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ABSTRACT 

 Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with 

an estimated global prevalence of 1 in 4 individuals. Aberrant transcriptional control of gene 

expression is central to the pathophysiology of metabolic diseases. However, the molecular 

mechanisms leading to gene dysregulation are not well understood. Histone modifications play 

important roles in the control of transcription. Acetylation of histone 3 at lysine 9 (H3K9ac) is 

associated with transcriptional activity and is implicated in transcript elongation by controlling 

RNA polymerase II (RNAPII) pause-release. Hence, changes in this histone modification may 

shed information on novel pathways linking transcription control and metabolic dysfunction. 

Here, we carried out genome-wide analysis of H3K9ac in the liver of mice fed a control or a 

high-fat diet (an animal model of NAFLD), and asked whether this histone mark associates with 

changes in gene expression. We found that over 70% of RNAPII peaks in promoter-proximal 

regions overlapped with H3K9ac, consistent with a role of H3K9ac in the regulation of 

transcription. When comparing high-fat with control diet, approximately 17% of the differentially 

expressed genes were associated with changes in H3K9ac in their promoters, showing a strong 

correlation between changes in H3K9ac signal and gene expression. Overall, our data indicate 

that in response to a high-fat diet, dysregulated gene expression of a subset of genes may be 

attributable to changes in transcription elongation driven by H3K9ac. Our results point at an 

added mechanism of gene regulation that may be important in the development of metabolic 

diseases. 
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INTRODUCTION 

 Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, 

affecting ~25% of the global population [1]. NAFLD is associated with obesity, and is a risk 

factor for other metabolic diseases such as type 2 diabetes and cardiovascular disease [2, 3]. 

The liver is a critical tissue for energy homeostasis, switching its genetic programs to execute 

anabolic or catabolic functions in response to nutrient availability. The precise regulation of 

chromatin structure together with transcription factor activity enables the liver to activate or 

suppress gene networks in response to energy needs.  

 Nutrients and intermediates of cell metabolism serve as cofactors for chromatin-modifying 

enzymes to connect metabolic information with transcriptional control of gene expression [4]. 

The histone code states that DNA transcription is regulated in part by post-translational 

chemical modifications to histone proteins. Histone tails are extensively modified by 'writers', 

enzymes that utilize cellular metabolites such as acetyl-CoA, S-adenosylmethionine, or ATP as 

substrates, as well as ‘erasers’, enzymes that remove these modifications. Histone 

modifications act as recruiters of transcription factors and/or co-regulators to promote 

euchromatin or heterochromatin, activating or inactivating gene expression. 

  A key aspect of the pathophysiology of metabolic disease is abnormal transcriptional 

control of gene expression, and ongoing studies are providing evidence that epigenetic 

mechanisms contribute to its progression [4, 5]. Excess calorie consumption from carbohydrates 

and fats are main drivers of energy imbalance and alterations in metabolic pathways. Histone 

acetylation is highly sensitive to the availability of glucose-derived cytosolic acetyl-CoA [6-10]. In 

addition, several metabolites and cofactors generated through glycolysis, including acetyl-CoA, 

pyruvate and lactate, directly alter lysine acetyltransferase or deacetylase activity to link energy 

status with cellular and organismal homeostasis [11, 12]. Acetylation of histone 3 at lysine 9 

(H3K9ac) is a marker of actively transcribing genes [13-15], and it has been shown to be 
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necessary for recruitment of the Super Elongation Complex to chromatin and transition from 

RNA Polymerase II (RNAPII) pause-release to transcript elongation [16, 17]. We questioned 

whether high-fat diet feeding elicits genome-wide alterations in H3K9ac, and using high-

throughput technologies we explored the connection between this histone modification and 

gene expression in this mouse model of NAFLD. 
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2. Materials and methods 

2.1. Animals 

 All animal studies were in accordance with the National Institutes of Health guidelines 

and were approved by the Indiana University School of Medicine Institutional Animal Care and 

Use Committee. Control mice from the IL6 receptor knockout colony (cre+ wild type or cre-

flox/flox) were used for these studies [18]. The colony is maintained in a C57BL/6J background. 

Eight-week old male mice were fed a control (2018SX, 18% kcal fat, Envigo, a crude laboratory 

chow diet) or a high-fat diet (D12492, 60 kcal% fat, Research Diets; contains 7% kcal from 

fructose, as well as 279.6 mg/kg cholesterol, from lard and casein) for 10 weeks (n=4/group). 

