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ABSTRACT

Ayi, Maneesh. M.S.E.C.E., Purdue University, May 2020. RMNv2: Reduced Mo-
bilenet V2 – An Efficient Lightweight Model for Hardware Deployment. Major
Professor: Mohamed El-Sharkawy.

Humans can visually see things and can differentiate objects easily but for com-

puters, it is not that easy. Computer Vision is an interdisciplinary field that allows

computers to comprehend, from digital videos and images, and differentiate objects.

With the Introduction to CNNs/DNNs, computer vision is tremendously used in ap-

plications like ADAS, robotics and autonomous systems, etc. This thesis aims to

propose an architecture, RMNv2, that is well suited for computer vision applications

such as ADAS, etc.

RMNv2 is inspired by its original architecture Mobilenet V2. It is a modified

version of Mobilenet V2. It includes changes like disabling downsample layers, Het-

erogeneous kernel-based convolutions, mish activation, and auto augmentation. The

proposed model is trained from scratch in the CIFAR10 dataset and produced an

accuracy of 92.4% with a total number of parameters of 1.06M. The results indicate

that the proposed model has a model size of 4.3MB which is like a 52.2% decrease

from its original implementation. Due to its less size and competitive accuracy the

proposed model can be easily deployed in resource-constrained devices like mobile

and embedded devices for applications like ADAS etc. Further, the proposed model

is also implemented in real-time embedded devices like NXP Bluebox 2.0 and NXP

i.MX RT1060 for image classification tasks.
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1. INTRODUCTION

1.1 Context

AI is a rapidly evolving branch of computer science. The main aim is to make

machines react and work like humans. This term is coined as “Perception” in humans.

It seems to be a simple term for humans but machines, it is not. CV is a core part of AI

that trains machines to identify and differentiate objects. CV has many applications

like ADAS, robotics, autonomous systems, etc. DL algorithms make it possible to

achieve the task for the machine to differentiate objects. In ADAS, image, and video

based ADAS is well known because they use CNN and DNN algorithms for their

applications. These applications include object detection, sign classification, lane

detection, vehicle movement, steering control.

1.2 Motivation

Deploying DL algorithms in embedded and mobile devices is a little difficult. This

may be due to various reasons. It may be due to the large model size of an algo-

rithm, limited computational capacity of the target device, limited power supply, low

memory available on the target device, etc. This motivated this thesis to propose

an optimized model that is suitable to deploy on an embedded platform like NXP

Bluebox 2.0 and NXP i.MX RT1060. Furthermore, this thesis serves as an moti-

vation to perform real-time applications like object recognition, object tracking etc.

in various fields like automotive industry, medical field, robotics and other industry

applications.
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1.3 Challenges

• Rapid training and testing of DNNs

• Requires small model with competitive accuracy

• Able to perform inference on Embedded devices

1.4 Methodology

• Architectural changes

• Implementing heterogeneous kernels

• Changing from ReLU6 to Mish activation

• Autoaugmentation

• Training from scratch on the CIFAR10 dataset

• Implementing on NXP Bluebox 2.0

• Implementing on NXP i.MX RT1060

1.5 Contributions

• Proposed a compact model

• Achieved better model size than baseline

• Implemented on NXP Bluebox 2.0

• Implemented on NXP i.MX RT1060

• Two research papers
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2. BACKGROUND

In this chapter, the basic concepts of CNN is discussed. Along with previous works

that are related to the proposed work is discussed. Also, the baseline network, Mo-

bilenet V2, is also explained.

2.1 Convolution Neural Networks

CNN is an important concept in the field of computer vision. It is a deep learning

algorithm that takes an input image and be able to differentiate one from another.

It has different applications like Image classification, object recognition, etc.

Fig. 2.1. Image Classification Example

Fig 2.1 shows an Image classification example. Input is an image and the clas-

sifier output predicts and classifies the output. A CNN network is a combination

of Input layers, hidden layers, and output layers. Hidden layers consist of series of
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convolutional layers with activation function. Subsequently followed by additional

layers such as pooling, fully connected and normalization layers.

