First scenario: Understanding differentiation by pre-treating HSCs and HPCs with 

TNFα before placement into proliferation/differentiation Assay 

For scenario one, Dybedal and co-workers followed the expression of the early 

percursor cell surface marker CD34, which identifies a mix of  HSCs and early HPCs in 

human hematopoietic cells.  Human CD34
+
 cells were cultured in KFT3 with or without 

TNFα (20 ng/mL ) and followed for 2, 5, and 13 days for expression of lineage markers 

by fluorescence activated cell sorting (see methods).  At 2 days, the TNFα treated and the 
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non-TNFα groups looked similar.  At 5 days, in the TNFα treated group the level of 

expression of the progenitor marker CD34 was down.  By 12 days, CD34 was completely 

gone in the TNFα group; while in the control group of the expanded cells, 17% were lin
-

CD34
+
 and 40% were CD34

+
.  Without CD34 human hematopoietic cells are considered 

mature and at the end-stages of differentiation [35].   

For more functional differentiation experiments, Dybedal and co-workers utilized 

long term culture initiating cell assays (LTC-IC) followed by LTC-colony forming cell 

(LTC-CFC) assays.  In these experiments HSCs were expanded in liquid culture for 5 to 

7 days in media containing KFT3 with and without TNFα (2 or 20 ng/mL).  The HSCs 

were then placed on a murine/mouse fibroblast stromal layer cell line (1:1 mix of 

M210B4 and sl/sl) that produce high amounts of IL-3, G-CSF, Flt3 ligand in long term 

culture (LTC) media (supplemented with hydrocortisone 21-hemisuccinate) for 6 weeks.    

Then, the culture was evaluated by taking adherent and non-adherent cells and putting 

them into a differentiation/proliferation colony assay containing only human growth 

factors (rhIL-3, rhG-CSF, rhSCF, rhFl3 ligand, rhGM-CSF), so only human and not 

mouse cells could grow.  It was shown that a 5 day exposure to TNFα inhibited the 

ability of HSCs to form LTC-CFC (colonies) by 98% compared to wild type control.  

Further, engrafted human HSCs in mice exposed to 5 days of high dose TNFα 

intravenously, and placed into the colony assays were equally as inhibited compared to 

control.   

In attempt to test this hypothesis, (Rusten et al 1994) [42] argue TNFα induced 

colony inhibition of HSCs grown in TNFα for up to 4 days could be reversed by washing 

off the TNFα.  The problem with the Rusten study was that HSCs were not given any 
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cytokines other than TNFα.  Therefore they were not forced to proliferate, and TNFα 

would not have an opportunity to work in proliferating cells [42]. 

 

c.  Second Scenario:  Understanding differentiation by concurrent addition of TNFα with 

myelopoietic colony formation 

In the second scenario, lin
-
sca

+
ckit

+
 HSCs are plated directly into methylcellulose 

differentiation conditions with mTNFα.  TNFα inhibits the ability of mouse HSCs to 

form highly proliferative colonies (HPP; large sized colonies with a dense core of cells 

{which usually contain >50,000 cells [43]}; greater than 0.5mm in diameter), but did not 

inhibit the low proliferative potential (LPP) colonies.  This inhibition was mTNFα 

concentration dependent with higher levels of mTNFα causing greater inhibition of the 

number of highly proliferative colonies [36].  Similarly, human CD34
+
 cells, plated in 

methylcellulose differentiation/proliferation assay, HPP colony formation was similarly 

inhibited in a hTNFα dependent manner [42].  However, the effects of TNFα varied 

depending upon the other cytokines present.  Human HPP and LPP colonies numbers 

were inhibited in lin
-
sca

-
ckit

+
 HPCs exposed to hTNFα in the presence of G-CSF and 

SCF.  But HPP colonies were not inhibited when HPCs were given IL-3, SCF, and TNFα, 

while HPP colony formation was inhibited when HSCs were given the same cytokines.  

In fact, HSC colony formation inhibition by mTNFα was not growth factor specific.  

Thus, in the second scenario, it would be expected for the HSCs lin
-
sca

+
ckit

+
  to 

expand/proliferate and differentiate before TNFα could start to inhibit the proliferation or 

expansion.  Therefore TNFα treated HSCs can form LPP colonies, but only limited HPP 

colonies.  Hematopoietic progenitor cells proliferation is regulated by TNFα in a growth 
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factor specific manner.  The difference of regulation of the HPCs (both treated and 

control received SCF) to the different growth factors G-CSF versus IL-3 may simply be a 

matter of kinetics and colony type type.  As far as kinetics are concerned, IL-3 has been 

shown to induce rapid expansion as well as differentiation [44].  This expansion could 

occur more rapidly in mature HPCs since they are actively cell cycling compared to 

HSCs.  Therefore expansion could be over before TNFα could take effect.  With G-CSF, 

first, the expansion and proliferation is probably more insidious.  It takes longer to 

differentiate into neutrophils, the cell type most influenced to expand/proliferate with G-

CSF.  As far as cell type is concerned,  IL-3 produces more CFU-GM cell types which 

are more immature that than the CFU-G colonies G-CSF would preferentially produce 

[45].  It has already been shown in this introduction that TNFα has intimate and direct 

regulation of mature hematopoietic cells, especially granulocytic neutrophilic cell types 

[41, 46-48].   

Analysis of cells derived from TNFα-/- animals should be the antithesis of these 

differentiation results, and it is.  Mouse lin
-
sca

+
ckit

+
 (HSC)  and lin

-
sca

-
ckit

+
 (HPC) cells 

derived from TNFα-/- animals were plated in GM-CSF differentiation/proliferation 

assays, formed more than 4 times more CFU-GM than wild type.  As measured by 

injection of lin
-
sca

+
ckit

+
 HSCs into lethally irradiated mice and counting colonies on the 

spleen (CFU-S), the number of multipotent progenitors/HSCs were also increased in 

mouse TNFα-/- derived bone marrow as compared to bone marrow derived from 

wildtype animals.   
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4.  Summary 

Of the three possible ways, survival, proliferation, and/or differentiation, to effect 

immature hematopoietic precursors, the role of TNFα is to inhibit proliferation.  When 

bone marrow derived from TNFα-/- animals is compared to bone marrow derived from 

wild type animals, it becomes apparent that a steady state level of TNFα is present in 

bone marrow, and it prevents large increases in proliferation of HSCs.  It also is clear that 

HSCs and HPCs have to be protected from chronic exposure to TNFα that could 

permanently inhibit their proliferation potential.  Direct exposure to TNFα does allow for 

differentiation of HSCs, though it may only be a few hundred cells versus the tens of 

thousands that would normally occur due to reduction of proliferation.  This protection of 

these HSCs and early HPCs is probably a niche, which is an asymmetric compartment 

that creates a special regulatory microenvironment for cells housed inside.  Finally, taken 

together these data highlight that chronic exposure of HSCs to high levels of TNFα as 

seen in certain hematopoietic disorders (ie. acute myeloid leukemias, MDS, aplastic 

anemia) could cause diminished proliferation of normal HSCs.  Therefore, the extent of 

inhibition of proliferation depends on: the concentration of TNFα, the time exposed to 

TNFα,  and the cell cycle state of the cell.  

 

L. Receptor specific role of TNF-RI in hematopoietic immature precursors 

TNFα has differing effects on hematopoiesis when TNF receptor 1 (TNF RI; p55; 

CD120a) and TNF receptor 2 (TNF RII; p75; CD120b) dependent responses are 

compared.  Understanding of the TNF-RI receptor will require comparative subtraction 

from the action of TNFα.  Since soluble TNFα activates both TNF-RI (with higher 
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affinity) and TNF-RII in a dose dependent manner, TNF-RI signals for only part of the 

total response.  TNF-RI is undoubtly vital to understand because SIMPL is a specific 

member of the TNF-RI/NF-κB signal cascade.  The research on TNF-RI and TNF-RI-/- 

mice has not been as thoroughly studied as TNFα, so the available relevant knowledge 

will be gathered from multiple publications. 

 

1. Role of TNF-RI on Proliferation 

Proliferation is the expansion of HSCs or HPCs without maturation.  In a study by Zhang 

and co-workers [36], they explored which TNFα receptor affected proliferation and 

looked at the ability of more mature progenitors to proliferate.  However, to date, no one 

has looked at the effects of long term culturing of HSCs in TNFRI-/- as has been done for 

TNFα-/-.   

 Zhang and co-workers examined 3 month old TNF-RI-/- mice and they found, in 

comparison to wild-type mice, a 1.6-fold increased proliferation of lin- cells and 

significant proliferative increases in HSC (lin-sca
+
ckit

+
 12.2% vs. 4.8%; respectively) and 

HPC (lin
-
sca

-
ckit

+
; 31% to 23% respectively) populations [36].  Other authors claim only 

slight differences in TNF-RI-/- mouse hematopoiesis, but these apparent non-differences 

are due to incomplete exploration of only fully differentiated/mature hematopoietic 

subpopulations [47, 49].     

The cell cycle inhibition at G1/G0 induced by TNFα is signaled for through TNF-

RI [36].  Mouse HSCs and HPCs, derived from TNF-RI-/- plated in liquid suspension 

culture with either IL-3 and SCF (lin
-
sca

+
ckit

+
) or G-CSF and SCF (lin

-
sca

-
ckit

+
) and 

treated with mTNFα, failed to arrest in G1 like cells derived from wild type mice treated 
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with mTNFα.  These determinations were made by following 5-BrdU incorporation assay 

and propidium iodide staining [36].  These data suggests that TNF-RI makes a valuable 

contribution to the inhibition of proliferation through cell cycle arrest of proliferating 

HSCs or HPCs.   

 

2. Role of TNF-RI on Differentiation 

 

a. TNF-RI specific influences on the First Scenario 

 The influence of TNFα on hematopoietic cell differentiation has been examined 

under the two different scenarios described previously (section K3).  Remember in 

scenario one, proliferation of HSCs or HPCs occurs in the presence of TNFα for a given 

time, and then differentiation of the treated cells in assessed by placing the expanded 

cells in methylcellulose culture with cytokines in the absence of TNFα that supports 

rounds of expansion and maturation.   

 Dybedal and co-workers isolated CD34
+
 CD38

-
 human HSCs, expanded them in 

KFT3 (c-kit ligand, Flt3 ligand, Thrombopoietin, IL-3) and either wildtype hTNFα, a 

specific TNF-RI activator or a specific TNF-RII activator, for 5 days. Cells were then 

plated in a LTC-IC assays for 6 weeks and then into the proliferation differentiation 

colony assay.  The TNF-RI specific activator (hTNFα containing mutations Arg32 to Trp 

and Ser86 to Thr; wild type binding activity [50]) and wildtype TNFα caused a severe 

inhibition of LTC-CFC colony proliferation.  The specific TNF-RII activator, with 

hTNFα mutations Asp143 to Asn and Ala145 to Arg, and a binding activity about 5 to 10 
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fold less than wild type hTNFα, had a limited effect, very little inhibition, on LTC-CFC 

colony growth. 

As described previously, in long-term cultures, bone marrow cells are harvested 

and co-cultured on a stromal layer with cytokines.  In a series of experiments by Rogers 

and co-workers [51], mouse bone marrow cells were treated with hTNFα (0 U/mL to 200 

U/mL) in a concentration dependent manner  (activates only TNF-RI in mice) for the 

duration of their growth on the stromal cell layer (for up to five weeks).  At 2, 3, 4 or 5 

weeks, 4x10
4
 of the cells in suspension were replated in a progenitor colony 

differentiation/proliferation assay or were injected into the tail veins of mice to determine 

if they could repopulate the spleen (the colony forming unit-spleen, CFU-S).  A CFU-S 

represents mouse HSC and very immature HPCs.  In the proliferation/differentiation 

colony assay, growth of mature HPC derived colonies CFU-GEMM, CFU-GM and CFU-

M were nearly completely inhibited when pre-treated with hTNFα in a dose dependent 

manner (up to 200 U/mL).  At the highest dose, hTNFα (200 U/mL) partially inhibited 

HPP colony formation.  The HPP (high proliferative potential) colonies represent 

immature precursor HSCs and immature HPCs which have a high capacity to 

expand/proliferate.  In contrast, hTNFα enhanced the growth of CFU-S (HSCs and 

immature) [51].  Based on the hTNFα dependent expansion of CFU-S, TNF-RI cell cycle 

inhibition is reversible, TNF-RII causes the irreversible effects of long-term exposure to 

TNFα, in the expansion of immature precursors.    
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b. TNF-RI influences on the Second Scenario 

 In the second scenario, as described earlier, HSCs or HPCs are plated directly  in 

methylcellulose culture with cytokines in presence of TNFα that supports rounds of 

proliferation and maturation.   

In continuation of the above hTNFα experiment, mouse bone marrow cells added 

directly to a differentiation colony assay with maximum dose of hTNFα (200 U/mL) HPP 

colony growth was not inhibited.  These data confirm that TNF-RI inhibition of 

proliferation still requires TNF-RII to be fully effective in an enviroment of multiple cell 

type interactions (in vivo or in a differentiation/proliferation colony assay).  Again, the 

antithesis to activation of TNF-RI is seen in the analysis of TNF-RI-/- mice.  Analysis of 

mouse HSCs (lin
-
sca

+
c-kit

+
) derived from TNF RI-/- mice had increased formation of 

HPP colonies when grown in IL-3 and SCF as compared to control [36], and increase 

CFU-GM formation [49]. Plus, the inhibition of HPP (lin
-
sca

+
c-kit

+
) and HPC (lin

-
sca

-
c-

kit
+
)  colony formation by mTNFα is blocked [36]. 

 

3. Summary 

 TNF-RI is likely responsible for inhibition of proliferation caused by TNFα seen 

in immature precursors, but TNF-RI alone is probably not responsible irreversible 

inhibtion of proliferation due to long exposure to TNFα.     

 

M. Exploration of TNFα through examination of diseases 

A quote from Pikarsky and co-worker that appeared as a Letters to Nature 

discussing the TNFα/NF-κB pathway most appropriately summarizes the potential for 
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using modulators of TNFα for therapy.  “It has been proposed that anticancer research 

might be more effective if aimed at eradicating the cause or the signaling context of 

abnormality rather than just treating the end result…disrupting the signaling context of 

the evolving tumor may be a more realistic objective [52].” This sentiment is shared by 

others in the field [53].    

Acute myeloid leukemia (AML) is ideal for the study of the effects of 

dysregulation of TNFα in disease.  Other diseases with TNFα dysregulation have a 

corresponding pattern of effects that can be predicted through understanding the 

TNFα/NF-κB pathway.   

 

2. AML- Role of dysregulated TNFα/NF-κB system  

Acute myeloid leukemia (AML) is a TNFα linked hematopoietic disease 

characterized by the inability of immature myeloid blasts cells to differentiate, leading to 

rapid loss of life within 1-3 years for those over 60 years old [54].  The early death is 

possibly due to older individuals not able to endure the negative effects of chemotherapy.   

Understanding the role of TNFα in acute myeloid leukemia will allow for the 

identification of stage specific treatments and better predictions of the effects of the 

treatments.  AML cells and patients own immune system produce high levels of TNFα 

that promotes hematopoietic blast cell growth while inhibiting normal hematopoiesis.  

TNF RI and TNF RII are also upregulated in AML cells of stages M4 and M5 [55, 56].  