This diet promotes hepatic steatosis and inflammation, relative to chow diet fed mice [19]. A 

group of mice from the colony was used to assess lean and fat mass, and to confirm glucose 

intolerance (Supplementary Fig. 1). Mice were kept in a BSL1 room and had free access to food 

and water. Animals were euthanized under fed (ad libitum) conditions, and tissue collection was 

initiated at 1:00 pm. Liver tissues were collected, rinsed in sterile PBS and snap frozen in liquid 

nitrogen.  

2.2. ChIP-seq 

 Frozen liver tissue (50 to 100 mg) from three biological replicates per group was used to 

isolate chromatin using the MAGnify Chromatin Immunoprecipitation System kit (Invitrogen, 

Carlsbad, CA). Tissue was minced in cold D-PBS and chromatin was immediately crosslinked 

with 1% methanol-free formaldehyde for 6 min. Crosslinking was stopped with glycine to a final 

concentration of 0.125 M. Tissue was homogenized at 4°C in 1-mL syringes by passing ~20 

times through 18G followed by 21G needles. Lysis buffer was added and cells were sonicated 

using Bioruptor UCD-300 (23 cycles of 30 seconds ON, 30 seconds OFF), to generate DNA 

fragments of an average size of 100-400 bp. Sonicated chromatin was immunoprecipitated 

overnight at 4°C with an antibody specific to H3K9ac (#17-658, Millipore, Burlington, MA). Prior 
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to library construction, the shearing quality of DNA was assessed by Bioanalyzer 2100 (Agilent 

Technologies Inc., Santa Clara, CA). Purified ChIP and input DNA samples were used for library 

preparation using Illumina TruSeq Nano DNA LT Library Prep Kit (Cat# FC-121-4001), including 

end-repair, dA-tailing, indexed adaptor ligation and amplification. Each resulting indexed library 

was quantified and its quality accessed by Qubit and Agilent Bioanalyzer. Multiple libraries were 

pooled in equal molarity. The pooled libraries were then denatured, and neutralized, before 

loading onto NextSeq 500 sequencer at 1.5 pM final concentration for 75-bp paired-end 

sequencing (Illumina, Inc.). Approximately 20 million reads per library were generated. A Phred 

quality score (Q score) was used to measure the quality of sequencing. More than 90% of the 

sequencing reads reached Q30 (99.9% base call accuracy). About 84% of the reads were 

uniquely mapped to mouse reference genome mm10 using Bowtie2. Peaks were identified with 

MACS2 and peaks from ENCODE blacklist were subsequently removed. UCSC genome 

browser tracks were generated to visualize the alignment and the peaks.  

Peaks from multiple samples were merged to form a final set of unique regions using 

BEDTools (v2.29.0) [20]. Reads falling into the regions from different samples were counted 

using featureCounts (v 1.6.2) [21].  Differential analysis of binding signals between different 

conditions was carried out based on the reads within the regions between different conditions by 

using edgeR (v 3.24.3) with trimmed mean M-values normalization [22, 23]. 

RNAPII ChIP-Seq peaks from liver were retrieved from the GEO database (accession 

number GSE21696: GSM541303, GSM541306) [24], and were converted to mm10 using 

LiftOver [25]. Venn diagrams were plotted for overlaps between RNAPII peaks and H3K9ac 

peaks in control diet samples. Significance of overlaps of peaks was derived from Fisher exact 

test using BEDTools [20]. Two sample Kolmogorov-Smirnov Test was performed on H3K9ac 

peak signal overlapping versus not overlapping with RNAPII using the ks.test function in R [26]. 

2.3. RNA-seq 
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Total RNA was extracted using a RNeasy Maxi kit (Qiagen, Valencia, CA), following the 

manufacturer’s protocol (n=4/group). RNA integrity was evaluated by Bioanalyzer 2100. mRNA 

libraries were generated from 100 ng RNA, using the KAPA mRNA Hyperprep kit (Roche, 

Indianapolis, IN). Paired end 75-bp reads were generated with the Illumina HiSeq4000 platform 

(~45 million reads/sample). Nearly 85% of reads were uniquely mapped to mouse genome 

reference mm10 using STAR (Spliced Transcripts Alignment to a Reference) [27]. To evaluate 

the quality of the RNA-seq data, number of reads that fall into different annotated regions 

(exonic, intronic, splicing junction, intergenic, promoter, UTR, etc.) of the reference genes were 

determined with bamUtils [28]. Low quality mapped reads (including reads mapped to multiple 

positions) were excluded and featureCounts [21] was used to quantify the gene level 

expression. Differential gene expression analysis was performed with edgeR [22]. 