2.2 Input Image

It is a matrix consisting of pixel values. With the utilization of filters, the network

can learn spatial data from these images.

Fig. 2.2. Input Image

The Input image can be a grayscale image, RGB, HSV, CMYK. The role of CNN

is use to reduce the size of the image without losing any important data from it.
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2.3 Convolution Layer

Convolution layer is to extract high level features from the Input Image. These

high level features include edge extraction, color gradient, etc. The element that is

used to operate convolution is called Kernel.

Fig. 2.3. Convolution Operation

The filter can be 7 × 7, 3 × 3, 1 × 1. The kernel will have same depth as of input

image. These CNN layers need not to be limited with a single layer. It can be

expanded to learn more high level features. It also includes topics like strides and

padding to perform convolution operation.
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2.4 Pooling

Pooling layer is to reduce the dimension of an input image. So that the com-

putational capacity is reduced to process the data. In some context, it is similar

to Convolution layer to reduce the size of Input image. It is also used to extract

dominant features from an Input image.

Fig. 2.4. Different Pooling Methods

There are two types of pooling. One is max pooling and the other is average

pooling. max pooling takes the maximum value from the pixels. It is used to reduce

the noise from an image. The average pooling takes the average value from the input

pixels. when compared to maximum pooling average pooling performs better.
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2.5 Nonlinearity

It is an important concept in CNN. Most of the data in real-time applications

is non linear data. This non linearity is applied with convolution so that the model

can learn better when the data is non linear. This non linearity can be introduced

through some functions called activation functions. There are many activation func-

tions available. ReLU is the most common activation function used in architectures.

Fig. 2.5. Different Activation Functions

2.6 FC layer

In FC layer, each neuron from one layer is connected to other neuron from another

layer. It is trying to learn the high-level features output given by the convolution

layer. It is basically a non linear function. Over a number of epochs, the classifier is

correctly able to distinguish between different classes of an image. This learned image

is classified using a layer called Softmax layer. The number of nodes in this Softmax

function is equal to number of classes of trained dataset. For example, ImageNet

dataset consists of 1000 classes so the number of nodes is equal to 1000.
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Fig. 2.6. Fully Connected Layer

2.7 Related Research

CNN is first introduced in Alexnet[6]. It won the Imagenet Challenge[7] in the

year 2012. There after several other CNN’s are introduced. Some of the networks like

VGG[11], Inception[15][16] are much bigger in both size and accuracy. In order to

implement these computer vision algorithms in resource-constrained devices like em-

bedded and mobile devices is very difficult. So, there is a need to develop algorithms

that are suitable to deploy in embedded hardware. Continuous research on this field

gave two ideas to develop small models. One concept is to compress the large model

or designing a small model from scratch. Compressing a pre-trained models includes

concepts like Quantization[8], hashing[9], Pruning, vector quantization and Huffman

Encoding[10], knowledge distillation[12], Low rank expansions[13], and Fine tuned

cp-decomposition[14] etc. Developing a small model from scratch includes networks

like SqueezeNet[17] and SqueezeNext[18]. These networks didn’t concentrate much

on speed. The lightweight models Mobilenet V1[1] and Mobilenet V2[2] are intro-
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duced. They not only focus on model size but also focus on model speed. Networks

like [19][20][21] are developed using different convolutions and model structure. [22]

shows some applications that are related to NXP Bluebox 2.0.

2.8 Baseline architecture - Mobilenet V2

It is a state of art lightweight model that performs better than Mobilenet V1

model. It introduces a new module called Inverted residuals and linear bottlenecks.

2.8.1 Layers in Mobilenet V2

Fig. 2.7. Layers in Mobilenet V2
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• Depthwise Convolutions: It performs lightweight filtering by applying a

single convolutional filter per input channel.

• Pointwise Convolutions: It is responsible in computing new features through

linear combination of input channels.

• ReLU6: It is used because of its robustness when computing with low precision.

The top layer is a 1 × 1 convolution layer with Relu6. The second layer is the

depthwise convolution layer with Relu6. The third layer is a 1×1 convolution without

Relu6. If it is used again then that layer has capacity of linear classifier on non-zero

volume part. Fig. 2.7 shows the inverted residual block to the left and the linear

bottlenecks block to the right.