The TNF-RI activated transcription factor, NF-κB (p65/p50 deterodimer) is upregulated 

and constitutively active in AML, usually as a result of a mutation at the level of the 

IKKs (for review Figure 1) [57, 58].  In AML, the TNF RI/p65 signaling pathway 
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component IKKβ is constitutively active, due to constitutive phosphorylation which leads 

to higher than normal NF-κB activity [58].  NF-κB activation is sustained in spite of 

increased expression of the NF-κB controlled IκBα gene.  This is most likely the result of 

continual phosphorylation of IκBα by IKKβ leading to its degradation.  These results 

indicate that in AML conditions for preferential survival of transformed leukemic cells 

exist.  Constitutive p65 activity in AML leads to increased expression of the inhibitors of 

apoptosis that include: XIAP, survivin (normally expressed only in primitive precursors 

and only in G2/M), cIAP1, cIAP2, cFLIP, Bcl-2, and Bcl-xL [59-61].  Furthermore the 

high levels of TNFα enhance p65 induced anti-apoptotic activity [58].  However, high 

dose TNFα inhibits HSC and early progenitor proliferation, and induces apoptosis among 

more differentiated hematopoietic cell types.  Thus TNFα appears to have different 

effects upon normal versus AML-derived hematopoietic cells.  Dysregulation of TNFα in 

AML patients may be the main contributing factor to the progression towards the disease, 

since, chronic TNFα exposure can cause clonogenic pressure selection.  This type of 

effect is also seen in patients with rheumatoid arthritis who are also characterized by high 

levels of TNFα [62].  The high TNFα levels are directly linked to a 2-fold increase in the 

development of malignant lymphoma (non-hodgkins and hodgkins lymphoma) in patients 

with rheumatoid arthritis [63].  High TNFα also causes detriment in hairy cell leukemia, 

chronic lymphocytic leukemia, and acute lymphocytic leukemia [64-66].  Acute myeloid 

leukemic cells thrive in high TNFα levels which can inhibit normal HSCs [67].  

 Supernates from AML cultures prevents hematopoiesis in normal LTBMCs, and 

the inhibition can be partially blocked with anti-TNFα [67].  These data indicate that 

autocrine production of TNFα by AML cells can have profound effects upon AML cell 
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growth/differentiation capacity.  TNFα up regulates c-kit expression (primitive marker) in 

AML cells, while decreasing c-kit expression in non-neoplastic normal hematopoietic 

cells [36, 68].  AML activation of NF-κB also allows for other ways in which the 

leukemic cells can evade chemotherapies.  NF-κB controls the expression of the multiple 

drug resistance gene (mdr1) which encodes P-glycoprotein.  The P-glycoprotein is a 

transporter that controls the removal of anti-cancer drugs from cells [59].  In multiple 

myeloma p65 levels are increased and have been shown to bind directly to and elicit 

nuclear relocalization of the reverse transcriptase component of telomerase, which by 

promoting survival would enhance transformation and clonal expansion [59].    

 

3. Myelodysplastic Syndrome 

Myelodysplastic Syndrome (MDS) is a collection of TNFα linked diseases in 

which hematopoietic cells are functionally and morphologically aberrant.  The bone 

marrow cellularity in these patients is either normal or hypercellular with peripheral 

pancytopenia (global loss of all peripheral blood cell types).  This condition is also 

known as ineffective hematopoiesis [1, 2, 53, 69, 70].  MDS may be the most prevalent 

clonal hematopoietic neoplastic disease in adults in the Western world and is thought to 

be linked to the aging process [53].  MDS is linked to impaired hematopoietic cell 

differentiation, and can progress from less severe Refractory Anemia (RA) to most severe 

AML [1, 53].  This is a disease of accumulating mutations over time, and elevated TNFα 

and sTNF-RI (soluble TNF-RI) levels are often present.  Levels of TGF-β1, another 

inhibitor of hematopoietic differentiation are normal in MDS [2].  As explained 

previously, a mutation in the TNFα pathway which would support clonal development of 
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precursors, can create the breeding ground for mutations leading to the inevitable 

neoplastic transformation.  Along with these changes in severity seen in Table 1 changes 

in TNF RI and TNF RII levels hint at the role of TNFα signaling in neoplastic 

transformation.  In refractory anemia, early stage of MDS, TNF RI expression is 

significantly increased.  Refractory anemia is a difficult to manage anemia that currently 

is only successfully treated through blood transfusions.  As the disease transforms into 

RA with excess blasts (RAEB), the level of TNF RII expression increases [1].  The TNF 

RII increase is linked to increased apoptosis and fas signaling [71].  Thus, increased 

pressure on differentiated cells to survive while precursor cells still have more than one 

way to survive.  Multiple survival mechanisms (see AML) of precursor cells is a reason 

myeloid leukemias are highly drug resistant [53, 59-61].  TNFα levels are highest in RA 

along with high amounts of apoptosis Table 1 [2, 69].  Fas L, an inducer of apoptosis is 

increased in RA with excess blasts (RAEB) and seems to mark the transition into severe 

disease which is evidenced by a rapid expansion of blasts [2].  To show  that TNFα was 

the cause of the hematopoietic stress in MDS patients’ bone marrow, administration of 

anti-TNFα to MDS cultured cells promoted differentiation of HSCs and early precursors 

especially of the myeloid committed cell subpopulation (CFU-Meg, CFU-GM) [2, 70].  

However, the total CD34
+
 cell number did not change.  These data are supportive of  the 

chronic inhibition of proliferation caused by TNFα exposure on CD34
+
 cell populations 

as mentioned earlier.  In MDS patients cA2 anti-TNFα antibody treatment also decreased 

activated CD4
+
 and CD8

+
 T-lymphocyte populations which are also thought to contribute 

to MDS and TNFα release [70].  These data again highlight the pleotropic effects of 

TNFα. 
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 mRNA 
levels 

 Protein pg/mL 

MDS Categories TNF-RI TNF-RII TNFα 
levels 

FasL 

Refractory Anemia (RA) Increased 
↑↑ 

upregulated 14.7  ↑↑ 4.5 

RA with Excess of Blasts 
(RAEB) 

Same as 
control 

Increased ↑ 9.4    ↑ 40.5 

RAEB in transformation 
(RAEB-T) 

Same as 
control 

Increased ↑ 10.3  ↑ 17 

Acute myeloid leukemia 
(AML) 

Same as 
control 

Increased ↑↑   

Adapted from [1, 2] 

Table 1.  Increasing levels of MDS severity and relation to TNF-RI and 

TNF-RII levels 

This is a relative adaptation of two papers.  Highlighting the different levels of 

mRNA levels of TNF-RI and TNF-RII and protein levels of TNFα and Fas 

Ligand relative to the different progressively severe stages of MDS.  The 

arrows are relative indicators of increase. 
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 For pleotropic mechanisms balance is the key to normal homeostasis.  Take 

hypotension as an example.  Hypotension (too little blood pressure) is due to a number of 

causes and can kill just as easily as hypertension (too much blood pressure).  Sometimes 

the end stages of either disease can mimic the other.  For example, hypertension can lead 

to heart failure and the heart failure leads to decreased cardiac output and thus 

hypotension.  Hypotension in one part of the body can cause the heart to increase cardiac 

output (hypertension) and constrict blood vessels to increase blood pressure 

hypertension).  Relative to TNFα, too much TNFα can block HSC proliferation and 

inhibit and/or induce apoptosis of terminally differentiating mature cells.  Under normal 

conditions, this normal self-regulating biological response inhibits any out of control 

HSC proliferation and allows for controlled terminal cell differentiation for immune 

reactions.  Too little TNFα will allow an increase in HSC expansion, but inhibits their 

function and prevents normal terminal cell activation.  Prevention of normal terminal 

differentiation will cause a build up of upstream precursors promoting clonogenic 

expansion.  Thus with another insult (such as constitutive activation of IKKβ allowing for 

differentiation, inhibiting apoptosis of blasts) preferential blast formation could occur 

[see above].  However, a low TNFα scenario generally will not occur as the low TNFα 

would lead to a diminished ability to effectively fight infection.  But if given enough time 

like in MDS these affects would likely occur (review earlier sections).    

 

N. Hypothesis 

Our hypothesis is that decreasing SIMPL activity may be a better alternative than 

anti-TNFα therapies.  Loss of SIMPL should bypass the need for inhibiting NF-κB 
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activators like IKKβ, as activation of these two arms of the TNF-RI pathway appear to 

occur independently [14, 15].  Inhibition IKKβ is not advantageous because a large 

number of other cytokines link to IKKβ to activate NF-κB.  As a start toward determining 

if inhibition of SIMPL is a viable option for treatment of hematopoietic disorders I tested 

the hypothesis that loss of SIMPL led to decreased myelopoiesis in a TNFα dependent 

manner.  This was best characterized by examining CFU-GM colony formation.  Further, 

loss of SIMPL, like over activation of TNFα, does not induce apoptosis, but instead 

inhibits differentiation of myelopoietic precursors.  Loss of SIMPL allows for normal 

colony growth when not treated with TNFα.  In theory, this allows SIMPL to mediate 

hematapoietic cells with a dyregulated TNFα signaling, without harming hematopoietic 

cells with a normal response to TNFα, as other therapies would do.   In addition, 

hematopoietic cells would still have basal NF-κB activity due to SIMPL being in separate 

pathway that is not necessary for NF-κB nuclear localization nor DNA binding. 
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II.  Methods 

 

A. Plasmid constructs  

RNAi-Ready pSIREN-RetroQ-ZsGreen shRNA expression  

vector purchased from (BD Bioscience, San Diego, CA).  Flag-tagged SIMPL generates 

the full length SIMPL (259 amino acids) expressed in pFLAG-CMV-2 expression vector 

(Sigma Aldrich, St. Louis, MO).   

 

B. Antibodies  

SIMPL antibody was created by immunizing rabbits with full length  

recombinant SIMPL protein and kindly affinity purified by Maureen A. Harrington 

(Indiana University).  IRAK-1 antibody and Anti-FLAG
®
 M2 monoclonal antibody 

(F3165) was from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).  Goat anti-mouse 

IgG F(ab’)2 fragment specific-HRP was from Upstate Biotechnology (Lake Placid, NY; 

115-36-006).  Goat anti-mouse IgG F(ab’)2 fragment specific-HRP was from Jackson 

ImmunoResearch Laboratories, Inc. (West Grove, PA).  The following fluorochrome-

labeled antibodies used for flow cytometry were from BD Bioscience Pharmingen: (BD 

Biosciences, San Diego, CA), R-Phycoerythrin (R-PE)-conjugated rat anti-mouse CD117 

(c-kit) monoclonal antibody (clone: 2B8, isotype: IgG2b) (553355), allophycocyanin 

(APC)-conjugated rat anti-mouse CD117 (c-kit) monoclonal antibody (clone: 2B8, 

isotype: IgG2b ) (553356), APC mouse lineage antibody cocktail, with isotype control 

CD3e, CD11b, CD45R/B220, erythroid cells, and Ly-6G and Ly-6C (respective clones: 

145-2C11, M1/70, RA3-6B2, TER-119, RB6-8C5; respective isotype: Arm. Hamster 
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IgG1, Rat IgG2b, Rat IgG2a, Rat IgG2b, Rat IgG2b) (558074), R-Phycoerythrin (R-PE)-

conjugated rat anti-mouse Ly-6G and Ly-6C (Gr-1) monoclonal antibody (clone: RB6-

8C5, isotype: Rat IgG2b) (553128), PE-Cy7-conjugated rat anti-mouse CD11b (integrin 

αm chain, Mac-1 α chain) monoclonal antibody (clone: M1/70, isotype: Rat (DA) IgG2b) 

(552850), PE-Cy7 rat anti-mouse Ly-6A/E (Sca-1) (clone: D7, isotype: Rat (LEW) IgG2b) 

(558162), R-Phycoerythrin (R-PE)-conjugated rat IgG2b monoclonal immunoglobulin 

isotype control (553989), PE-Cy7-conjugated rat IgG2a monoclonal immunoglobulin 

isotype control (552784), PE-Cy7-conjugated rat IgG2b monoclonal immunoglobulin 

isotype control (552849), purified rat anti-mouse CD16/CD32 (FCγIII/II receptor) 

monoclonal antibody (Mouse BD Fc Block
TM
). 

 

C. Cytokines, Growth Factors, Chemokines 

The following cytokines were from Sigma-Aldrich, Inc. (Sigma-Aldrich, St. 

Louis, MO) and reconstituted in 0.22 µM filtered 0.5% BSA in PBS: recombinant human 

Tumor Necrosis Factor-α (cat. #T6674), recombinant mouse Tumor Necrosis Factor-α 

(cat. #T7539).  The following growth factors and cytokines were from PeproTech Inc. 

(PeproTech, Rocky Hill, NJ): recombinant murine granulocyte macrophage-colony 

stimulating factor (GM-CSF) (cat. #315-03), recombinant murine stem cell factor (SCF) 

(cat. #250-03), recombinant murine granulocyte- colony stimulating factor (G-CSF) (cat. 

#250-05), recombinant murine IL-3.  recombinant Human TGF-beta1 (mammalian 

derived) (TGF-β1) (cat. #100-21), recombinant Murine IFNγamma (IFNγ) (cat. #315-05). 
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D. Cell culture and transfection 

Mouse embryo fibroblast (C3H10T½; ATCC
®
 number CCL-226™) were grown 

in Dulbecco’s Modified Eagle’s Medium (DMEM; Cellgro
®
) containing 10% fetal 

bovine serum (FBS) supplemented with 1% L-glutamine and 1% penicillin/streptomycin.  

Human embryonic kidney epithelial cells (HEK 293; ATCC
®
 number CRL-1573™) were 

grown in Dulbecco’s Modified Eagle’s Medium (DMEM; Cellgro
®
; Mediatech, Inc.; 

Herndon, VA) containing 10% FBS supplemented with 1% L-glutamine and 1% 

penicillin/streptomycin.  Plasmids were transfected with Fugene
® 
6 Transfection Reagent 

(Roche Diagnostics Corp., Indianapolis, IN) using manufacturer’s protocol.  The BAF3 

pro-B cell line was donated by Hal Broxmeyer (Indiana University).  Phoenix GP 

MMULV-based retroviral packaging cell line (ATCC
®
 number 3514) was kindly donated 

by Rueben Kapur (Indiana University) and grown in media supplemented with 10% FBS, 

1% L-glutamine and 1% penicillin/streptomycin on 100 mm tissue culture dishes coated 

in 0.1% gelatin (dissolved in water; autoclaved).  Phoenix GP cells were frozen (LN2) in 

large batches in 10% DMSO in growth media.  A thawed tube of cells was used only 

once except to expand and then they were re-frozen in LN2.  Phoenix GP cells were split 

1:5 and were not allowed to grow past 80% confluence  in order to maintain viral 

transduction capability (avoid long term cell passage).  All cells were maintained at 37ºC 

in an atmosphere containing 5% carbon dioxide and normal oxygen unless otherwise 

stated.  The Transfection protocol for Phoenix GP cells is described later.   
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E.  Mice 

8 week old C57BL-6 female mice (CD45.2
+
) were purchased from Harlan 

Sprague Dawley, Inc. (Indianapolis, IN).  Eight week old B6.SJL-PtrcaPep3b/BoyJ 

(B6.BoyJ) (CD45.1
+
) were purchased from The Jackson Laboratory (Bar Harbor, MA). 

 

F.  Bone marrow cells and LDMNC separation 

 C57BL-6 mice 8-12 week old were euthanized by carbon dioxide inhalation 

followed by cervical dislocation.  The tibia, femur and flat bone of the pelvis were 

harvested and placed in Iscove’s Modified Delbeco media (IMDM; Invitrogen; Carlsbad, 

CA) adjusted to contain 1% penicillin/streptomycin and 1%glutamine (both included in 

every media except serum free) and 2% fetal bovine serum.  Bones were separated, 

cleaned of flesh and the bone ends were cut with surgical scissors. The bone marrow was 

flushed out with IMDM containing 2% FBS using a 1 mL syringe with a 16g needle.  The 

bone marrow was resuspended by suctioning into and out 5 mL syringe with a 23g needle.   

Low density mononuclear cells (LDMNCs) the bone marrow population 

containing immature precursors: differentiated progenitors, multipotential progenitors 

and hematopoietic stem cells were separated out of the whole bone marrow using 

Histopaque 1119 (Sigma-Aldrich; contains polysucrose and sodium diatrizoate; 2.5 mL).  

Histopaque 1119  was added slowly to the bottom of the 5 mL tube containing the whole 

bone marrow cells.  Histopaque creates a density gradient separating low density 

mononuclear cells in the interphase (buffy coat) while most of the granulocytes and red 

blood cells are collected in the tube bottom.  Gradients are created by centrifugation (700 

x g, 30 min, no brake).  The interphase was carefully removed, collected and the cells 
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were resuspended in 10 mL of IMDM supplemented with 2% FBS and centrifuged (~500 

x g).  The media was removed and pellets were resuspended in ~5 mL IMDM 

supplemented with 20% FBS.  Resuspended LDMNCs were counted via Coulter Counter 

(Beckman-Coulter) with RBCs lysed (Zap-OGLOBIN II lytic reagent; Beckman-Coulter) 

or counted by eye with a hemocytometer using a non-inverted phase contrast microscope.  