2.4. ATAC-seq 

ATAC-seq was conducted using two biological replicates from the control diet group 

using approximately 15 mg of frozen liver tissue. Tissue samples were cut into small pieces and 

were homogenized using a glass dounce tissue grinder (25 times with pestle A and 25 times 

with pestle B) in 2 ml of ice cold EZ PREP (Sigma, Cat #NUC-101) and incubated on ice for 5 

min. Nuclei were centrifuged at 500 g for 5 min at 4°C, washed with 2 ml ice-cold EZ PREP and 

incubated on ice for another 5 min. After centrifugation, the nuclei were washed in 2 ml nuclei 

suspension buffer (NSB) consisting of 1xPBS, 0.01% BSA. Isolated nuclei were resuspended in 

2 ml NSB, filtered through a 35 um cell strainer, and counted. Approximately 70,000 nuclei were 

pelleted at 500xg for 10 min and resuspended in Tn5 enzyme and transposase buffer (Illumina 

Nextera® DNA library preparation kit, FC-121-1030). The Nextera libraries were amplified using 

the Nextera® PCR master mix and KAPA biosystems HiFi hotstart readymix successively. 

AMPure XP beads (Beckman Coulter) were used to purify the transposed DNA and the 

amplified PCR products. All libraries were sequenced on a 100 cycle paired-end run on an 
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Illumina NOVAseq instrument. The resulting ATAC-seq libraries were sequenced on Illumina 

NovaSeq 6000 at CMG of Indiana University School of Medicine and paired-end 50-bp reads 

were generated (~160 million reads per sample). Illumina adapter sequences and low quality 

base calls were trimmed off the paired-end reads with Trim Galore v0.4.3. The resulting high-

quality reads were aligned to the human reference genome hg38 using bowtie2 (version 2.3.2) 

63 with parameters “-X 2000 --no-mixed --no-discordant”. Duplicate reads were discarded with 

Picard (https://broadinstitute.github.io/picard/). Reads mapped to mitochondrial DNA (<3.5%) 

together with low mapping quality reads (MAPQ<10) were excluded from further analysis. 

MACS2 (version 2.1.0) was used to identify general peaks. Sequencing and data analysis were 

carried out by the Center for Medical Genomics at Indiana University School of Medicine. 

Unique open chromatin regions for multiple samples were identified as described for 

H3K9ac ChIP-seq analysis. Reads falling into each unique region were evaluated using 

pyDNase (v 0.3.0) [29] for different samples.  

2.5. Data integration and transcription factor motif analysis 

 Promoter-proximal regions were defined as -3 kb to +2 kb relative to the transcription 

start site (TSS), and gene bodies from the +2 kb to the end of the gene annotation. Intergenic 

regions were DNA sequences outside of this range. Average signals around transcription start 

sites were plotted using deeptools [30]. Transcription factor motif enrichment analysis was 

performed using Homer (v 4.10.4) [31] on ATAC-seq unique regions with notable changes in 

H3K9ac signals and significant gene expression differentiation at the cutoff of false discovery 

rate (FDR) less than 0.05. 

 The alignment from RNA-seq, ChIP-seq, and ATAC-seq were converted to bigwig format 

to generate tracks for UCSC genome browser [25] using BEDTools [20] and 

bedGraphToBigWig [32].    
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Sequencing experiments for RNA-seq, ChIP-seq, and ATAC-seq, sequence alignment, 

RNA-seq and ChIP-seq data processing were carried out by the Center for Medical Genomics 

at Indiana University School of Medicine. Other bioinformatics analyses were performed by the 

Collaborative Core for Cancer Bioinformatics (C3B) shared by Indiana University Simon 

Comprehensive Cancer Center and Purdue University Center for Cancer Research. 

2.6. Primary mouse hepatocyte isolation and adenovirus transduction  

 Primary hepatocytes were isolated from C57BL/6J mice using a two-step collagenase 

procedure followed by Percoll gradient centrifugation to separate hepatocytes from non-

parenchymal cells, as previously described [33, 34]. Cell viability (>80%) was assessed by 

trypan blue staining exclusion. Cells were seeded at a density of 6x105 cells per well in 6-well 

plates, and incubated in a humidified 5% CO2 incubator at 37°C, in DMEM containing 5 mM 

glucose, 10% FBS and 100 IU/ml penicillin/100 µg/ml streptomycin, 1 nM dexamethasone. Cells 

were allowed to attach for 4 hours, and medium was then replaced with fresh medium. Primary 

hepatocytes were infected with an adenovirus expressing human SREBP-1c [34], rat 

glucokinase [35] or a control vector without expression cassette (Ad.Null) [35]. Cells were 

washed twice with PBS prior to harvesting. 