2.8.2 Results of Mobilenet V2

Mobilenet V2 is trained and tested from scratch on the ImageNet dataset. It

outperforms other architectures like Mobilenet V1, etc. Also, results show the impact

of bottlenecks and shortcut connections between the blocks.

Fig. 2.8. ImageNet Accuracy Mobilenet V2



11

Fig. 2.9 shows that removal of Relu6 from last layer makes the model perform

better than keeping Relu6 in the last layer.

Fig. 2.9. Impact of Bottlenecks

Fig. 2.10 shows that shortcut between bottlenecks perform better than shortcut

between expansion.

Fig. 2.10. Impact of Shortcut
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From Fig. 2.11, Mobilenet V2 performs better Mobilenet V1 and ShuffleNet (1.5)

with comparable model size and computational cost. Keeping width multiplier of

1.4, Mobilenet V2 (1.4) performs better than ShuffleNet (2), and NASNet with faster

inference time.

Fig. 2.11. Impact of Shortcut
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3. HARDWARE AND SOFTWARE

This chapter explains about the hardware and software frameworks used in this thesis.

3.1 Hardware Used

• Intel i7-8700 processor with 32GB ram

• Nvidia GeForce GTX 1080Ti

• NXP Bluebox 2.0

• NXP i.MX RT1060

3.2 NXP Bluebox 2.0

Fig. 3.1. NXP Bluebox 2.0
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NXP Bluebox 2.0 is a development platform that provides reliable functionality

and performance of autonomous vehicles. It is developed by NXP Semiconductors.

It consists of two processors and a microcontroller. They are,

• S32V234: Vision processor for machine learning and sensor fusion

• LS2084: Embedded Computer Processor

• S32R27: S32R Radar microcontroller. S32R27 Automotive and industrial

radar applications

Fig. 3.2. Building Blocks of NXP Bluebox 2.0

From Fig. 3.2, NXP Bluebox 2.0 consists of comprehensive set of building blocks

that helps in robust development and deployment of autonomous applications such

as ADAS, robotics, etc.
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Fig. 3.3. Working Principle of NXP Bluebox 2.0

Fig. 3.3 depicts the working principle of NXP Bluebox 2.0. It works on the

concept of sense, think and act. Let’s see how these three terms define the working

of NXP Bluebox 2.0.

Sense: Data received from sensors like cameras and radars can be an image or

a video stream. This data can be used in various ADAS applications like pedestrian

detection, lane detection, steering control, etc. These data from Radar, vision, and

lidar is supported by the vision processor, S32V234, available on NXP Bluebox 2.0.

Think: In this phase, the captured Vision data from S32V234 is sent to the

LS2084A processor for analysis of data captured. This LS2084A is the embedded

processor that is available in NXP Bluebox 2.0.

Act: After analysing and processing the data in LS2084A. The embedded pro-

cessor, LS2084A, selects the best course of action for safe and reliable movement of

vehicles.

To summarize, the data gathered from various sensors like camera, radar and

lidar etc. is processed using bluebox processor. The vehicle acts according to the

instruction given from the bluebox processor.
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3.2.1 Specifications

• ASIL-B compute, vision accelerated automotive interfaces.

• ASIL-D subsystem, with dedicated interfaces.

• Automotive I/O, various interfaces.

• 12 V /24 V compatible input power for vehicle.

• 16 GB DDR4 and 256 GB SSD High performance compute.

• Ethernet 100M/1G/10Gbps, SFP+, 8 x 100BASE-T1, CAN-FD, FlexRayTM, 8

x cameras.

• Up to 90,000 DMIPS at lesser than 40 W, complete situational assessment,

supporting classification.