Only nucleated cell numbers were recorded.  The LDMNCs cells were plated on 100 mm 

petri dishes at a density of 4x10
6
 cells/mL media that was supplemented with 100 ng/mL 

SCF (stem cell factor), 200 units/mL IL-6 to support cell survival and proliferation.  

Cultures were incubated under standard conditions (37ºC, 5% CO2 and normal oxygen). 

 

G.  Retroviral packaging of plasmid and collection 

The retroviral plasmid (RNAi-Ready pSIREN-RetroQ-ZsGreen shRNA 

expression vector) contains a ψ (psi) packaging gene required to package the plasmid into 

a retrovirus.  The retrovirus was created in the HEK 293 based Phoenix GP MMULV-

based retroviral packaging cell line by transfecting in the pSIREN plasmid along with a 

plasmid containing the envelop gene and a plasmid containing the gag/pol genes (kindly 

provided by Ruben Kapur, Indiana University) using the Calcium Phosphate Transfection 

Kit (Invitrogen, 44-0052) following a  modified protocol.  Briefly, before starting, a 

collection media was made that consists of 500 ml high glucose media (4.5 g) DMEM 

(Invitrogen), 55 mL FBS, and 2% penicillin/streptomycin which was adjusted to pH7.9 

with 10N NaOH.  Next it was adjusted to contain 1% Hepes buffered solution (1M) 

(Invitrogen, 15630-080) and the pH was readjusted to pH7.9 with 10N NaOH.  The 

media was sterile filtered (0.2 µm sterile filter) and stored at 4ºC.  One tube of frozen 
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Phoenix GP cells (see culturing technique above) was thawed and plated in late afternoon.  

The next morning the media was replaced to remove DMSO; by 24hr, the cells were 70-

80% confluent and were split 1:5 into 5 x 100 mm tissue culture dishes.  24 hours later, 

for each 70-80% confluent Phoenix GP dish a transfection mix was made.  The 

transfection mix consisted of 10 µg Gag/pol plasmid DNA, 3 µg Env plasmid DNA, 15 

µg pSIREN plasmid DNA plus 36 µL 2M CaCl2 adjusted to a total volume of 300 µL 

with sterile water.  Mixtures were made in 1.5 ml microcentrigue tubes.  Next, to each 

tube, 300 µl of a 2 X Hepes buffered saline solution was added and air was bubbled in for 

30 seconds with a pipet (blow air out and move pipet frequently).  Mixtures were then 

incubated 30 min at room temperature.  The 600 µl transfection mix was added to 9 ml of 

collection media (in a 15 ml conical tube) and 1 µL/mL chloroquine (50 mM stock; 

Sigma-Aldrich, St. Louis, MO; C-6628) Chloroquine stabilized the DNA for transfer 

across membrane.  Media covering the Phoenix GP cell monolayers was replaced with 10 

ml collection media containing the DNA mixtures.  Media was added gently and 

incubated cultures were returned to a (37ºC incubator).  The next morning, media on the 

Phoenix GP cell monolayers was replaced with 8 mL fresh collection media and cultures 

were then incubated for 4-8 hours at 37ºC.  The media was then replaced with 9 mL fresh 

collection media and incubated at 32ºC at 5% CO2/95% air.  After 24 hours, the 

collection media (containing the retrovirus) was collected centrifuged (1000 rpm, 5 min, 

RT) to pellet any cells and all but the last ~1 mL of media was transferred to a new tube.  

The retrovirus containing media was aliquoted and frozen (-80ºC).  The media was 

replaced with 9 mL fresh collection media and the process was repeated twice more with 

media collected at 48 and 72 hour time points. 
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H.  Retroviral transductions 

 All adherent cell lines were grown in normal tissue culture conditions and were 

transduced with the MMULV-based retrovirus at 50-80% confluency in 8 µg/mL 

polybrene (stored at 4ºC for one month) in respective growth media.  Dishes were 

centrifuged (2000 rpm, 30 min., 32ºC) and then incubated at (37ºC, 30 min).  Twenty-

four hours later, the media was replaced with fresh growth media and incubated at (37 

ºC).  For non-adherent cell lines, after the 30 min incubation, the cells were collected by 

centrifugation, resuspended in fresh growth media and incubated at (37ºC). 

LDMNCs were grown for 2-3 days in the pre-stimulation conditions stated above 

(SCF plus IL-6).  The day before or the day of transduction with retrovirus, 100 mm petri 

dishes were coated with Retronectin (Takara; 64 µL 5 ml PBS).  To generate control cells 

for use in establishing parameters for FACsorting, 35 mm petri dishes were coated with 

Retronectin (Takara, Japan; 10 µL in 1 mL PBS).  Dishes were incubated for 2 hrs, at 

room temperature or overnight at 4ºC; retronectin was removed and PBS supplemented 

with 2% BSA (~3-5 mL; Sigma) was added for 30 min to bind excess fibronectin 

fragments (based upon manufacturers recommendation).   The 100mm petri dishes were 

pre-treated with 4 to 8 mL of virus containing shRNA and centrifuged (2000 rpm, 30 min, 

32ºC).  Prestimulated cells were scraped from dishes and pelleted (1500 rpm, 5 min, 

room temperature).  From virally pre-treated dishes, virus was removed and 7 mL of 

fresh virus containing media supplemented with SCF (100ng/mL), IL-6 (200units), and 

Polybrene (4µg/mL; increases viral transduction by neutralizing charges in lysosomes of 

host cells).  The pelleted LDMNCs were re-suspended (~1.05 mL/100 mm pre-
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stimulation petri dish), and 1 mL of cell containing solution was plated into each virus 

pre-treated dish (at least one SIMPL and one scramble shRNA) with an additional 0.1 mL 

added to 35 mm retronectin petri dish (Non-GFP control to setup FAC parameters).  All 

dishes were then centrifuged (2000 rpm, 30 min, 32ºC) and placed at (30 min, 37ºC, 5% 

CO2).  Then virus was removed, 8 mL of fresh media (IMDM with 20% FBS, mSCF 

(100ng/mL), hIL-6(25 ng/mL) was added and cultures were returned to a 37ºC, 5% CO2 

incubator.  Depending on the amount of virus availability, a second virus transduction 

was performed 24 hrs later by removing media and repeating steps above starting at the 

step at which 7 ml of fresh virus containing media is added to the cultures.    

 

I.  Fluorescence activated cell sorter and analyzers 

 Susan Rice and Lizz Scaletta (Indiana University Cancer Center Flow Cytometry 

Resource Facility) supervised the analysis and performed the fluorescence activated cell 

sorting.  Cells were sorted on one of (Becton Dickinson (BD) three fluorescence 

cytometry cell sorters:  FACStar Plus, FACSVantage, or the FACSAria.  Analysis was on 

one of three fluorescence cytometry cell analyzers, FACSCalibur (2 total) or the 

FACScan.  For Fluorescence Activated cell sorting/analysis, cells are labeled with an 

antibody conjugated to a fluorochrome that emits light (fluorescence) at a specific 

wavelength when struck by the light from a laser of a specific wavelength.  Thus, the 

fluorochromes can be discriminated based on their excitation or emission spectra (either 

the wavelength of light required to cause fluorescence or the wavelength of light emitted 

from the fluorochrome).  For all FAC sorting/analysis experiments, BD Bioscience 
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antibodies and fluorochromes were used.  For all experiments, the BD products come 

with protocols that were followed or modified as indicated.   

 

J.  Staining for c-kit
+
 cells containing shRNA 

 LDMNCs transduced with shRNA containing retroviruses and control (non-

transduced) were scraped from their dishes, transferred to fresh 15 mL tubes, pelleted by 

centrifugation (1500 rpm, 5 min, room temp), and supernates were discarded.  Pellets 

were resuspended in PBS containing 0.5% BSA (~1 mL), transferred to a 1.5 mL tube, 

centrifuged (1500 rpm, 5 min, room temp), and supernates were discarded.  The cell 

pellets were resuspended in PBS containing 0.5% BSA (150 µL).  For non-transduced 

controls, 20 µL of cells were added to marked 1.5 ml tubes (isotype control, APC lineage 

cocktail isotype control, APC conjugated c-kit) containing PBS with 0.5% BSA (130 µL), 

3 total tubes (one unstained control).  For the GFP only controls, ~4 µL of unstained 

scramble shRNA LDMNCs were transferred to a fresh tube containing PBS with 0.5% 

BSA (~ 600 µL).  All tubes were treated with Mouse FC Block (5 µL for control tubes, 

10 µL for shRNA) (5 min, 4ºC).  ShRNA LDMNCs were incubated with the APC-c-kit 

antibody (10 µL, 4ºC, 25 min., in dark).  The control LDMNCs tubes were incubated in 

APC lineage isotype control (contains APC-c-kit antibody isotype control) and APC-c-kit 

antibody into respective tubes (5 µL each, 4ºC, 25 min, in dark).  PBS containing 0.5% 

BSA (600 µL) was added to each tube (wash), and then cells were pelleted (1500 rpm, 5 

min, room temp, in dark).  All samples were resuspended in PBS containing 0.5% BSA 

(control sample 400 µL, shRNA 800 µL).  PBS containing 0.5% BSA was added to the 
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shRNA samples and they were filtered to remove cell clumps (final volume ~1.5 to 2 

mL). 

 

K. Apoptosis Assay 

 Annexin V conjugated to APC (BD Biosciences, San Diego, CA; cat. #550474) 

along with 7-amino-actinomycin (7-AAD) (BD Biosciences, San Diego, CA; cat. 

#559925), and Annexin V binding buffer (BD Biosciences, San Diego, CA; cat. #556454) 

was used for the apoptosis assay using the manufacturers protocol and a fluorescence 

activated cell analyzer to quantitate the staining.  APC was used because the pSIREN 

plasmid is linked to GFP.  During apoptosis, plasma membrane localized 

phosphatidylserine located on the intracellular leaflet translocates to extracellular leaflet 

of the plasma membrane.  Annexin V binds to the extracellular phosphatidylserine and is 

identified by the APC fluorochrome via FAC analysis.  7-AAD binds to DNA and only 

enters cells that have disrupted membranes.  In these experiments, briefly, up to 100,000 

experimental cells were washed with PBS containing 0.5% BSA (filtered) then 

resuspended in 100 µL of 1 x binding buffer in 1.5 mL tubes that contained 5 µL each of 

APC Annexin V and 7-AAD.  One color control cells (non-pSIREN GFP 

transfected/transduced) were setup following the same procedure using either Annexin V 

or 7-AAD.  Cells were mixed by finger tapping, incubated (4ºC, 15 min), and then 400 

µL of 1 x binding buffer was added just before analysis.  All solutions were ice cold.     
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L. Growth inhibition assay 

 A defined number of c-kit
+
 cells containing shRNA (scramble or SIMPL) were 

mixed with a defined number of c-kit
+
 cells (non-transduced) from the same sorting pool, 

(SIMPL shRNA transduced LDMNCs sorted for c-kit
+
 shRNA

+
 and c-kit

+
 shRNA

-
 

populations), along with c-kit
+
 (control) cells, and plated in media (varied based on 

experiment).  Then the cells (based on the experiment) were collected by either scraping 

or pipetting supernant (at experimentally determined time points) into a tube, collected by 

centrifugation (1500 rpm, 5 min, room temp), and washed with ice cold PBS containing 

0.5% BSA.  All cells were resuspended in ice cold PBS containing 0.5% BSA and 

subjected fluorescence activated cell analysis.  These experiments were done to 

determine growth ability of shRNA cells as compared to non-GFP c-kit
+
 cells and to 

compare SIMPL to scramble shRNA containing c-kit
+
 cell growth.  

 

M.  Progenitor (differentiation and proliferation) colony assay for c-kit
+
, whole bone 

marrow and spleen 

 The c-kit
+ 
cells (1000 to 2000 cells/mL), whole bone marrow cells (50,000 

nucleated cells/mL), or spleen cells (~200,000 LDMNCs to 200,000 c-kit
+
 cells) 

containing shRNA (scrambled or SIMPL) were placed in a methylcellulose mix (4 mL 

final volume in 15 mL tube) containing an experimentally determined amount of 

cytokines with common starting products (Table 2).  The methylcellulose mix (95 mL) 

was pre-made with all cytokines (for a given experiment) except for the variable 

cytokines and frozen in aliquots (3.8 mL; extra 200 µL for cells, variable cytokine(s), and 

serum free media IMDM).  Each condition was plated in triplicate (1 mL final volume/35  
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40µLGlutamine

1%

1.6mLMethylcelluolose

460µLIMDM(serum free)

20µL

80µL

1.2mL

Individual Triplicate

4mL

Fetal Bovine serum (30%)

Β-mercaptoethanol

11mL/10mL filtered 

0.22µM

Penicillin/Streptomycin 

2%

40µLGlutamine

1%

1.6mLMethylcelluolose

460µLIMDM(serum free)

20µL

80µL

1.2mL

Individual Triplicate

4mL

Fetal Bovine serum (30%)

Β-mercaptoethanol

11mL/10mL filtered 

0.22µM

Penicillin/Streptomycin 

2%

Table 2.  Proliferation/Differentiation Assay Base Contents 
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mm petri dish), and six 35 mm dishes were placed in a 150 mm petri dish with autoclaved 

water (~3 mL in a lidless 35 mm petri dish).  Each 150 mm petri dish was incubated 

(37
o
C, 5% CO2) for 7 days unless noted in experiment.  The dishes were counted for 

(depending on experiment) colony number, size and/or type.   

 

N.  Whole bone marrow cellularity assay using transplanted animals.   

Bone marrow cells (100,000 cell) from transplanted (3 x 100,000 cells for each 

group) and control mice (100,000 cells/antibody) were added to PBS containing 0.5% 

BSA (~1 mL, wash) in a 1.5 ml tube, pelleted by centrifugation (1500 rpm, 5 min, room 

temperature) and the supernates were discarded.  The pellets were resuspended in PBS 

containing 0.5% BSA (150 µL).  One tube of transplanted cells (100,000 cells) was left 

unlabeled to assess GFP (ZsGreen) percentage by fluorescence activated cell analysis.  A 

modified BD Bioscience protocol provided with antibodies was used to characterize the 

cells (modification: no BD FC Block used as there was not enough available for all the 

samples).  PE conjugated rat anti-mouse CD117 (c-kit), APC mouse lineage antibody 

cocktail, and PE-Cy7 rat anti-mouse Sca-1 or PE-Cy7-conjugated rat anti-mouse CD11b 

(Mac-1 α chain) and PE conjugated rat anti-mouse Gr-1 antibodies (5 µL each antibody) 

were added to tubes containing the cells from the transplanted animals (2 x  100,000 cell 

tubes).  Whole bone marrow from control mice was used for one color antibody labeling 

(5 µL antibody/tube) to setup the FAC analyzer.     

 

O. Real-time PCR 

 Real-time PCR was performed by Sonal Sanghani (Indiana University).   
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P.  Cell Lysates 

 For whole lysates, adherent cell monolayers in growth media were scraped up 

with a rubber policeman, pipetted into a tube, and centrifuged (<1000 RPM, 5 min, R.T.).  

The cell pellets were washed with PBS.  Pellets were then  resuspended in 

immunoprecipitation (IP) lysis buffer (10 mM HEPES, pH 7.4, 5mM EDTA, 150 mM 

NaCl, 1% Triton X-100) with protease inhibitor (Complete, mini protease inhibitor 

cocktail tablets, Roche, Indianapolis, IN) by pipetting up and down until a precipitate 

formed.  Then, lysate was immediately vortexed (30 sec) and put on ice (20 min) with 

vortexing (10 sec/5 min on ice), and then centrifuged (20 min, 14,000 rpm, 4
o
C) to 

remove cell debris.  Supernant was used immediately for IP or direct use in a western 

used immediately or stored 20
o
C. 

 

Q.  Protein Assay 

 Protein assays were performed using the Bio-Rad protein assay (cat. # 500-006) 

(Bio-Rad Laboratories Inc, Hercules, CA) based upon the manufacturer’s 

recommendations.  A standard curve was created using bovine serum albumin (BSA; 1 

mg/mL) in 0.25 M Tris (pH 8.0) added (2, 6, 10, 14 or 17 µL) to 1.5 mL microcentrifuge 

tubes containing 0.25 M Tris (pH 8.0; 800 µL).  The cell lysates (2 µL) were added to 

800 µL 0.25 M Tris.  All samples were mixed by vortexing and collected by 

centrifugation (14,000 rpm, up to top speed and down).  To all samples, 200 µL of the 

Bio-Rad protein assay solution was added and samples were quickly centrifuged again.  