2.7. Western blotting 

 Cells were lysed in RIPA buffer (Thermo Scientific, Waltham, MA) containing protease 

and phosphatase inhibitors (Roche, Indianapolis, IN), as described previously [33, 34]. Protein 

concentration was determined by BCA protein assay (Thermo Scientific). Proteins were 

separated in SDS-polyacrylamide Criterion gels (Bio-Rad, Hercules, CA) and transferred to 0.2-

um polyvinylidene difluoride membranes (Bio-Rad). Primary antibodies were used in overnight 

incubations at 4°C, and secondary antibodies were added for 1 hour at room temperature. 

Antibodies were purchased from Cell Signaling Technology (Danvers, MA) [H2AK5ac (#2576); 

H2A (#2578); H2BK5ac (#2574); H2B (#8135); H3K9ac (#9649); H3 (#4499); H4K8ac (#2594); 



 

 10 

H4 (#2935)], Thermo Scientific [SREBP-1 (MS-1207)], and Santa Cruz Biotechnology (Dallas, 

TX) [glucokinase (sc-7908)]. Blots were developed with ECL Western Blotting Substrate (Pierce, 

Rockford, lL) and exposed to ECL film (GE Healthcare, Piscataway, NJ). Bands were quantified 

by densitometry using ImageJ v1.48s, and results were normalized to control protein, as 

specified in the figure legends. 

2.8. Statistical analysis 

 A P value of less than 0.05 was considered statistically significant. The Pearson 

correlation coefficient is shown for associations between high-throughput sequencing data sets. 

Data in Figure 1 are presented as the arithmetic mean ± standard deviation, and P values were 

calculated using unpaired two-tailed Student’s t-tests. Boxplot analysis was carried out with 

SPSS v.26. 
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3. Results 

3.1. Glycolysis flux influences global levels of histone acetylation at specific residues 

 Intermediates of cell metabolism are used as cofactors for histone-modifying enzymes to 

link metabolic information with transcriptional control of gene programs [4]. To investigate the 

connection between changes in glycolysis and histone acetylation, we overexpressed the first 

enzyme in the glycolysis pathway, glucokinase. Previous studies have shown that increasing 

glycolysis flux through glucokinase overexpression activates the entire glycolysis and 

lipogenesis program, including L-pyruvate kinase (Pklr), fatty acid synthase (Fasn), and 

stearoyl-CoA desaturase 1 (Scd1) [36]. Glucokinase expression in primary mouse hepatocytes 

was sufficient to increase acetylation of H3 at Lys9 (H3K9ac), while other histone lysine 

residues remained unchanged (Fig. 1A). Likewise, increased acetylation of H3K9 and H2BK5 

(but not of H2AK5 and H4K8), was observed in primary mouse hepatocytes overexpressing the 

transcription factor Sterol Regulatory Element Binding Protein 1c (SREBP1c) (Fig. 1B), a master 

regulator of the glycolysis and lipogenesis pathways in the fed state [37]. These data provide 

evidence that H3K9 acetylation is responsive to changes in signals originating from metabolic 

pathways. 

3.2. High-fat diet feeding induces changes in H3K9ac liver profiles  

We then questioned whether genome-wide H3K9ac liver profiles would be altered by 

diet. Mice were fed a high-fat (HFD, 60% kcal fat) or a control diet (CD, 18% kcal fat) for 10 

weeks. Sonicated chromatin from liver tissue was immunoprecipitated with an antibody to 

H3K9ac, and DNA was subjected to massive parallel sequencing. A total of 57,571 peaks were 

identified after filtering. Principal component analysis of peak density reads (signal) showed a 

high level of correlation among the three biological replicates of each group (Supplementary Fig. 

2). Given the connection between H3K9ac and gene activity [13-16], we first assessed whether 

RNAPII position correlates with H3K9ac peaks in CD liver. RNAPII ChIP-seq data identified a 
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total of 20,525 peaks in liver tissue. Of these, 4,312 peaks were located in the promoter-

proximal region (3,693 genes), and 15,009 peaks (5,368 genes) were in gene bodies. RNAPII 

peaks in promoter-proximal regions strongly correlated with H3K9ac peaks (73.2%), while in 

gene bodies this percentage was lower (36.2%) (Fig. 2A). Furthermore, the signals of H3K9ac 

peaks overlapping with RNAPII in the promoter-proximal region were stronger than those that 

were not associated with RNAPII (Fig. 2B). Thus, presence of RNAPII in the promoter-proximal 

region is associated with H3K9ac, in agreement with previous reports on the role of this histone 

mark in regulating transcription elongation and gene expression [13-16]. 