Samples were transferred to cuvettes just before reading the absorbance of protein in a 

spectrophotometer at the 595 wavelength.  The standard curve was setup by plotting 
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protein concentration versus absorbance in an Excel sheet.  A best fit line was created and 

the equation of the line (y = mx + b; x = absorbance, y = protein concentration, slope of 

the line, b = point line meets x axis) was used to determine sample protein concentration 

from corresponding sample absorbance. 

 

R. Immunopreciptation 

 Equal amounts of protein (as determined by protein assay) were added to a total 

volume of 900 µL of IP lysis buffer (10 mM HEPES, pH 7.4, 5mM EDTA, 150 mM 

NaCl, 1% Triton X-100).  Lysates were incubated (1h, 4ºC, on a nutator) in 100 µL of a 

10 % protein-A sepharose suspension (Sigma-Aldrich, St. Louis, MO) and 2 µg of rabbit 

IgG (Jackson ImmunoResearch Laboratories, West Grove, PA) to reduce non-specific 

binding.  Samples were pelleted (14,000 RPM, 10 sec, 4ºC) and the supernate was 

transferred to fresh tube.  Lysates were incubated (4ºC, overnight, on a nutator) with 

protein-A sepharose and 2 µL (2 µg) rabbit anti-SIMPL antibody.  The next morning, the 

SIMPL bound protein-A sepharose complex was collected by centrifugation (14,000 rpm, 

10 sec, 4ºC).  Supernates were removed by pipetting and washed four times with 500 µL 

IP wash buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.1% Triton X-

100).  Following removal of final wash buffer, 40 µL of Laemmli buffer (Bio-Rad, 

Hercules CA) containing β-mercaptoethanol was added to the protein-A sepharose and 

samples were either analyzed immediately or stored at -80ºC.  All steps were performed 

at 4ºC or on ice.   
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S. Western Blot analysis 

 Lysates and immunocomplexes resuspended in Laemmli buffer containing β-

mercaptoethanol were boiled (10 min) and loaded on a 12.5% SDS-polyacrylamide gel 

containing a 5% acrylamide stacker.  After electrophoretic separation,  proteins were 

transferred (20V, 4ºC, overnight or at 30V, room temperature, 2 hours) in CAPS (10 mM 

3-cyclohexylamino-1-propanesulphic acid, pH 11) buffer onto an Immobilon-P 

membrane (prepared by incubating in methanol for 15 seconds, 2 min in water, and then 

at least 5 min in CAPS buffer).  Following transfer the membrane was blocked in 5% 

(w/v) non-fat dry milk [dissolved in PBS containing tween-20 (PBS-T); 30 min] (Sigma-

Aldrich, St. Louis, MO).  Next, the membranes were incubated with primary antibody 

PBS-T containing 5% milk (1 hr 30 min) followed by 3 x 10 minute washes in PBS-T.  

The membranes were then incubated with horeseradish peroxidase (HRP) conjugated 

secondary antibody (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) 

diluted in 5% milk (1 hr) followed by 3 x 10 minute washes in PBS-T.  To visualize 

proteins detected by the antibodies ECL™ or ECL Plus™ Western Blotting Detection 

Reagent (GE Healthcare Bio-Sciences Corp., Piscataway, NJ) was added to the 

membrane followed by exposure to film.   

 

T.  Lineage cell depletion by magnetic cell sorting 

The day of fluorescence activated cell sorting, the LDMNCs transduced with 

retrovirus containing the shRNA were run through magnetic cell sorting using a mouse 

lineage cell depletion kit (Miltenyi Biotec, Auburn, CA, 130-090-858).  The procedure 

was done according to the manufacturers protocols and both the LS and LD columns 
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were used for sorting.  LS columns produced ten times more cells than the LD columns.  

LS columns were impratical due to the high number of cells that contaminated the 

population that needed to be fluorochrome-conjugated lineage depleted.  After lineage 

depletion, the cells were counted, incubated in Mouse BD Fc Block™ (5 min, 4ºC, 1 

µL/million cells) followed by the APC-lineage cocktail, PE-Cy7 Sca-1 and PE-c-kit 

antibody according to BD Protocol with proper isotype controls (BD Bioscience, San 

Diego, CA).  Left over lineage positive cells containing the scrambled shRNA were used 

for GFP positive cells.  Single stain controls were performed same as above.  Cells were 

taken to the FAC sorting facility to sort for lin
-
sca

+
c-kit

+
 and lin

-
sca

-
c-kit

+
 populations. 

Thus, it was verified each time that the LDMNCs were lineage depleted. 

 

U.  Transplant experiment 

After two weeks rest, 8 to 10 week old C57BL-6 female mice (22 mice over one 

month) were irradiated, and kindly intravenously (lateral tail vein) transplanted by Yan 

(Indiana University) with c-kit
+
 (250,000 cells/300 µL) cells containing the SIMPL (9 

mice) or the scrambled shRNA (13 mice).  4 months post-transplant, all the mice were 

alive, and ready to be analyzed.  Whole bone marrow from 2 x tibias, 1 x femur, and 2 x 

pelvic flat bones were harvested (modified method F: whole bone marrow flushed in 20% 

FBS IMDM media).  Whole blood cells from a portion of spleen (cut and weighed) were 

harvested by homogenizing the spleen in a nylon cell strainer (70µm; BD Bioscience, 

Bedford, MA) and flushing with ~5 mL IMDM media containing 20% FBS.  Spleen cells 

then treated like bone marrow cell (method E).  Lymph nodes (intestinal and superficial), 

liver chunk, spleen chunk, femur, heart, lung chunk and kidney were harvested and 
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placed in 10 % Buffered Formaldehyde. (Fisherbrand, Pittsburgh, PA) for histological 

examination.   

 

V.  Competitive repopulation 

c-kit
+
 cells (250,000 c-kit

+
cells) containing either the scrambled or the SIMPL 

shRNA from 2 x transplanted 4 month old C57BL-6 (CD45.2) female mice were mixed 

with congenic whole bone marrow (500,000 nucleated) derived from B6.SJL-

PtrcaPep3b/BoyJ (B6.BoyJ) (CD45.1
+
) mice.  Cell mixtures were transplanted into 6 x 

C57BL-6 (8 week old) female mice (followed method U.).   
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II.  Results 

 

A. Develop a suitable model system to characterize the physiological role of SIMPL 

 

1. Zebrafish (Preliminary) SIMPL knockdown results 

SIMPL morphilino (diminshes SIMPL in zebrafish) causes rapid expansion then 

inhibition of red blood cells within the first 48 hours of zebrafish development.  This 

preliminary work (data not shown) was done by Erin Breese.  This result caused us to 

look further into SIMPL’s effect on normal hematopoiesis. 

 

2. SIMPL knockdown system created to model effects of SIMPL on hematopoiesis 

a. ShRNA generation and construction 

 ShRNA (short hairpin RNA) to SIMPL was designed using the Clontech siRNA 

Sequence Selector program.  The program generates a list of siRNA of 19 nucleotide 

length using pre-set criteria and gives their position within the open reading frame and 

GC content.  SIMPL siRNA were generated against the mouse SIMPL sequence 

deposited in GenBank (AF093135).  The identified siRNAs were subject to Blast search 

to ensure specificity.  Three siRNAs dispersed through the SIMPL sequence were 

selected from the list of 31.  The siRNA to the 5’most part of the SIMPL mRNA is 

thought to prevent translation the most by inhibiting its start, but we decided to try a 

variety of locations.  The first sequence (sequence 1) was near the 5’ at position 48 

(CTGGTTCCCTGGGCTGA, GC content 68.42%); the next (sequence 4) at position 326 

(TGTAACTGTGACAAAGAAC, GC content 36.84%), and the third (sequence 18) at 
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position 557 (AGCTCAGGAAGTCTGTGAC, GC content 52.63%).  An additional 

SIMPL siRNA was designed using accession number (NM_022986) at position 664 

(GCCAAACGGATGATCATCA, GC content 47%) because only SIMPL sequence 18 

successfully knocked down SIMPL. The shRNAs were designed using siRNA Hairpin 

Oligonucleotide Sequence Designer by Clontech which converts the siRNA sequence 

into shRNA by making a sense strand (listed above) followed by a hairpin loop sequence 

(TTCAAGAGA) followed by the antisense sequence.  A MluI restriction site was added 

in order to test for proper ligation into a vector.  A Bam HI (5’ of top strand) and Eco RI 

(3’ of top strand) overhangs were added to each end.  A complementary single strand was 

designed for each shRNA.  The oligonucleotides were commercially generated and 

subject to PAGE purification (Sigma Genosys).  Sequence similarity of the three murine 

SIMPL siRNA sequences was compared with the human SIMPL (accession number: 

XM_059729) sequence.  Sequence 1 and 18 (SIMPL 18 shRNA) were 100% identical 

and sequence 4 was ~88.9% identical.  The additional siRNA at position 664 (SIMPL 

664 shRNA) was made after SIMPL 18 was confirmed.   

To generate subclonable fragments, a top and bottom strand of each oligo was 

annealed and the shRNA was ligated into a RNAi-Ready pSIREN-RetroQ-ZsGreen 

(Figure 6) and into RNAi-Ready pSIREN-RetroQ (contains a puromycin marker) vector.  

The plasmid was used directly for transfection, and alternatively was used to generate a 

retrovirus for retroviral delivery, and visualized by FACS due to the co-expressed 

ZsGreen (GFP-like) fluorescent marker.  A scrambled ShRNA (negative control) plasmid 

was also generated and tested in parallel as explained below.  The ligated shRNA 

plasmids were transformed into DH5α bacteria and transformants were selected for  
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growth on liquid broth agar plates supplemented with ampicillin.  Colonies were picked, 

and amplified in liquid culture.  Glycerol stocks of all colonies were made.  Plasmids 

were isolated using a miniprep protocol and all plasmids were analyzed on an agarose gel 

either as supercoiled plasmid or linearized with the restriction endonuclease MluI [72].  

One representative clone for each SIMPL shRNA (1, 4, 18, and 664) was expanded and 

Qiagen Maxiprep® columns were used for plasmid purification.   

 

b. SIMPL shRNA knocks down mRNA and protein levels 

 As seen in Figures 7-12, SIMPL shRNA knocks down protein levels in multiple 

cell types and shown to knock down SIMPL mRNA in MEFs as determined by real-time 

PCR.  Two different shRNA constructs (SIMPL 18 and 664) were shown to knock down 

SIMPL protein levels.  Additionally, SIMPL shRNA specifically knocks down SIMPL 

shRNA and not IRAK-1 protein (another member in the TNF-RI pathway).   

 Used as a quick screen to identify effective shRNA, only SIMPL 18 shRNA 

diminished Flag-wt levels as compared to scramble control (Figure 7).  Optimization of 

the amount SIMPL 18 shRNA added, led to effective diminishment of SIMPL levels 

below detection by antibody in Western blots (Figure 8).  Any shRNA does not 

completely degrade all protein.  SIMPL 18 shRNA knocks down SIMPL levels in a 

hematopoietic pro-B cell line (Figure 9).  In Figure 9, SIMPL migration forms two bands.  

In data not shown, the same amount SIMPL antibody was run on the gel without SIMPL 

lysate, probed with the same antibodies and light chain was not detectable.  Thus, the 

lower SIMPL band is not light chain.  SIMPL 664 shRNA also knocks down endogenous 

SIMPL levels to highlight specificity of SIMPL shRNA (Figure 10).  In Figure 11C,  
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 1    2     3     4     5 

Flag-wt SIMPL 

• No plasmid 
• Flag-wt SIMPL + Scrambled shRNA control 
• Flag-wt SIMPL + SIMPL shRNA 1 
• Flag-wt SIMPL + SIMPL shRNA 6 

• Flag-wt SIMPL + SIMPL shRNA 18 

Figure 7.  SIMPL 18 shRNA knocks down SIMPL levels. 

Flag-wildtype (wt) SIMPL (1 µg) was co-expressed with 

shRNA (4 µg) in HEK 293 cells for 96 hours.  Cells from 

transfected and wildtype HEK 293 were harvested,  whole 

cell lysates were generated and ran on SDS-PAGE.  Western 

was probed with anti-FLAG antibody. 

 



 

 64 

 1    2    3      4 

• No plasmid 
• Flag-wt SIMPL (only) 
• Flag-wt SIMPL + Scrambled shRNA control 

• Flag-wt SIMPL + SIMPL shRNA 18 

Flag-wt SIMPL 

GAPDH 

Figure 8.  Optimized level of SIMPL 18 shRNA knocks 

down SIMPL levels.  

Attempt to get maximal level of knockdown of Flag-wildtype 

SIMPL.  Flag-wildtype (wt) SIMPL (0.25 µg) was co-

expressed with shRNA (6 µg) in HEK 293 for 96 hours.  

Cells from transfected and wildtype HEK 293 were harvested,  

whole cell lysates were generated and ran on SDS-PAGE.  

Western was probed with anti-FLAG antibody. 
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37

25

Heavy Chain

wt

SIMPL18

IP: IP: SIMPL

SIMPL

shRNA

37

25

Heavy Chain

wt

SIMPL18

IP: IP: SIMPLIP: IP: SIMPL

SIMPL

shRNA

Figure 9.  Transduced SIMPL 18 shRNA knocks down endogenous 

SIMPL levels in BAF3.  

Baf3 (Pro-B cell line) was transduced with SIMPL 18 shRNA and FAC 

sorted (>90% pure for shRNA).  Cells from transduced and wildtype 

BAF3 were harvested, immunocomplex was generated using purified 

rabbit anti-SIMPL antibody.  Lysates with complexs were ran on SDS-

PAGE.  Western was probed with purified rabbit anti-SIMPL antibody. 
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shRNAscramble scramble

SIMPL18

shRNA

SIMPL

SIMPL 664

shRNAscramble scramble

SIMPL18

shRNA

SIMPL

SIMPL 664

shRNAscramble scramble

SIMPL18

shRNA

SIMPL

SIMPL 664

Figure 10.  SIMPL 18 and SIMPL 664 shRNA knocks down endogenous 

SIMPL levels.  

ShRNA was transfected into HEK 293.  The cells were harvested, run on 

SDS-PAGE, and the western blot probed with purified rabbit anti-SIMPL 

antibody. 
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Figure 12.  Decreased SIMPL  expression in lin
-
sca

-
c-kit

+
 cells 

containing SIMPL shRNA. 

According to methods, mouse bone marrow cells were transduced with 

shRNA and sorted for lin
-
sca

-
c-kit

+
/shRNA

+
 cells using FAC sorting.  

The mRNA expression was measured by real-time PCR kindly done 

by Sonal Sanghani (Indiana University). 
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SIMPL shRNA (SIMPL 18 shRNA from here on) diminished endogenous levels of 

SIMPL in MEFs while not blocking IRAK1 an upstream component in TNFα pathway 

(Figure 1).  This demonstrates SIMPL shRNA specificity to knock down SIMPL directly 

and not secondarily by reducing levels of an upstream protein in the same pathway.   

Direct reduction of SIMPL mRNA by SIMPL shRNA leads to a similar reduction in 

SIMPL protein (Figure 11A and B).  SIMPL mRNA decreased to 30% with SIMPL 

shRNA as compared to scramble control (Figure 11B).  Endogenous SIMPL mRNA was 

decreased six fold in HPCs (lin
-
sca

-
c-kit

+
) containing SIMPL shRNA (Figure 12).  These 

data authenticate SIMPL shRNA’s capability to reduce SIMPL levels definitively in 

multiple cell types including hematopoietic.  Accordingly, SIMPL shRNA was prepared 

for use in our hematopoietic paradigm. 