We then focused on differences between diets. A total of 1,383 H3K9ac peaks showed 

significantly different signals between diets (False Discovery Rate <0.05), of which 495 

increased and 888 decreased in the HFD relative to the CD group (Fig. 3A). Gene enrichment in 

molecular networks was evaluated with DAVID [38]. KEGG Pathway Analysis showed 

enrichment in categories relevant to the underlying pathology, including ‘metabolic pathways’, 

‘drug/xenobiotic metabolism-P450’, ‘glutathione metabolism’, and ‘circadian rhythms’ (Fig. 3B, 

3C). Several of these genes, including Igfbp1 (Insulin Like Growth Factor Binding Protein 1), 

Serpina12 (Serpin Family A Member 12), Clock (Circadian Locomotor Output Cycles Kaput), 

Rgs16 (Regulator of G-protein signaling 16), and Lpin1 (Lipin 1), have previously been 

associated with metabolic syndrome and NAFLD [39-43]. Furthermore, based on Gene 

Ontology, peaks with differential signals were located in genes within the functional categories 

‘transport’, ‘transcription from RNA pol II promoter’, ‘oxidation-reduction process’, and ‘lipid 

metabolic process’ (Supplementary Fig. 2). For instance, the ‘circadian rhythm’ and ‘negative 

regulation of transcription from RNAPII’ include key transcription factors or co-factors that 

regulate metabolism, including Foxp1, Zbtb16, Arntl, Clock, Per1/2 [44, 45]. Overall, H3K9ac 

peaks with significant signal differences in the HFD group were located in genes affecting 

metabolism of carbohydrates and lipids, and several of these genes were transcription factors or 

cofactors. 
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3.3. H3K9ac peaks are located in areas of open chromatin 

 H3K9ac peak distribution across the genome showed preference for promoter-proximal 

regions (~47%), followed by intronic (~33%) and distal intergenic regions (18%) (Fig. 4A). This 

distribution was expected, given that H3K9ac is associated with regions with regulatory function. 

Both groups displayed a similar distribution of peaks, which indicates that the high-fat diet does 

not induce massive changes in histone marks, only affecting specific loci.  

H3K9ac is associated with transcription activity, and peaks were expected to overlap 

with areas of open chromatin. To identify these areas, ATAC-seq was carried out in control diet-

fed livers. A total of 75,443 regions were identified (Fig. 4B and Supplementary Fig. 3). 

Approximately 20% of peaks were located in promoter-proximal regions, 41% in gene bodies, 

and 39% in intergenic areas. H3K9ac peaks whose centers fell on the promoter-proximal areas 

were strongly linked to open chromatin (r=0.64; p<1.0E-304) (Fig. 4C). H3K9ac peaks falling in 

non-promoter regions were also significantly associated with open chromatin, albeit the degree 

of correlation was lower (r=0.42; p<1.0E-304) (Fig. 4C).  

3.4. Changes in H3K9ac peaks are positively associated with changes in transcript levels 

 To investigate the relationship between H3K9ac signal and gene expression levels 

transcript abundance was determined by RNA-seq (polyA). A total of 12,334 genes were found 

expressed in liver, and the two groups showed distinct expression profiles (Supplementary Fig. 

4). Of all genes expressed, 87.1% (10,475 genes) had H3K9ac in their promoter-proximal 

regions. We found that 1,253 genes were differentially expressed (DE) between the HFD and 

the control diet (626 up, 627 down) (Fig. 5A), and changes in gene expression were linked to 

changes in H3K9ac signal (Fig. 5B), with a stronger association in promoter-proximal regions 

(r=0.38, p<1.0E-304) than gene bodies (r=0.27, p=1.2E-110).  

Remarkably, even though the large majority of DE genes had H3K9ac peaks in the 

promoter-proximal region (1,059 out of 1,253 genes, or 84.5%), only 218 DE genes (17.4%) had 



 

 14 

significant changes in H3K9ac signal in the promoter-proximal region (Fig. 6 and Fig. 7A, 

Supplementary Table 1). For these genes, there was a strong positive correlation between 

changes in mRNA and H3K9ac (r=0.83, p=7.8E-56) (Fig. 7B), implying that this histone 

modification has a role in regulating transcription. Histone acetylation marks on promoter-

proximal regions are predictive of RNA Polymerase II (RNAPII) recruitment and elongation [46, 

47]. H3K9ac has a characteristic bimodal distribution, with a peak upstream of the TSS, a 

second peak downstream from the TSS, and depletion on the TSS [15, 46, 48, 49]. To gather 

more specific information around the TSS, we generated footprints within 5 kb windows of the 

TSS. In liver, H3K9ac signal intensity showed a bimodal distribution, with a higher peak 

downstream from the TSS (Fig. 7C). No differences between diets were discernible when all 

H3K9ac peaks were considered (i.e., peaks with and without significant signal changes between 

diet groups; Fig. 7C, top). However, when considering only H3K9ac peaks with signal changes 

in the HFD relative to the CD group, a clear shift in signal intensity was observed downstream of 

the TSS (Fig. 7C, middle for increased signal and bottom for decreased signal), suggesting that 

this modification may be important for RNAPII transcription elongation decisions. Furthermore, 

H3K9ac peak centers of the 218 DE genes displayed a dense distribution close to the TSS, with 

a median of -193.5 and +435.5 nt, for upstream and downstream location, respectively (Fig. 

7D). About 82.1% of the H3K9ac peaks were located downstream from the TSS, while only 

17.9% were in the upstream region. 

3.5. Transcription factor binding motifs in open chromatin regions  

GO Term analysis clustered the subset of DE genes associated with H3K9ac signal 

changes in four main categories: circadian rhythms, oxidation-reduction, cholesterol 

biosynthesis, and cell proliferation (Fig. 8A). We sought to determine whether this subgroup of 

DE genes was enriched for specific transcription factor binding sites. Open chromatin regions 

were mostly enriched with binding motifs for retinoic acid-related orphan receptors (ROR, 
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ROR, ROR), and several members of the activator protein 1 (AP-1) family of transcription 

factors (FRA1, FRA2, FOS, ATF3). Binding sites for GATA factors, paired box (PAX), and 

Wilms Tumor (WT1), all of which have relevant roles to liver development and function, were 

also enriched (Fig. 8B). Consistent with these data, Ingenuity Pathway Analysis [50] predicted 

that FOS, ROR, ROR, and ATF3 are Upstream Regulators driving expression of genes 

represented in these categories (Fig. 8C). 
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4. Discussion  

 Aberrant transcriptional control of gene expression is central to the pathophysiology of 

metabolic diseases. Hundreds of genes become dysregulated and their gene products are 

abnormally expressed, leading to cellular dysfunction. Ongoing studies are providing evidence 

that epigenetic changes contribute to metabolic disease development, and histone modifications 

are at the center stage, bringing specific factors to chromatin, modifying chromatin dynamics, 

and influencing RNAPII activity as well as overall transcriptional output. Nevertheless, the 

specific histone modifications that play a role, as well as the molecular mechanisms that 

connect these modifications with fluctuations on gene expression, are not well understood [4, 5]. 

Acetylation of histone 3 at lysine 9 (H3K9ac) is a mark of gene activity, and it has been shown 

to be tightly involved in modifying gene expression to regulate the cell cycle, proliferation, as 

well as apoptosis [51-53]. Furthermore, the imbalance of H3K9 acetylation and deacetylation is 

a contributor of liver tumorigenesis, and increases the risk of colorectal cancer due to aging [54-

56]. Thus, changes in this histone modification may shed information on novel pathways linking 

transcription control with metabolic dysfunction.  

 Given the role of glycolysis in providing acetyl-CoA that is used as substrate for histone 

acetylation, as well as in regulating lysine acetylase/deacetylase activity [6-12], we questioned 

whether increasing this pathway would influence global levels of histone H3K9 acetylation. We 

provide proof that increasing glycolysis flux either by overexpression of glucokinase or SREBP-

1, induces acetylation of H3K9. These data support the concept that metabolites serve as 

signals to connect metabolic status with transcription activity. Concurring with these data, we 

identified hundreds of loci with H3K9ac changes in a mouse model of diet-induced obesity and 

insulin resistance. KEGG and Gene Ontology analysis showed that peaks were located in 

genes relevant to the pathophysiology induced by a high fat diet, primarily with a role in 

metabolism.  
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 In agreement with its known role in regulating transcription, most H3K9ac peaks (>46%) 

were located in the promoter-proximal region. RNAPII located in this area strongly correlated 

with H3K9ac (>70% of peaks overlapping with H3K9ac), consistent with a role of H3K9ac in the 

regulation of transcription. Nonetheless, a significant fraction (~33%) of H3K9ac peaks were 

located in gene bodies. RNAPII overlapped to a lesser extent with intragenic H3K9ac. These 

data suggest that H3K9ac intragenic peaks may have factor-recruitment function, in addition to 

influence transcription of gene-embedded miRNA, or enhancer RNA levels (a measure of the 

activity of enhancer elements), which altogether have an impact on gene expression. In fact, 

recent studies in rodents have shown diet-induced alterations in H3K4me1, a histone mark 

linked to enhancer activity [57]. Regardless of their location in the genome, and consistent with 

a regulatory function, H3K9ac peaks overlapped with regions of open chromatin. Furthermore, 

promoter-proximal H3K9ac peaks were more strongly correlated with gene expression than 

those located in the gene body, in agreement with the link between this histone modification and 

transcription activity.  