   

B. Loss of SIMPL Sensitizes CFU-GM cells to TNFα 

 

1. Mouse TNFα in PWMSCM inhibits CFU-GM colonies with loss of SIMPL 

 We wanted to confirm that mTNFα, in presence of a natural complement of 

cytokines using poke weed mitogen spleen conditioned media (PWMSCM), could inhibit 

colony formation in a HPCs colony assay.  Bone marrow from 8 to 12 week old C57BL-6 

mice was harvested from the tibia, femur and pelvis (flatbone).  The low density 

mononuclear cells (LDMNCs) were separated from the remaining bone marrow entire 

cell population using Histoplaque 1119.  LDMNCs represent an  immature subpopulation 

of bone marrow containing HPCs and HSCs.  To expand this population for later 

FACsorting, LDMNCs were plated at 4 x 10
6
 cells/mL in media containing murine stem 
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cell factor (mSCF) and human interleukin-6 (hIL-6) (normal signaling on mouse 

receptors) for two days.  These conditions maintains survival and proliferation of early 

HPCs and HSCs, and inhibit the differentiation or maintainance of differentiated cells.   

The LDMNCs were transduced with retrovirus containing scrambled shRNA, and 

sorted for c-kit
+ 
and GFP

+
 populations at the IU Cancer Center Flow Cytometry Resource 

Facility (see methods).  The scrambled c-kit
+
/GFP

+
 population was plated (1000 to 2000 

cells/mL) in a progenitor colony assay containing PWMSCM, mSCF (100 ng/mL), 

mGM-CSF (10 ng/mL) and mIL-3 (20 ng/mL), with an increasing gradient of mTNFα (0, 

1, 5, 10 ng/mL).  Each colony represents growth, proliferation, and differentiation from 

one HPC or HSC.  A c-kit
+
 cell type represents only 10% of whole bone marrow, 1% of 

which are HSCs (lin
-
sca

+
c-kit

+
).  The results are given as percent control to normalize for 

variation between biological reproduced experiments.     

 Mouse TNFα inhibits colony growth as shown by the decrease in the percent 

CFU-GM colonies expressing scrambled shRNA with increasing concentrations of 

mTNFα.  The peak inhibition occuring at 10 ng/mL and this change was significant at 10 

ng/mL (Figures 13-14).  Therefore, in the presence of PWMSCM mTNFα inhibits normal 

progenitor growth  in a dose-dependent manner (activates TNF-RI and TNF-RII).   

Under the same conditions, c-kit
+
/GFP

+
 progenitors expressing SIMPL shRNA 

showed an enhanced inhibition of CFU-GM growth over scrambled in the presence of a 

natural TNF-RI and TNF-RII activator with PWMSCM and mSCF (100 ng/mL), mGM-

CSF (10 ng/mL) and mIL-3 (20 ng/mL) (Figures 13-14).   
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Figure 13.  Loss of SIMPL significantly inhibited total colony 

growth at 1, 5, and 10 ng/mL mTNFα.  
Scrambled and SIMPL shRNA c-kit

+
 cells were plated into a colony 

assay containing mGM-CSF, mIL-3, mSCF, PWMSCM with the 

indicated concentrations of mTNFα. Percent of CFU-GM relative to 

untreated determined by dividing the total number of colonies in the 

absence of mTNFα by the total colonies at the given concentration 

mTNFα for each group.   P-values were from Scrambled compared to 

SIMPL. N = 3; *p<0.05 **p<0.006 
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Figure 14.  SIMPL and scramble shRNA c-kit
+
 colonies growth were 

significantly inhibited by mTNFα. Compared 0 ng/mL to 10 ng/mL 

mTNFa to determine if any inhibition occurred within each group.  

Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony assay 

containing mGM-CSF, mIL-3, mSCF and PWM with a concentration 

gradient of mTNFα. Percent of CFU-GM relative to untreated determined 

by dividing the total number of colonies in the absence of mTNFα by the 

total colonies at the given concentration mTNFα for each group. One tailed 

TTEST comparing within SIMPL or Scramble comparing 0 ng/mL to 10 

ng/mL mTNFa CFU-GM colony formation. n = 3; *p<1.19x10-7 

**p<1.18x10-6 
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2.   Human TNFα in PWMSCM inhibits CFU-GM colony formation with loss of SIMPL. 

PWMSCM effects on TNF-RI dependent progenitor proliferation 

We next tested whether the observed effects were specific to a certain TNFα 

receptor.  Other authors have shown that TNF-RI activation through hTNFα or an TNF-

RI agonist does not inhibit HPC growth in a differentiation colony assay [51].  In these 

experiments, the influence of PWMSCM on TNFα effects mediated through TNF-RI on 

the growth of GM progenitors was also examined.   

Using the experimental design as previously mentioned (III. B), c-kit
+
 scrambled 

shRNA HPCs were placed in a colony assay containing increasing concentrations of 

hTNFα (0, 0.1, 1, 5, 10 ng/mL) along with PWMSCM.  In the presence of hTNFα there 

was not a significant decrease in CFU-GM colony number/growth over the range of 

hTNFα (Figures 15-16). At maximum dose of hTNFα (10 ng/mL), scramble shRNA 

colony formation was decreased but the effect was not statistically significant (87.6% 
+
 

18.1%).  Therefore, the ability of normal progenitors to form CFU-GM colonies is not 

inhibited by specific TNF-RI activation in the presence on PWMSCM. 

To determine if TNF-RI activation inhibited the growth of c-kit
+
 SIMPL shRNA 

progenitors, the same experiment was performed as in III.B.  Surprisingly, SIMPL 

shRNA progenitors colony growth (CFU-GM formation) was inhibited in response to 

increasing concentrations of the TNF-RI activatior, hTNFα, with maximal inhibition 

occuring at 10 ng/mL hTNFα (Figures 15-16).  This inhibition was significantly more 

than that observed for progenitors containing scramble shRNA.  Therefore, activation of  
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Figure 15.  Loss of SIMPL significantly inhibited CFU-GM at 1, 5, and 

10 ng/mL hTNFα.   

Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony assay 

containing mGM-CSF, mIL-3, mSCF, PWMSCM with the indicated 

concentrations of hTNFα. Percent of CFU-GM relative to untreated 

determined by dividing the total number of colonies in the absence of 

hTNFα by the total colonies at the given concentration hTNFα for each 

group.  P-values were from Scrambled compared to SIMPL.  n = 3; 

*p<0.04, **p<0.03    
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Figure 16.  SIMPL shRNA c-kit
+
 colonies growth were significantly 

inhibited by hTNFα in PWM with Epo, but Scramble was not. 

Compared 0 ng/mL to 10 ng/mL hTNFα to determine if any inhibition 

occurred within each group.  

Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony assay 

containing mGM-CSF, mIL-3, mSCF, PWM and Epo with a concentration 

gradient of hTNFα. Percent of CFU-GM relative to untreated determined 

by dividing the total number of colonies in the absence of hTNFα by the 

total colonies at the given concentration hTNFα for each group. One tailed 

TTEST comparing within SIMPL or Scramble comparing 0 ng/mL to 10 

ng/mL hTNFα CFU-GM colony formation. n = 3; *p<0.0003  
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TNF-RI in progenitors with decreased levels of SIMPL, in the presence of PWMSCM 

inhibits expansion and differentiation of CFU-GM progentiors.   

 

3. To explore the effects of TNFα on subsets, CFU-GM colonies were subcategorized 

Colony growth was subcategorized based on number of cells in the colonies and 

size of the colonies.  High proliferative potential colonies (HPP) are colonies greater than 

0.5 mm, with a dense core/nucleus of cells.  The presence of these colonies indicates that 

the plated cell (that leads to the formation of the colony) was an early hematopoietic 

precursor, which has the ability to vastly proliferate/expand and differentiate.  Low 

proliferative potential colonies (LPP) are colonies greater than 50 cells that did not meet 

both criteria for HPP (dense core, >0.5 mm).  Normally, HPP and LPP separation is made 

at 10 or 14 days after the start of a colony assay, and is usually done in the presence of 

limited cytokines or PWMSCM; however, the conditions of no PWMSCM and mSCF 

(100 ng/mL), mGM-CSF (10 ng/mL) and mIL-3 (20 ng/mL) leads to rapid expansion 

after 7 days with many HPPs colonies over 1 mm in size. Therefore in these experiments 

HPP and LPP colonies were counted at 7 days.   

In data not shown, ckit
+
 cells containing scramble shRNA were plated in mSCF 

(100 ng/mL), mGM-CSF (10 ng/mL) and mIL-3 (20 ng/mL) in presence or absence of 

PWMSCM with increasing doses of mTNFα.  HPPs were much higher in the absence of 

PWMSCM after 7 days.  Amazingly, the HPPs in the PWMSCM group did not recover 

by 14 days, while the HPPs in the absence of PWMSCM after 14 days were too big to 

accurately count.  Other (data not shown) samples repeat this same trend in the absence 

of PWMSCM.  Therefore, this system utilizes a 7 day count for HPPs when given mSCF 
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(100 ng/mL), mGM-CSF (10 ng/mL) and mIL-3 (20 ng/mL) without PWMSCM.  HPP 

and LPP subcategorization was not available all CFU-GM experiments.   

 

4. Loss of TNF-RI specific inhibition of CFU-GM with diminished SIMPL in the absence 

of PWMSCM 

Since we observed TNF-RI specific inhibition of CFU-GM colony formation of c-

kit
+
 cells containing SIMPL shRNA in PWMSCM, as a next logical step, PWMSCM was 

removed from the experimental conditions.  This enabled us to see if TNF-RI activation 

(hTNFα) was sensitizing c-kit
+
 SIMPL shRNA containing progenitors or if there was 

something else in the PWMSCM that could be causing this inhibition.  The colony assays 

were setup the same as above with mSCF (100 ng/mL), mGM-CSF (10 ng/mL) and mIL-

3 (20 ng/mL) except PWMSCM was not added to the colony assay mix.   

The growth of c-kit
+
 cells containing scrambled shRNA was slightly inhibited 

(Figures 17-18 similar to B1) over the hTNFα concentration range.  At the maximum 

hTNFα dose a slight but significant inhibition occurred in the low proliferative potential 

(LPP) and total colony populations (down to 89.8% + 8.2% and 89.9% + 6.2% 

repectively).  Thus, on normal progenitors, TNF-RI activation has a slight, at best, effect 

on CFU-GM formation.   

CFU-GM colony formation of c-kit
+
 cells containing SIMPL shRNA was only 

slightly inhibited by the maximum dose of hTNFα (10 ng/mL) (LPP down to 80.6% + 

3.7%; total colony down to 81.5% + 4.1% repectively) (Figure 18).  There was no 

increased inhibition over colony formation of c-kit
+
 cells containing scrambled shRNA 

(Figure 17) at any concentration of hTNFα.  This immediately indicated that something  
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Figure 17.  Loss of SIMPL has no effect upon hTNFα dependent 
inhibition of CFU-GM formation. 

 Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony assay 

containing mGM-CSF, mIL-3, mSCF with the indicated concentrations of 

hTNFα. Percent of CFU-GM relative to untreated determined by dividing 

the total number of colonies in the absence of hTNFα by the total colonies 

at the given concentration hTNFα for each group.  P-values were from 

Scrambled compared to SIMPL.  NO PWMSCM was used in this 

experiment. n = 3; no significant changes occurred  
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Figure 18. SIMPL LPP and Total colony formation were significantly 

inhibited by hTNFα along with Scramble shRNA c-kit
+
 total colony 

growth. Compared 0 ng/mL to 10 ng/mL hTNFα to determine if any 

inhibition occurred within each group with no PWM.  

Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony assay 

containing mGM-CSF, mIL-3, mSCF with a concentration gradient of 

hTNFα. Percent of CFU-GM relative to untreated determined by dividing 

the total number of colonies in the absence of hTNFα by the total colonies 

at the given concentration hTNFα for each group. One tailed TTEST 

comparing within SIMPL or Scramble comparing 0 ng/mL to 10 ng/mL 

hTNFα CFU-GM colony formation. n = 3; *p<0.005 **p<0.0007 

***p<0.05 
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in the poke weed mitogen spleen conditioned media enhances the ability of a TNF-RI 

activator to inhibit colony growth in progenitors with diminished levels of SIMPL in a 

concentration dependent manner. 

 

C. Isolation of the cause of TNF-RI inhibition of CFU-GM in PWSCM sensitization in 

PWMSCM by removal of PWMSCM and addition of various growth factors 

 

1. Mouse TNFα without PWMSCM causes inhibition of CFU-GM colony formation with 

loss of SIMPL   

 To determine if activation of the TNF-RII receptor along with the TNF-RI re-

establishes inhibition of c-kit
+
 scramble HPC colony growth in the absence of PWMSCM, 

a repeat of  experiment represented in Figure 17 was performed with mTNFα (0, 1, 5, 10 

ng/mL).   

Colony formation by scramble shRNA ckit
+
 cells was only slightly but not 

significantly inhibited in the presence of 10 ng/mL TNFα (Figures 19-21).  Thus, in the 

absence of PWMSCM, mTNFα did not cause the sweeping inhibition of normal 

progenitor growth seen earlirer.   

Colony formation by SIMPL shRNA c-kit
+
 cells was significantly inhibited in a 

dose dependent manner by mTNFα (0, 1, 5, 10 ng/mL) as compared to c-kit
+
 scrambled 

shRNA cells, with significant inhibition over scramble occuring at 10 ng/mL mTNFα.  

Mouse TNFα did re-sensitize the c-kit
+
 progenitors expressing the SIMPL shRNA to 

TNFα.  This inhibition of the ability to form CFU-GM by SIMPL shRNA c-kit
+
 cells 

more closely mimicked  hTNFα in the presence of PWMSCM than mTNFα in  
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Figure 19.  SIMPL shRNA c-kit
+
 LPP and total colonies showed 

significant inhibition of colony growth compared to scrambled 

shRNA control at 10 ng/mL mTNFα without PWM. 

Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony assay 

containing mGM-CSF, mIL-3, mSCF, with a concentration gradient of 

mTNFα. Percent of CFU-GM relative to untreated determined by 

dividing the total number of colonies in the absence of mTNFα by the 

total colonies at the given concentration mTNFα for each group.  P-

values were from Scrambled compared to SIMPL.  n = 5; *p<0.04 
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Figure 20.  SIMPL shRNA c-kit
+
 LPP and total colonies showed 

significant inhibition of colony growth compared to scrambled 

shRNA control at 10 ng/mL mTNFα without PWM. 

Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony 

assay containing mGM-CSF, mIL-3, mSCF, with a concentration 

gradient of mTNFα. Percent of CFU-GM relative to untreated 

determined by dividing the total number of colonies at a given 

concentration mTNFα into 0 ng/mL mTNFα colony number for each 

group.  P-values were from scrambled LPP or HPP compared to 

SIMPL LPP or HPP colonies, respectively.  n = 5; p<0.04 
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Figure 21. SIMPL shRNA LPP and Total colony growth was 

significantly inhibited at maximum dose mTNFα (10 ng/mL), while 

scramble shRNA c-kit
+
 colony growth was not. Compared 0 ng/mL 

to 10 ng/mL mTNFa to determine if any inhibition occurred within 

each group.   

Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony 

assay containing mGM-CSF, mIL-3, mSCF with a concentration 

gradient of mTNFα. Percent of CFU-GM relative to untreated 

determined by dividing the total number of colonies in the absence of 

hTNFα by the total colonies at the given concentration hTNFα for each 

group. One tailed TTEST comparing within SIMPL or Scramble LPP, 

HPP, total CFU-GM colony formation comparing 0 ng/mL to 10 ng/mL 

hTNFa. n = 5; *p<3.7x10-6 **p<0.0003 
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PWMSCM.  Thus for inhibition of CFU-GM by SIMPL shRNA c-kit
+
 cells, hTNFα plus 

PWMSCM approximately equals mTNFα.  Surprisingly, significant inhibition of LPPs 

did occur in the scramble shRNA group at 5 ng/mL mTNFα (down to 57.9% + 7.9%) 

(Figure 20).  This result highlights the balance of activation between TNF-RI and TNF-

RII that occurs in a concentration dependent manner with mTNFα.  It has been shown 

that activation of the TNFα receptors is dependent on the concentration of TNFα; 

(soluble TNFα has a higher affinity for TNF-RI) [73].  Therefore, these results highlight 

an ideal activation of TNF-RI and TNF-RII leading to inhibition of CFU-GM growth at 5 

ng/mL, but the inhibition disappears at a higher TNFα concentration (10 ng/mL) due 

most likely to activation of TNF-RII. 