 The RNAPII transcription cycle includes pre-initiation complex formation and initiation, 

elongation, and termination. RNAPII is recruited to promoters and initiates transcription, stalling 

after having transcribed approximately 20–60 nucleotides. RNAPII pausing limits the frequency 

of transcription initiation, a mechanism that has been termed ‘pause-initiation limit’ [58]. Recent 

data have shown that the mRNA level of genes does not necessarily correlate with the rate of 

RNAPII recruitment to the promoter, but instead, is a function of the rate of RNAPII elongation 

and degradation [59-61]. The transition from initiation to elongation is a rate-limiting step, 

requiring specific signals to release RNAPII from its paused state and engage in transcription 

elongation by recruitment and activation of the Super Elongation Complex (SEC). Acetylation of 

H3K9 is necessary for recruitment of the SEC to phosphorylate and activate RNAPII, and for the 

transition from transcription pause-release to transcript elongation [16]. Previous studies have 

shown that only a fraction of genes responding to environmental cues, do so by regulating 
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transcription elongation via H3K9ac and RNAPII pause-release [16, 17]. Furthermore, variances 

of acetylation marks located downstream of the TSS are more important for RNAPII elongation 

and mRNA prediction than those upstream [47]. Of all differentially expressed genes of our 

study, only ~17% have changes in H3K9ac signal in the promoter-proximal region, and 

approximately 80% of these H3K9ac peaks were located downstream from the TSS. Thus, in 

response to a high-fat diet, it is likely that changes in expression of a fraction of genes occurs by 

controlling the rate of elongation through H3K9ac and RNAPII pause-release.   

Gene Ontology analysis showed that this group of genes is involved in circadian rhythm 

regulation, oxidation-reduction reactions, cholesterol transport and biosynthesis, and cellular 

proliferation. Not surprisingly, motif analysis in the promoter-proximal region showed strong 

binding site enrichment for retinoic acid-related orphan receptors (ROR), central regulators of 

inflammation, circadian rhythms and metabolism homeostasis [62, 63]. RORs directly regulate 

the circadian clock gene Bmal1 [64], which in turn, controls expression of downstream targets in 

part through histone acetylation. In fact, CLOCK has intrinsic acetylase activity and has been 

reported to acetylate histone H3 at lysines 9 and 14, while its partner BMAL1, enhances the 

histone acetyl transferase activity [65]. Binding site enrichment also included the AP-1 (activator 

protein 1) family of transcription factors (including FRA1, FRA2, FOS, and ATF3), crucial 

regulators of inflammation in liver [66, 67], hepatic detoxification (in particular through 

glutathione S-transferases [68]), lipid metabolism [69], and cellular proliferation [70]. The overall 

level of expression of the 218 genes identified in the present study is likely to be the result of a 

combination of changes in transcription factor recruitment to the promoter and transcript 

initiation, as well as H3K9ac-mediated regulation of transcription elongation, and future studies 

will be necessary to assess the contribution of either mechanism to dysregulation of gene 

expression.  

 It should be noted that the changes in gene expression in the HFD group are likely to be 

triggered by the combination of high fat (60% kcal), sucrose (7% kcal) and cholesterol (from lard 
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and casein), all of which are macronutrients present in the diet. The two diets used in this study 

were not matched, and therefore, some changes in gene expression could also be due to 

differences such as fiber content, or phytoestrogens from plant sources present in the chow diet 

and absent in the purified high-fat diet. Yet, the majority of gene expression changes in the HFD 

group affected metabolic pathways that could be predicted based on the macronutrient content 

of the diet.  

 Recent studies analyzing transcriptome profiles in NAFLD/NASH patients and control 

individuals have identified transcriptional alterations in functional categories such as insulin 

signaling, fatty acid and cholesterol metabolism, bile metabolism, and inflammatory signaling 

[71-74]. These pathways were also significantly affected in the liver of mice fed a HFD in our 

study. Although no mouse model recapitulates exactly the human condition, and there are 

differences between the mouse and the human NAFLD transcriptome [75, 76], the metabolic 

pathways affected are similar, and it is likely that the molecular mechanisms that regulate them 

are conserved. Thus, future H3K9ac analyses in samples from NAFLD patients will indicate 

whether parallel observations to those seen in mice take place in human liver. 

In conclusion, our data suggest that H3K9ac is strongly linked to changes in gene 

expression of a fraction of genes that are differentially expressed by exposure to a HFD. Given 

that the majority of H3K9ac peaks are located downstream from the TSS, this group of genes 

may be regulated by a common mechanism of control at the transcription elongation step. 