 

2. Neither of the two other important inhibitors (IFNγ or TGF-β1) of hematopoiesis 

cause inhibition of CFU-GM colony formation with knock down SIMPL levels 

 To show that decreased SIMPL levels specifically increases TNFα inhibition of 

colony formation, I tested two major pleotropic inhibitors of hematopoiesis, IFNγ and 

TGFβ. 

 

a. Interferon gamma (IFNγ) does not decrease CFU-GM with SIMPL shRNA 

 To determine if mIFNγ was the PWMSCM component that enables the 

combination of TNF-RI plus loss of SIMPL to inhibit CFU-GM colony formation, mouse 

IFNγ was added in a dose dependent manner (0, 1, 5, 10 ng/mL) with mSCF (100 ng/mL), 

mGM-CSF (10 ng/mL) and mIL-3 (20 ng/mL) without PWMSCM in the standard colony 

assay with c-kit
+
 scrambled progenitors. The concentration of  mIFNγ  
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Figure 22.  Loss of SIMPL has no effect upon mIFNγ dependent 

inhibition of CFU-GM formation.  

 Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony assay 

containing mGM-CSF, mIL-3, mSCF with the indicated concentrations of 

mIFNγ. Percent of CFU-GM relative to untreated determined by dividing 

the total number of colonies in the absence of mIFNγ by the total colonies 

at the given concentration mIFNγ for each group.  P-values were from 

Scrambled compared to SIMPL. NO PWMSCM was used in this 

experiment. n = 3; No significant changes occurred  
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Figure 23.  SIMPL and scramble shRNA c-kit
+
 colonies growth 

were significantly inhibited by mIFNγ.  Comparing SIMPL or 

Scramble 0 ng/mL to 10 ng/mL to determine if any inhibition 

occurred with mIFNγ.  
Scrambled and SIMPL shRNA c-kit

+
 cell were plated into a colony 

assay containing mGM-CSF, mIL-3, mSCFwith a concentration 

gradient of mIFNγ. Percent of CFU-GM relative to untreated 

determined by dividing the total number of colonies in the absence of 

hTNFα by the total colonies at the given concentration hTNFα for each 

group. One tailed TTEST comparing within SIMPL or Scramble 

comparing 0 ng/mL to 10 ng/mL mIFNγ CFU-GM colony formation.  

n = 3; *p<0.04 **p<0.002   
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needed for the colony assay was determined based on an assay performed by Broxymeyer 

and co-workers [74]; however, in their colony assays mIFNγ in inhibited colony 

formation in the presence of PWMSCM.  C-kit
+
 HPC expressing the scrambled shRNA 

were inhibited in a dose dependent manner with increasing concentration of mIFNγ, and 

significantly inhibited (52.2% + 7.8%) when examined at the maximum dose given (10 

ng/mL) (Figures 22-23).  Therefore mIFNγ inhibits normal progenitor colony formation 

in a dose dependent manner in the absence of PWMSCM. 

C-kit
+
 HPCs expressing the SIMPL shRNA were not inhibited to a greater extent 

by mIFNγ than c-kit
+
 cells containing scramble shRNA.  

 

b. Tumor growth factor-Beta 1 (TGF-β1) not decrease CFU-GM with SIMPL 

To determine if TGF-β1 was the missing PWMSCM component that enables the 

combination of TNF-RI plus loss of SIMPL to inhibit progenitor formation, human TGF-

β1 (which has normal activity in mouse cells) was added in a dose dependent manner (0, 

0.005, 0.05, 5 ng/mL) with mSCF (100 ng/mL), mGM-CSF (10 ng/mL) and mIL-3 (20 

ng/mL) without PWMSCM in the standard colony assay with c-kit
+
 scrambled 

progenitors.  Human TGF-Β1 concentrations was based on Broxymeyer et al. [75, 76], 

with the caveat that they performed their assays in the presence of PWMSCM.   

Formation of CFU-GM by c-kit
+
 HPCs containing the scrambled shRNA were 

inhibited with increasing concentrations of TGF-β1.  At the maximum dose of TGF-β1, 

the LPP and total colony were sigficantly inhibited (60.7% and 62.9% respectively) 

(Figures 24-25).  Therefore TGF-β1 inhibits normal progenitor colony formation in a 

dose dependent manner in the absence of PWMSCM. 
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Figure 24.  Loss of SIMPL has no effect upon hTGF-β1 dependent 

inhibition of CFU-GM formation. 

 Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony 

assay containing mGM-CSF, mIL-3, mSCF with the indicated 

concentrations of hTGF-β1. Percent of CFU-GM relative to untreated 

determined by dividing the total number of colonies in the absence of 

hTGF-β1 by the total colonies at the given concentration hTGF-β1 for 

each group.  P-values were from Scrambled compared to SIMPL. Total 

CFU-GM colony formation presented because no significant difference 

occurred when comparing SIMPL to Scramble LPP or HPP colonies. 

(NO PWMSCM was used in this experiment).  n = 4   
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Figure 25.  For SIMPL, HPP colony growth was significantly inhibited 

by hTGF-β1, however scramble shRNA c-kit
+
 LPP colony growth was 

significantly inhibited. Compared 0 ng/mL to 10 ng/mL hTGF-β1 to 

determine if any inhibition occurred within each group. 

Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony assay 

containing mGM-CSF, mIL-3, mSCF with a concentration gradient of 

hTGF-β1. Percent of CFU-GM relative to untreated determined by dividing 

the total number of colonies in the absence of hTGF-β1 by the total colonies 

at the given concentration hTGF-β1 for each group. One tailed TTEST 

comparing within SIMPL or Scramble comparing 0 ng/mL to 5 ng/mL 

hTGF-β1 CFU-GM colony formation.  n = 4; *p<0.01 **p<0.03 
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While CFU-GM colony formation of c-kit
+
 cells containing the SIMPL shRNA was 

actually not statistically significantly inhibited any further than the CFU-GM assays 

performed with the c-kit
+
 scrambled shRNA cells.  Still, at the maximum dose of TGF-

Β1 (5 ng/mL),  HPP and total colony numbers (52.4% and 72% respectively) were 

significantly inhibited in the presence of SIMPL shRNA (Figures 24-25).  Therefore, 

expression of the SIMPL shRNA in c-kit
+
 cells does not cause a significant change in 

inhibition of CFU-GM (total, LPP or HPP) colony formation as compared to scrambled 

control  c-kit
+
 cells.  However, expression of SIMPL shRNA does cause a significant 

decrease in HPP formation preferentially over LPPs at the maximum TGF-β1 dose, while 

normal progenitors show a preferential decrease in LPP colonies when compared to 

untreated within respective groups.  As mentioned in the statistics section, since there 

was no evidence for enhanced inhibition of SIMPL shRNA over scrambled shRNA for 

other cytokines, a two tailed Ttest was used to determine significant difference of either 

inhibition or growth advantage.  

  

3. p65 controlled erythropoietin does not cause further inhibition through TNF-RI with 

PWMSCM 

 Red blood cell growth and differentiation is a major component of myelopoiesis.  

As mentioned in the introduction, TNFα has been shown to decrease red blood cell 

colony formation.  Addition of erythropoietin to the colony assay cocktail of PWMSCM, 

mSCF (100 ng/mL), mGM-CSF (10 ng/mL) and mIL-3 (20 ng/mL), did not lead to 

increased inhibition of colony number with increasing concentrations of hTNFα (0, 0.1, 5, 

10 ng/mL).  Colony growth was comparable to Figure 15 with no significant decrease  
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Figure 26.  Loss of SIMPL significantly inhibited total colony 

formation at 1, 5, and 10 ng/mL hTNFα.  

 Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony 

assay containing mGM-CSF, mIL-3, mSCF, PWMSCM, EPO with 

the indicated concentrations of hTNFα. Percent of CFU-GM relative 

to untreated determined by dividing the total number of colonies in 

the absence of hTNFα by the total colonies at the given concentration 

hTNFα for each group.  P-values were from Scrambled compared to 

SIMPL. n = 3; *p<0.03 **p<0.0002 ***p<0.005  
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Figure 27.  SIMPL shRNA c-kit
+
 colonies growth were 

significantly inhibited by hTNFα in PWM and Epo, but 

scrambled was not.  Comparing SIMPL or Scramble 0 ng/mL to 

10 ng/mL to determine if any inhibition occurred with hTNFα.  

Scrambled and SIMPL shRNA c-kit
+
 cell were plated into a colony 

assay containing mGM-CSF, mIL-3, mSCF, PWM and Epo with a 

concentration gradient of hTNFα. Percent of CFU-GM relative to 

untreated determined by dividing the total number of colonies in the 

absence of mTNFα by the total colonies at the given concentration 

mTNFα for each group. One tailed TTEST comparing within 

SIMPL or Scramble comparing 0 ng/mL to 10 ng/mL mTNFa CFU-

GM colony formation.  n = 3; *p<2x10-5 
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of colony formation of c-kit
+
 cells containing scramble shRNA in the presence of hTNFα 

(Figures 26-27).  Colony formation was similarly inhibited in the SIMPL shRNA c-kit
+
 

samples compared to scramble (Figures 26-27).  The inhibition was comparable to Figure 

15.  Human TNFα inhibited SIMPL shRNA containing c-kit
+
 cell colony growth in the 

presence of erythropoietin and PWMSCM, with maximal inhibition occuring at 10 ng/mL 

hTNFα.  Therefore, erthropoietin is not an additional factor stimulating or limiting 

increased inhibition of HPCs containing the SIMPL shRNA. 

 

4. Lack of progenitor growth not caused by increasing levels of GM-CSF, GM-CSF 

activation of p65 is possibly not SIMPL dependent 

  GM-CSF is another growth factor found in PWMSCM.  It also is an important 

factor the CFU-GM formation.  GM-CSF expression is upregulated by p65, and GM-CSF 

can induce p65 activation.  Logically with SIMPL functioning as a TNF-RI specific co-

activator, GM-CSF could potentially modulate SIMPL activity indirectly through p65 

activation.  GM-CSF (data not shown) was added in various concentrations to a colony 

assay with scrambled and SIMPL c-kit
+
 HPCs.  SIMPL shRNA had no effect on colony 

inhibition.  These experiments were a biological n = 1, and were not explored further. 

 

D. Loss of SIMPL allows normal CFU-GM colony formation in the absence of TNFα 

 Without the addition of TNFα, CFU-GM colony formation from c-kit
+
 cells 

containing knock downed SIMPL levels grow the same as scrambled control c-kit
+
 cells 

(Figure 28).  CFU-GM colony numbers were compiled from various experiments (n = 13) 

grown in the same conditions of mGM-CSF, mIL-3, and mSCF.  This highlights that  
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Figure 28.  Loss of  SIMPL has no effect upon untreated CFU-GM 

formation without PWMSCM. 

 Scrambled and SIMPL shRNA c-kit+ cell were plated into a colony 

assay containing mGM-CSF, mIL-3, mSCF.  Total colony number 

shown.  P-values were from LPP, HPP, and Total Scrambled compared 

to SIMPL colony numbers. n = 13; No significant change occurred. 
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the total number of CFU-GM from c-kit
+
 cells with loss of SIMPL were not significantly 

different from CFU-GM from c-kit
+
 cells with scrambled control shRNA (120.8 to 120.6 

respectively).  Additionally the CFU-GM sizes and proliferative potential  as represented 

by HPP and LPP were also not significantly different when comparing  CFU-GM colony 

formation of c-kit
+
 cells containing SIMPL shRNA to scrambled control (HPP 42 vs. 41 

and LPP 85 vs. 83 respectively).   

 

E. TNF-RI inhibition of CFU-GM colony formation of c-kit
+
 cells with diminished 

SIMPL not caused by apoptosis from analysis of various apoptosis conditions 

      A series of apoptosis assays were performed using various concentrations of 

hTNFα and growth factors.  C-kit
+
/shRNA containing bone marrow cells were sorted and 

100,000 cells/mL along with c-kit
+
 only control bone marrow cells were plated under the 

various conditions described in more detail below.  At the end of the experiment, all cells 

in the dish (adherent plus non-adherent) or non-adherent only were collected, pelleted by 

centrifugation, and incubated in a buffer containing annexin V and 7-AAD.  The FACs 

analysis was performed with a one color controls and the experimental c-kit
+
/shRNA 

bone marrow were analyzed.  Though each individual apoptotic experiment was 

performed one time, when viewed together an obvious trend forms.  SIMPL shRNA 

containing cells have no increase in apoptosis over scrambled control. 
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1. No increased apoptosis of progenitors with knock down SIMPL in presence of 

cytokine that allows for differentiation 

 

a. Suspension cells 

C-kit
+
 cells (140,000 cells/well) containing the shRNA (scramble or SIMPL) were 

placed in (6 well dishes; ~35 mm dish) conditions of differentiation with and without 

hTNFα (10 ng/mL). The liquid culture (3 ml total volume) consisted of: mSCF, 200 

ng/mL; mGM-CSF, 10 ng/mL; mIL-3 (20 ng/mL); 5% PWMSCM, 20% FBS, IMDM, 

1% glutamine, 1% pen/strep.  Two days later, the suspension cells (200 µL) were 

collected and analyzed by FACS.  The remaining cells were analyzed everyday for 6 days.   

   Over the course of 7 days, no increase of apoptosis occurred in the c-kit
+
 cells 

containing SIMPL shRNA as compared to scrambled shRNA containing c-kit
+
 cells in 

the presence or absence of the maximum dose of hTNFα (10 ng/mL) (Figure 29). 

 

b. Total cells (adherent and suspension cells)  

 C-kit
+
 cells containing scrambled shRNA or SIMPL shRNA (100,000 cells/ well) 

were put in (2 x 6 well dishes; ~35 mm dish) conditions of differentiation with mIL-3, 

mGMCSF, mSCF, PWMSCM, 1% penicillin/streptomycin, 1% glutamine, 20% FBS, and 

with or without hTNFα (5ng/mL).  Twenty-four hours after plating all cells were 

collected and were analyzed by FACs 48 hours laters the same procedure was repeated on 

the second set of cultures. 
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Figure 29.  No apparent difference in apoptosis on c-kit
+
 SIMPL 

shRNA containing cells compared to c-kit+ scramble containing cells. 

Scrambled and SIMPL shRNA c-kit
+
 cells (~140,000 cells in 3 mL) were 

plated in wells containing mIL-3 (20 ng/mL), mGMCSF (10 ng/mL), 

mSCF (100 ng/mL), PWMSCM, penicillin/streptomycin (1%), glutamine 

(1%), FBS (20%), and hTNFα (10 ng/mL).  Suspension cells (150 µL) 
were taken each day and labeled with APC conjugated annexin V 
and 7-AAD, and analyzed by Flow cytometry. n = 1  
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Figure 29.  (Contiuned) No apparent difference in 
apoptosis on c-kit+ SIMPL shRNA containing cells 
compared to c-kit+ scramble containing cells.  
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Figure 30.  No apparent difference in apoptosis on c-kit
+
 SIMPL 

shRNA containing cells compared to c-kit
+
 scramble containing cells. 

Scrambled and SIMPL shRNA c-kit
+
 cells (100,000 cells) were plated in 

wells containing mIL-3, mGMCSF, mSCF, PWM 

penicillin/streptomycin, glutamine, FBS, and hTNFα (5ng/mL) The cells 

were scraped from wells, stained with APC conjugated annexin V and 7-

AAD, and analyzed by Flow cytometry. n = 1  
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Over the course of 48 hours, the c-kit
+
 cells containing SIMPL shRNA did not have an 

increase in apoptosis as compared to the scrambled shRNA containing c-kit
+
 cells in the 

presence or absence of hTNFα (5 ng/mL) (Figure 30). 

  Therefore, neither suspension nor adherent with suspension cells showed an 

increase in apoptosis caused by activation of TNF-RI by hTNFα.           

 

2. No increase in apoptosis of LDMNCs with diminished SIMPL supplied with cytokines 

that allow only proliferation/expansion 

 The next logical step was to examine if differences in apoptosis may occur at the 

level HPC maintainence (proliferation/expansion with blockage of differentiation (Figure 

31).  C-kit
+
 cells containing scrambled or SIMPL shRNA (140,000 cells in 3 mL) were 

plated in wells (2 x 6 well dishes; ~35 mm dish) containing mSCF (100 ng/mL), and hIL-

6 (25 ng/mL) 1% penicillin/streptomycin, 1% glutamine, 20% FBS, and hTNFα (10 

ng/mL).  Over the course of 7 days, no increase of apoptosis occurred in the c-kit
+
 cells 

containing SIMPL shRNA did not have an increase in apoptosis over scrambled shRNA 

containing c-kit
+
 cells in the presence or absence of the maximum dose of hTNFα (10 

ng/mL).  Therefore,  neither a mix of differentiation cytokines, or a mix low density 

monuclear cell (LDMNC) proliferation cytokines caused increased apoptosis of SIMPL 

shRNA ckit
+
 over scramble shRNA c-kit

+
 cells. 



 

 101 

non-apoptotic

0%

20%

40%

60%

80%

100%

day2 91.6% 95.8% 92.4% 95.0%

day3 93.9% 94.4% 94.2% 94.5%

day4 94.7% 93.1% 96.0% 94.8%

day5 97.2% 96.7% 97.4% 97.3%

day6 91.4% 95.8% 95.4% 96.9%

day7 95.6% 90.8% 94.1% 95.8%

Scrambled
Scrambled + 

hTNFα
SIMPL shRNA

SIMPL shRNA + 

hTNFαp
e
rc
e
n
t 
re
la
ti
v
e
 t
o
 D
a
y
 O
 c
e
ll
 

n
u
m
b
e
rs
  
fo
r 
e
a
c
h
 g
ro
u
p

non-apoptotic

0%

20%

40%

60%

80%

100%

day2 91.6% 95.8% 92.4% 95.0%

day3 93.9% 94.4% 94.2% 94.5%

day4 94.7% 93.1% 96.0% 94.8%

day5 97.2% 96.7% 97.4% 97.3%

day6 91.4% 95.8% 95.4% 96.9%

day7 95.6% 90.8% 94.1% 95.8%

Scrambled
Scrambled + 

hTNFα
SIMPL shRNA

SIMPL shRNA + 

hTNFαp
e
rc
e
n
t 
re
la
ti
v
e
 t
o
 D
a
y
 O
 c
e
ll
 

n
u
m
b
e
rs
  
fo
r 
e
a
c
h
 g
ro
u
p

Figure 31.  No apparent difference in apoptosis on c-kit
+
 SIMPL 

shRNA containing cells compared to c-kit
+
 scramble containing cells 

in pre-stimulation conditions. 

Scrambled and SIMPL shRNA c-kit
+
 cells (140,000 cells in 3 mL) were 

plated in wells containing mSCF (100 ng/mL), and hIL-6 (25 ng/mL) 

(pre-stimulation condition, penicillin/streptomycin, glutamine, FBS 

(20%), and hTNFα (10 ng/mL).  Suspension cells (150 µL) were taken 
each day and labeled with APC conjugated annexin V and 7-AAD, and 

analyzed by Flow cytometry. Biological n = 1  
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Figure 31.  (Continued) No apparent difference in apoptosis 
on c-kit+ SIMPL shRNA containing cells compared to c-kit+ 
scramble containing cells in pre-stimulation conditions. 
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3.  No increased apoptosis of LDMNCs with loss of SIMPL in SFM used to induce 

apoptosis 

  A positive induction of cell death was needed to show if stress caused an increase 

of apoptosis in the SIMPL shRNA c-kit
+
 cells.  C-kit

+
 cells expressing either scrambled 

or SIMPL shRNA (100,000 cells) were plated in wells (2 x 6 well dishes; ~35 mm dish) 

containing serum free media, BSA (0.5%) , penicillin/streptomycin, glutamine with 

hTNFα (10 ng/mL) for 48 hours (Figure 32).  After 48 hours,  there were no change in 

apoptosis, or necrosis between SIMPL shRNA and scramble groups.   

 

F.  C57BL-6 mice transplanted with HSCs with knock down levels of SIMPL have TNFα 

induced sensitivity 

 Lethally irradiated mice were transplanted with c-kit
+
/shRNA (SIMPL or 

scramble) containing cells.  Over the course of a month, 22 mice were transplanted with 

the expectation of having at least 6 mice from each group (SIMPL or scramble shRNA) 

survive 4 months post transplantation.  Six mice were analyzed for each of the various 

categories examined.  Categories examined were bone marrrow number and cellularity 

(lin, sca, c-kit and gr-1 and Mac-1).  Along with colony formation potential of the bone 

marrow and spleen in the presence and absence of mTNFα was explored.  The ability of 

whole bone marrow and c-kit
+
 cells to repopulate the spleen called colony forming unit 

spleen (CFU-S) was also examined, but was not successful.  Another category was  

apoptotic state of the bone marrow of SIMPL compared to scramble shRNA.   
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Figure 32. No apparent difference in apoptosis on c-kit
+
 SIMPL 

shRNA containing cells compared to c-kit
+
 scramble containing cells 

in serum free media. 

Scrambled and SIMPL shRNA c-kit
+
 cells (100,000 cells) were plated in 

wells containing serum free media containing BSA (0.5%), 

penicillin/streptomycin, glutamine with hTNFα (10 ng/mL).  The cells 

were scraped from wells (total cell population) after 48 hours, stained with 

APC conjugated annexin V and 7-AAD, and analyzed by Flow cytometry. 

n = 1   
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1.  Significant decreases in the growth of bone marrow progenitors in SIMPL knockdown 

group versus scrambled control in a TNFα concentration dependent manner.  

 Whole bone marrow was flushed from 1 femur, 2 tibia, and 2 pelvic flatbone from 

all mice.  50,000 cells/mL were plated into the colony assay along with mSCF (100 

ng/mL), mGM-CSF (10 ng/mL) and mIL-3 (20 ng/mL) and mTNFα (0, 1, 5, 10 ng/mL).  

Colony formation is reported as percent change from control (no mTNFα).  There was a 

significant reduction in colony formation of cells isolated from animals that received the 

SIMPL shRNA in a mTNFα concentration dependent manner.  CFU-GM colony 

formation from mice transplanted with c-kit
+
 cells containing SIMPL shRNA were 

significantly decreased at 5 and 10 ng/mL mTNFα compared to CFU-GM colony 

formation from mice transplanted with c-kit
+
 cells containing scrambled shRNA.  Also, 

total colony formation from mice transplanted with c-kit
+
 cells containing scramble 

shRNA was not significantly inhibited at 10 ng/mL mTNFα, which was similar to in vitro 

results  (Figures 33-35).   

 

2. No change in the number of colonies formed without the addition of mTNFα in the 

SIMPL compared scrambled shRNA groups.   

 When the colony growth was compared in the absence of mTNFα in the SIMPL 

shRNA transplant and scrambled transplant groups, no change in the potential of colony 

formation was found (Figure 36).  This was also seen in vitro (Figure 28). 
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Figure 33.  SIMPL shRNA whole bone marrow colonies showed 

significant difference from scrambled shRNA control at  5 and 10 

ng/mL mTNFα. 
Scrambled and SIMPL shRNA cells (50,000 cells/mL) were plated into a 

colony assay containing mGM-CSF, mIL-3, mSCF with a concentration 

gradient of mTNFα. Percent of CFU-GM relative to untreated determined 

by dividing the total number of colonies in the absence of mTNFα by the 

total colonies at the given concentration mTNFα for each group.  P-

values were from Scrambled compared to SIMPL. n = 6; *p<0.02 

**p<0.04 
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Figure 34.  SIMPL shRNA whole bone marrow colonies showed 

significant difference from scrambled shRNA control at LPP 5 and 

10 ng/mL mTNFα.  

 Scrambled and SIMPL shRNA cells (50,000 cells/mL) were plated 

into a colony assay containing mGM-CSF, mIL-3, mSCF with a 

concentration gradient of mTNFα. Percent of CFU-GM relative to 

untreated determined by dividing the total number of colonies at a 

given concentration mTNFα into 0 ng/mL mTNFα colony number for 

each group.  P-values were from scrambled LPP or HPP compared to 

SIMPL LPP or HPP colonies, respectively. n = 6; *p<0.04 **p<007 
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Figure 35.  SIMPL LPP, HPP and Total whole bone marrow had 

significant inhibition by mTNFα while scramble whole bone 

marrow only LPP was significantly inhibited, Comparing SIMPL 

or Scramble 0 ng/mL to 10 ng/mL to determine if any inhibition 

occurred with mTNFα with no PWM.  

Scrambled and SIMPL shRNA cells (50,000 cells/mL) were plated into 

a colony assay containing mGM-CSF, mIL-3, mSCF with a 

concentration gradient of mTNFα. Percent of CFU-GM relative to 

untreated determined by dividing the total number of colonies in the 

absence of mTNFα by the total colonies at the given concentration 

mTNFα for each group. One tailed TTEST comparing within SIMPL or 

Scramble LPP, HPP, total CFU-GM colony formation comparing 0 

ng/mL to 10 ng/mL mTNFa *p<4x10-7 **p<0.03 ***p<5x10-7 

****p<0.004   
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Figure 36.  SIMPL and scramble whole nucleated bone marrow had no 

significant change in the total number of cells. 

Whole bone marrow containing scrambled and SIMPL shRNA cells were 

flushed from the tibia, femur, and pelvis.  The combined nucleated bone 

marrow cell population was counted. Biological n = 6 
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3.  Number of cells in the bone marrow, and type of cells from mice with SIMPL shRNA 

were similar to control. 

 As seen in Table 3,  the total number of bone marrow cells and cellularity were 

the same in the SIMPL and scramble shRNA groups.  Cellularity was tested by taking 

200,000 whole bone marrow cells for each mouse.  100,000 cells were combined with a 

flurochrome (APC) linked lineage cocktail, PE Cy7 linked Sca-1, and PE-linked c-kit and 

analzyed by fluorescence activated cell analysis.  A separate 100,000 cells was combined 

with fluorochrome linked Gr-1, and Mac-1, which are markers for granulocytes 

(neutrophils, eosonophils, basophils) and macrophages respectively.  In neither groups 

were there statistically significant changes in HSC (lin
-
sca

+
ckit

+
) or in HPCs (lin

-
sca

-

ckit
+
).  Differentiated hematopoietic markers Gr-1 and Mac-1 revealed no statistically 

significant changes amoung the two groups. 

 

4.  SIMPL knockdown underwent a slight, but significantly decreased amount of early 

apoptosis. 

 The SIMPL knock down whole bone marrow cells demonstrated slight but 

significant decrease in early apoptsis compared to scramble shRNA whole bone marrow.  

100,000 whole bone marrow cells were combined with annexin V and 7-AAD and 

analyzed by FACs.  Late apoptosis, necrosis and non-apoptotic populations were not 

significantly different (Figure 37).   
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 Scramble  SIMPL  

Fraction % of BM SEM % of BM SEM 

Lin
-
 Only 3.660 0.651 5.410 1.979 

Lin
-
Sca

+
 0.468 0.060 0.422 0.109 

Lin
-
c-kit

+
 0.260 0.054 0.390 0.087 

Lin
-
Sca

+
c-kit

+
 0.203 0.134 0.047 0.010 

Lin
-
 Total 4.592 0.751 6.268 1.980 

 Scramble  SIMPL  

Fraction % of  BM SEM % of  BM SEM 

MAC-1
+
 1.878 0.129 1.757 0.131 

GR-1
+
 14.648 1.542 13.107 1.904 

MAC-1
+
/GR-1

+
 33.437 1.959 26.002 4.727 

Table 3.  No change in bone marrow cellularity comparing mice 

transplanted with scramble or SIMPL shRNA. 

Total bone marrow of 4 month old mice transplanted with shRNA was 

analyzed by FAC sorting as explained in Methods.  
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Figure 37.  No apparent difference in apoptosis on SIMPL shRNA 

containing cells compared to scramble containing cells. 

Apoptosis assay of whole bone marrow cells containing either SIMPL or 

scramble shRNA. P-values were from Scrambled compared to SIMPL 

with in same apoptotic groups.  n = 6; *P<0.03 
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5.  One outlier in the SIMPL shRNA group had expanded HSC and immature precursor 

populations with decreased apoptosis (data not shown) 

 This outlier could possibly represent HSCs that lack the ability to differentiate, 

but still have the ability to expand.  Thus, this might be a possible pre cancerous state.  

But with only one outlier, these are only speculations. 

 

6. GFP equally shutoff in SIMPL and scramble groups   

 The GFP gene (ZsGreen) on pSIREN retroviral plasmid is under the control of a 

different promotor (CMV) than the shRNA construct (Pol III) Over long term expression 

of GFP as in this transplant, it was not unexpected for GFP to be silenced.  GFP silencing 

does not necessarily have effect on the shRNA expression.  The SIMPL and scramble 

shRNA transplant groups both had significant loss of GFP protein levels as compared to a 

non-GFP control analyzed by FACs.  The two groups compared together showed no 

difference in the amount of GFP silencing between SIMPL and scramble shRNA whole 

bone marrow (Figure 38).   
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Figure 38.  SIMPL and scramble whole nucleated bone 
marrow had no significant change in % GFP positive cells. 
Whole bone marrow containing scrambled and SIMPL shRNA 
cells were flushed from the tibia, femur, and pelvis.  Results were 
analzyed by FACS biological n = 6 
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IV.   Discussion 

The long term objective of my thesis work was to determine if inhibition of 

SIMPL is a viable option for treatment of hematopoietic disorders.  To test this 

hypothesis, it was necessary to determine SIMPL’s role in myelopoiesis.  Through 

changes in red blood cell development seen in Zebra fish with decreased SIMPL levels, it 

was clear SIMPL plays a part in steady state erythropoiesis and presumably 

hematopoiesis.  To understand the role of this p65 specific co-activator, SIMPL, in 

hematopoiesis, a thorough review of its two main components (TNFα and p65) was 

necessary.  Selection of TNFα was needed because it initiates the SIMPL specific 

signaling cascade, and p65 is a direct effecter of TNFα and is directly linked to SIMPL.  

The introduction reviewed TNFα and p65’s involvement in every stage of progression in 

hematopoiesis; my data will prove SIMPL’s involvement in myelopoiesis and connects it 

to the previous evidence presented.  The discussion below highlights the potential for loss 

of SIMPL to diminish a dysregulated TNFα response without inhibiting normal functions 

of myelopoiesis.   

 

A. Myelopoietic, CFU-GM, colonies with loss of SIMPL behave similarly to CFU-GM 

exposed to high dose TNFα 

 Loss of SIMPL sensitizes CFU-GM to TNFα.  CFU-GM colony formation is 

diminished in a dose dependent manner with increasing TNFα concentrations [36, 37, 43].  

CFU-GM with decreased amounts of SIMPL, after in vitro introduction of SIMPL 

shRNA in c-kit
+
 cells, were also inhibited by increasing doses of mTNFα, and further, the 

colony formation was inhibited significantly more than in response to mTNFα alone, 
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42.6% to 79.3% respectively (Figure 21).  Thus, the loss SIMPL sensitizes the 

myelopoietic cells to TNFα, acting like high dose TNFα.  Analysis of mouse bone 

marrow reconstituted with SIMPL shRNA for ~5 months represents in vivo exposure to 

diminished SIMPL levels (Figure 33).  After harvesting the bone marrow, CFU-GM 

colony formation from c-kit
+
 cells with decreasesd SIMPL levels were still inhibited in a 

mTNFα dose dependent manner compared to mTNFα alone (62.5 to 92% respectively).  

These results contend that inhibition of SIMPL acts like high dose TNFα.  This may seem 

counter intuitive for use as a therapy for a dysregulated TNFα disorder, like AML.  

However, loss of SIMPL restores normal TNFα function.  In AML, like other cancers [59, 

64], the anti-apoptotic transcription factor p65/50 is constitutively active.  High dose 

TNFα usually inhibits the NF-κB pathway by activating expression of inhibitors of 

p65/p50 (IkB).  However in a dysregulated response this inhibition will classically be 

blocked by: constitutively activated IKKβ, mutation of NF-κB, and/or IκBα [59, 64]. 

SIMPL is a gatekeeper that acts as a co-activator downstream of the putative sites of 

mutation when diminished, inhibits up regulation of NF-κB [77].  Thus, inhibiting TNFα 

induced anti-apoptotic signaling, apoptosis occurs because of the cumulative mutations 

that cancer cells accrue [52, 59, 78, 79].  However, this does not explain the selective 

advantage of knocking down SIMPL over anti-TNFα therapies.   