Future studies will be necessary to identify the specific mechanism/s, which are likely to involve 

RNAPII stalling/elongation.  
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Figure legends 

Figure 1. Increasing glycolysis flux enhances H3K9 acetylation in primary mouse 

hepatocytes. (A) Primary hepatocytes were transduced with an adenoviral vector expressing 

glucokinase (Ad.GK) or with a control vector without expression cassette (Ad.Null) at MOI 30, 

and harvested 36 hours later. Increased H3K9ac, but not other histone lysines, was observed; 

(B) Primary hepatocytes were transduced with an adenovirus expressing the mature (nuclear) 

form of SREBP1c (Ad.SR1) or Ad.Null at MOI 3, and harvested 72 hours later. Global levels of 

H3K9ac and H2BK5ac increased. *p<0.05, n=3. 

 

Figure 2. RNAPII peaks correlate with H3K9ac in liver. (A) RNAPII [24] and H3K9ac ChIP-

seq data in the CD group were combined. The overlapping region in the Venn diagram 

represents the number of peaks in RNAPII data set overlapping with H3K9ac in the CD group. 

Of all RNAPII peaks located in the promoter-proximal region, 73.2% overlapped with H3K9ac 

peaks, while 36.2% of RNAPII located in gene bodies correlated with H3K9ac peaks; (B) Signal 

distribution among H3K9ac peaks overlapping versus not overlapping with RNAPII. 

 

Figure 3. Enriched pathway terms for H3K9ac peaks with differential signal between high-

fat and control diet-fed. (A) Percentage of H3K9ac peaks with and without significant changes 

between diets; (B) KEGG pathway analysis of differentially bound H3K9ac peaks, FDR<0.05 

(n=3); (C) Selected examples of genes enriched in KEGG categories; C: control diet, HF: high-

fat diet. 

 

Figure 4. H3K9ac peaks overlap with open chromatin regions. (A) H3K9ac distribution of all 

identified peaks in the CD and HFD groups; (B) ATAC-seq was carried out using two biological 

replicates from the control diet group. Distribution of open regions across the genome; (C) 

Strong correlation between open chromatin regions and H3K9ac peaks in promoter-proximal 
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areas (-3 kb to +2kb from TSS), and non-promoter regions (gene bodies and intergenic 

regions). 

 

Figure 5. Correlation between mRNA and H3K9ac data sets. (A) Differential expression (DE) 

between CD and HFD groups based on RNA-seq data (n=4), FDR<0.05; (B) Changes in gene 

expression are moderately associated with changes in H3K9ac signal in promoter-proximal 

regions and gene bodies. 

 

Figure 6. Gene expression, H3K9ac, and chromatin accessibility. Genome browser tracks 

displaying changes in gene expression (top) and H3K9ac (middle) in HFD vs CD groups. Open 

chromatin areas (ATAC-seq) are shown at the bottom. Promoter-proximal regions are 

highlighted in yellow. (A) Npas2 (Neuronal PAS Domain Protein 2). The changes in H3K9ac 

signal did not affect the neighboring gene Rpl31, indicating that the changes in H3K9ac induced 

by a high-fat diet affected only select loci; (B) Per3 (Period Circadian Clock 3).  

 

Figure 7. H3K9ac peak signal distribution around the TSS. (A) Venn diagram showing 

overlap of peaks in the promoter-proximal region with DE genes; (B) Correlation between 

differentially expressed genes and differential H3K9ac signal in the promoter-proximal region 

(DE and H3K9ac signal changes at FDR<0.05); (C) Top: Overall peak distribution for CD and 

HFD; Middle: Genes with higher H3K9ac in the high-fat diet group; Bottom: Genes with lower 

H3K9ac in the high-fat diet group; (D) Boxplot of H3K9ac distribution upstream and downstream 

from the TSS for H3K9ac peaks associated with DE genes.  

 

Figure 8. Transcription factor motif enrichment in promoter-proximal regions. (A) GO 

Terms (p<0.01) of DE genes with H3K9ac peaks with significantly different signal between the 

HFD and CD groups; as a reference p=0.05 is shown; (B) Transcription factor motifs enriched in 
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the promoter regions of DE genes that also had H3K9ac peaks with significantly different signal 

between the HFD and CD groups, and which overlapped with regions of open chromatin; q-

value (Benjamini) <0.05; (C) Genes targeted by Upstream Regulators (IPA analysis).   
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Highlights 
 Mechanisms leading to gene dysregulation in fatty liver disease are not understood 

 Histone H3K9 acetylation overlaps with presence of RNA polymerase II in the liver 

 In high-fat diet feeding, changes in gene expression are linked to H3K9 acetylation  

 Dysregulated gene expression may be attributable to transcription elongation 