 

B. Loss of SIMPL allows for normal CFU-GM colony formation in the absence of TNFα 

highlighting the advantage of pathway specific therapy 

 Reduction of SIMPL in c-kit
+
 cells alone (i.e. in the absence of TNFα) does not 

significantly inhibit CFU-GM colony formation as compared to scrambled control 
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(Figure 28).  When 13 separate experiments with SIMPL shRNA compared to scrambled 

control weere pooled no significant difference in CFU-GM colony number, size, or 

proliferation potential was detected.  This result is similar to CFU-GM derived from 

TNF-RI-/- mice; in the absence of TNFα stimulation, there are no significant differences 

in CFU-GM as compared to control [49].  Thus, CFU-GM colonies with diminished 

SIMPL levels maintained basal NF-κB activity allowing for colony formation.  This 

highlights the advantage of SIMPL inhibition over anti-TNFα therapies.  In the face of a 

dysregulated TNFα pathway mentioned above, anti-TNFα inhibits multiple TNFα 

pathways needed for normal hematopoieitc function including ERKS, JNK and p38 [60, 

80-82].  Highlighting the complex nature of TNFα, HSCs isolated from TNFα-/- mice 

produce 3-fold higher amounts of CFU-GM colonies compared to wildtype [48].  The 

loss of SIMPL, allows for basal activity of NF-κB in non-cancerous cells and functioning 

of the other TNFα signaling pathways.  In vivo, loss of SIMPL did not effect HSC, HPC, 

nor mature differentiated myelopoietic cells, as revealed in the SIMPL shRNA mouse 

bone marrow transplant experiments (Table 3).  This is in contrast to the TNFα-/- and 

TNF-RI-/- results; which revealed lineage with increased levels of the HSC, and HPCs in 

the bone marrow [36, 48, 49].   Therefore, in concurrence with TNF-RI-/- data, loss of 

SIMPL does not inhibit normal CFU-GM colony formation in the absence of TNFα, and 

unlike either TNFα-/- or TNF-RI, knock down of SIMPL did not effect bone marrow 

formation.  This demonstrates a select advantage of knocking down SIMPL over anti-

TNFα therapy, the latter affects bone marrow formation and lineage as shown from the 

TNFα-/- results.   
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C. Similar to high dose TNFα, decrease CFU-GM formation from loss of SIMPL is not 

caused by apoptosis 

 TNFα induces apoptosis when there is inhibition of the TNF-RI to p65/p50 

pathway which does not include SIMPL (Figure 1).  To induce apoptosis by TNFα 

requires the addition of protein synthesis inhibitors (cycloheximide) or a proteasome 

inhibitors (MG132 or lactacystin) to block production of anti-apoptotic factors or IκBα 

breakdown respectively [73, 83, 84].   Normal TNFα activation does not cause apoptosis, 

and similarly, loss of SIMPL alone does not induce apoptosis more than control cells 

exposed to TNFα (Figures 29-32).  Our data show a trend that independent of the 

permutation (including changes in time exposed to TNFα, dose of TNFα, or cytokine 

mixture) loss of SIMPL did not cause apoptosis.  Thus, inhibition of colony formation 

seen in cells containing lower SIMPL protein levels is through cell cycle arrest.  Others 

have shown that TNFα inhibits colony formation by cell cycle arrest at G1/S phase [36].   

In data not shown, loss of SIMPL on myelopoietic cell proliferation was explored 

but the results were inconclusive.  In these experiments, known numbers of c-kit+ only or 

c-kit+ cells containing SIMPL shRNA were plated, and the change in growth was 

compared to scrambled shRNA containing c-kit+ cells in the presence or absence of 

hTNFα using non-transduced c-kit+ cells as a competitive control.  Under these 

conditions, the SIMPL shRNA containing c-kit+ cells could be compared in the presence 

or absence of hTNFα to the scrambled results.  Unfortunately, the results of these 

experiments were inconsistent, and many additional replicates are needed for any solid 

conclusions to be drawn.  The preliminary data suggest that the growth of cells 

expressing the SIMPL shRNA, maintained under proliferative conditions (hIL-6 and 
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mSCF) was inhibited to a greater extent than cells expressing the scrambled shRNA.  

However, these conditions were not reproduced consistently.  Therefore, we only 

confirmed that CFU-GM colony growth inhibition by c-kit
+
 cells containing SIMPL 

shRNA was not from apoptosis, and only, highly likely caused by cell cycle arrest.   Thus, 

we next focused on which TNFα receptors mediated the response. 

 

D. CFU-GM colony inhibition from the loss of SIMPL requires both TNF-RI and TNF-

RII 

CFU-GM colony formation from c-kit
+
 cells with diminished SIMPL levels was 

not significantly inhibited by hTNFα, the TNF-RI specific activator in mice, over control 

(Figure 17).  Thus signaling through the TNF-RI receptor alone does not allow inhibition 

of colony growth when SIMPL is knock downed.  This result was confirmed in two 

additional experiments.  One, significant inhibition of CFU-GM colony growth was seen 

in the SIMPL shRNA c-kit
+
 cells treated with mTNFα, which binds both TNF-RI and 

TNF-RII.  Two, when SIMPL shRNA cells are grown with hTNFα and poke weed 

mitogen spleen conditioned media (PWMSCM) [see review below], CFU-GM with loss 

of SIMPL were significantly inhibited (20.7% to 84.5% control).  This highlights that 

TNF-RI alone does not cause inhibition and that the addition of a TNF-RII activator is 

necessary.  However, the data reveals that only a small amount of TNF-RII activation is 

necessary if TNF-RI is activated by hTNFα.  In cells derived from TNF RI-/- mice, 

colony formation is not inhibited with addition of mTNFα (TNF RI and TNF RII 

activator) [36].  Unlike TNF-RI-/- bone marrow, TNF-RII-/- bone marrow has a similar 

hematopoietic makeup to wildtype mice [49].  Highlighting that TNF-RII alone does not 
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cause inhibition.  Additionally, culturing wild type mouse hematopoietic progenitors 

under proliferation/differentiation assay conditions in the presence of hTNFα (TNF-RI 

specific activator in mice), has no effect upon CFU-GM colony proliferation [51].  My 

data (Figure 13 compared to Figure 15) illustrates that loss of SIMPL sensitizes the TNF-

RI receptor.  Note in Figure 15, TNF-RI and TNF-RII activation by mTNFα, mediates a 

significant reduction of CFU-GM in both groups.  However, TNF-RI activation with 

PWMSCM causes a large reduction in CFU-GM colonies generated from c-kit
+
 cells 

SIMPL knock down colonies that is not seen with control cells.  This data with the 

addition of previous studies proves loss of SIMPL sensitizes CFU-GM to TNFα through 

TNF-RI, but TNF-RII is also required.   

In review, PWMSCM contains a host of additional cytokines produced by T and 

B lymphocytes, macrophages, and stromal cells necessary for normal hematopoietic 

interactions.  The interactions involve regulation and maintenance (checks and balances) 

of normal growth, survival, proliferation, and differentiation.  The interactions and 

combinations of cytokines (additive, synergistic, inhibitory) and growth factors are still 

under intense investigation.  The lack of knowledge on various interactions can be 

disadvantageous when exploring the role of an individual specific cytokine or growth 

factor.  For example, taking a cytokine or growth factor out of a natural background can 

produce results not seen in vivo due to complex interactions.  However, the biggest 

strength of PWMSCM is that it closely mimics an in vivo complement of cytokines. Thus, 

bone marrow cells treated with PWMSCM would likely see an array of cytokines that 

they may find in an in vivo setting.  Thus, CFU-GM colony formation from c-kit
+
 cells 

containing SIMPL shRNA is inhibited by TNFα through TNF-RI and notable TNF-RII 
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activation, but TGF-β1 and IFNγ, two additional pleotropic cytokines that inhibit 

hematopoiesis, are also found in PWMSCM [74-76].   

 

E. Neither TGF-β1 nor IFNγ sensitizes CFU-GM colonies with diminished SIMPL levels 

 CFU-GM colony formation of c-kit
+
 cells containing knock down SIMPL was not 

significantly inhibited by either TGF-β1or IFNγ (Figures 22-24).  However, both TGF-β1 

and IFNγ did cause inhibition of colony growth shown in Figures 23 and 25 [74-76, 85].  

Complex interactions in PWMSCM cannot be discounted.  However, individually TGF-

β1 and IFNγ do not cause inhibition CFU-GM numbers in the face of diminished SIMPL 

levels in a manner similar to that observed with TNFα.  Additionally PWMSCM contains 

erythropoietin (EPO), GM-CSF, and G-CSF.  The genes encoding these proteins are 

regulated by p65 through TNF-RI (see introduction).   

 

F. EPO and G-CSF do not allow further inhibition of colonies with diminished SIMPL 

levels while GM-CSF highlights SIMPL’s specificity to TNFα 

 The addition EPO or G-CSF with TNF-RI did not further reduce colony formation 

of the c-kit
+
 cells containing SIMPL shRNA.  In presence (Figures 26-27) and absence 

(data not shown) of PWMSCM the addition of EPO to CFU-GM assays performed with 

SIMPL shRNA c-kit
+
 cells did not cause additional colony in the presence of hTNFα. 

Interestingly, this same experiment done in the presence of low oxygen tension (5% O2), 

led to an increase in the inhibition of scramble shRNA containing colonies, but not to a 

level less than that observed for the SIMPL shRNA containing colonies (data not shown; 

biological n=1).   
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 In mouse HPCs the addition of G-CSF as the only cytokine to a colony 

proliferation/differentiation assay allows TNF-RI activation to signal for a decrease in 

CFU-G (more differentiated than CFU-GM) colony number [43].  Thus, TNF-RI 

activation has cytokine specificity.  So, G-CSF was added without PWMSCM in the hope 

that G-CSF plus hTNFα would inhibit CFU-GM colonies when cells were expressing the 

SIMPL shRNA.  In data not shown, G-CSF (10 ng/mL) was added to the 

proliferation/differentiation colony assay without PWMSCM and with hTNFα and mSCF 

(biological n = 1) or with mSCF, mIL-3, and GM-CSF (biological n = 2).  G-CSF alone 

produced no colonies (data not shown).  Again, no difference of inhibition occurred 

between groups (SIMPL and scramble shRNA) and overall hTNFα did not cause 

inhibition at the highest concentration. 

GM-CSF is important because GM-CSF up regulates its own transcription 

through activation of p65 (see introduction).  In data not shown (n = 1), addition GM-

CSF without TNFα in the presence or absence of PWMSCM did not cause a greater 

inhibition of colonies containing SIMPL shRNA compared to scramble.  These trends 

support that SIMPL p65 co-activation is specific to TNFα pathway and not other 

activators of p65.  Again highlighting TNF-RI and TNF-RII’s requirement, additional 

cytokines, like G-CSF, did not allow activation ofTNF-RI only to induce colony 

inhibition in response to low levels of SIMPL.  
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V. Conclusion  

Loss of SIMPL enhances TNFα dependent inhibition of colony proliferation in a 

direct dose-dependent manner.  Additionally, loss of SIMPL alone still allows for normal 

CFU-GM colony formation most likely because of basal NF-κB activity.  TNF-RI 

activation, by TNFα, dose-dependently inhibits colonies containing SIMPL shRNA, and 

this inhibition requires at least background activation of TNF-RII.  Increasing 

concentrations of mouse TNFα (activates both TNF-RI and TNF-RII), as well as 

increasing doses of a TNF-RI activator with a set amount of TNF-RII activation, inhibits 

colonies containing SIMPL shRNA.  This inhibition was not caused by apoptosis, and 

most likely caused by inhibition of proliferation through cell cycle arrest.  Growth arrest 

due to loss of SIMPL is specific to TNFα, and is not observed in TGF-β1 or IFNγ treated 

cultures, the other two major inhibitors of hematopoiesis.  Additionally, activation of p65 

by a cytokine other than TNFα did not inhibit CFU-GM colonies with reduced SIMPL 

levels over control.  These conclusions support the hypothesis that loss of SIMPL is 

potentially a better alternative than anti-TNFα therapies due to increased specificity.  

Specifically, my data supports that SIMPL is specific to the TNFα pathway.  Thus, loss 

of SIMPL targets TNFα induced p65, allowing p65 activation by other pathways to 

continue.  This would allow for diminished side effects.  Next, SIMPL targets NF-κB 

downstream of the many pre-cancerous/cancerous mutations of the TNF-RI/NF-κB 

pathway [14, 77].  Finally, loss of SIMPL would still allow TNFα to signal through 

ERKS, JNK and p38, which should also allow for reduced side effects.  In summary, the 

data presented shows that better understanding of a specific signaling pathway allows for 

the ability to identify specific cures, while limiting potential side effects.   



 

 124 

VI. Future Directions 

 To understand the efficacy of SIMPL as a treatment for hematopoietic disorders, 

future studies should continue to explore loss of SIMPL’s ability to limit a dysregulated 

TNFα system and minimize side effects, and the potential to create a cancer model.  

Currently, a mouse SIMPL-/- model, already in development, would be the best 

determent of SIMPL’s advantage as a therapy.  With SIMPL-/-, the lack of apoptosis of 

hematopoietic precursors and CFU-GM proliferation/ differentiation assays in the 

presence of TNFα could confirm our previous data.  Next, SIMPL-/- HSC’s and HPCs 

can be used to confirm growth inhibition with the addition of TNFα compared to wild 

type by a variety of methods.  First, a propidium iodide cell cycle assay using flow 

cytometry could identify the stage in the cell cycle when growth arrest appears [36, 49].  

Second, SIMPL-/- HSCs could be FAC sorted as single cells per well with TNFα to 

measure diminished ability of the cells to proliferate compared to wild type [35].  Third, 

the SIMPL-/- HSCs or HPCs in the presence of TNFα could be placed in a gene 

expression array to establish increased expression of cell cycle regulators as compared to 

wild type.  Next, efficacy of SIMPL-/- to inhibit a dysregulated TNFα pathway could be 

replicated by using over expression of IKKβ, or p65 and treating with TNFα, SIMPL 

should inhibit the TNFα induce p65 activation of anti-apoptotic factors.  Apoptosis 

should be increased in SIMPL-/- as compared to wild type.  

It is necessary to show that loss of SIMPL leads to minimal side effects due to its 

specificity to the TNF/NF-κB pathway.  It would be expected for SIMPL-/- mice to live 

to birth, like the TNFα-/- and TNF-RI-/- mice; demonstrating that loss of SIMPL is not 

embryologically lethal like p65-/-.  Analyzing SIMPL-/- bone marrow lineage, we should 
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be able to determine if SIMPL-/- are similar wild type, and placing the HSC’s into colony 

assays without TNFα, SIMPL-/- should form normal CFU-GM colonies.  SIMPL-/- mice 

could be crossed with TNF-RI-/- mice to determine if the CFU-GM growth inhibition is 

reversed in response to mTNFα.  This confirms SIMPL’s specificity to the TNF-RI 

signaling pathway as compared to TNF-RII.  Lastly, a gene array of SIMPL-/- treated 

with TNFα would be needed to determine if SIMPL up regulates p65/p50 induced gene 

expression or only a subset.  This would allow for more finite understanding of the 

effects that loss of SIMPL might acquire. 

SIMPL-/- may provide a long term cancer model.  SIMPL-/- mice treated with 

TNFα or LPS (causes release of TNFα)  periodically could put hematopoiesis under 

clonogenic stress due to diminished ability to proliferate.  Thus, the model would create 

pressure on HSCs and early HPCs to mutate to allow for proliferation.  This is 

advantagous because there are no current myelodyplasia syndrome (MDS) mouse models 

that this SIMPL-/- mouse may model.  Additionally, competitive repopulation assays 

could be done in the short term to evaluate SIMPL -/- HSCs ability to reconstitute mouse 

bone marrow.  TNFα-/- and TNF-RI-/- show decreased ability to repopulate bone marrow 

as compared to wildtype.  If SIMPL-/- HSCs also have diminished capacity to 

reconstitute bone marrow, SIMPL-/- HSCs could be losing the ability to be regulated or 

function properly, either of the two would put it in a pre-cancerous state.  This should act 

as a screening tool for the potential of cancer model. 
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