3.2.2 S32V234 Vision Processor

Fig. 3.4. S32V234 Block Diagram
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The S32V234 MPU consists of an Image signal processor (ISP), powerful 3D

Graphic Processor Unit (GPU), dual APEX-2 vision accelerators, automotive grade

reliability, functional safety for supporting ADAS, machine learning, industrial image

processing and sensor fusion applications. It is a second generation vision processor

family and a member of 32 bit Arm Cortex-A53 S32V processors. Image and video

based processor that can support applications related to Computer vision and other

Image, video based applications computationally.

3.2.3 LS2084A Embedded Vision Processor

The LS2 processor is high-performance computing processor platform that is avail-

able on NXP Bluebox 2.0. The block diagram representation is shown in Fig. 3.5.

It consists of SD card interface that is suitable for processor to run in Linux BSP,

UBUNTU 16.04 LTS on NXP Bluebox 2.0 platform.

Fig. 3.5. LS2084A Block Diagram
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3.3 NXP i.MX RT1060

The i.MX RT 1060 is the first crossover MCU by NXP. When compared to i.MX

RT1050, it doubles the on-chip SRAM to 1MB. The Pin-to-pin compatibility is the

same for i.MX RT1050 and i.MX RT1060. High-speed GPIO, CAN-FD, and syn-

chronous parallel NAND/NOR/PSRAM controller are the new additions to this board

that supports real-time applications. The i.MX RT1060 runs on the Arm Cortex-M7

core at 600 MHz.

Fig. 3.6. i.MX RT1060

3.3.1 Specifications

• Highest performing Arm Cortex-M7

• 3020 CoreMark/1284 DMIPS @ 600 MHz

• Low latency

• Advance multimedia for GUI

• Wireless communication interface like Bluetooth, BLE
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3.4 Software Used

• Python Version 3.6.7

• Spyder Version 3.6

• Pytorch Version 1.0

• Livelossplot (loss and accuracy visualization)

• Keras 2.1.3

• Tensorflow-GPU 1.10

• RTMaps by Intempora

• MCU Xpresso SDK

• Teraterm

3.5 Real-Time Multi Sensor Applications (RTMaps)

RTMaps is an easy-to-use framework for fast and robust developments. It is a

non concurrent high performance platform designed to face and win multisensor chal-

lenges. It allow engineers and researchers to exploit an efficient framework for multi

applications. It is a secluded toolbox for multimodal applications. These applications

includes ADAS, autonomous vehicles, robotics, UAV’s, etc. It gathers information

from various sensors like camera stream, radar, Lidar, etc. and can be easily devel-

oped, tested and deployed in embedded hardware like NXP Bluebox 2.0.

RTMaps consists of several components like RTMaps Runtime Engine, RTMaps

Component library, RTMaps Studio, and RTMaps embedded.

RTMaps Runtime Engine: It is a core part of RTMaps applications. All

the base services, component registration, connections, buffer management, times-

tamping, etc will be taken care by RTMaps runtime engine. It is lightweight, highly

optimized and easily deployable.
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Fig. 3.7. Platforms that are Currently Supported by RTMaps

RTMaps Component library: It consists of all software packages and modules

like python, C++, etc. that are responsible in developing applications. They provide

a better GUI to develop applications very easily.

RTMaps Studio: It is a graphical modelling environment with the functionality

to use RTMaps Components. This module helps in developing applications. It is

supported in windows and Ubuntu based platforms.

RTMaps Embedded: It is a framework that consists of runtime engine, com-

ponent library that is suitable to run on x86 or ARM devices such as NXP Bluebox

2.0. The version used for deploying algorithms in NXP Bluebox 2.0 is v4.5.3. The

connection between host PC and NXP Bluebox 2.0 is TCP/IP connection.

3.6 MCUXpresso

It is a software development kit designed by NXP semiconductors. The MCUX-

presso SDK is designed to understand and fasten the development process in with

i.MX RT crossover MCUs based on ARM Cortex-M cores. It consists production-
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Fig. 3.8. RTMaps Deploy in BLBX 2.0

grade software along with integrated RTOS. It also supports example projects for

IAR, KEIL, GCC, and Cmake. It supports i.MX RT1060 crossover MCU.
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Fig. 3.9. Block Diagram of MCUXpresso

3.7 Frameworks for DNNs

There are many deep learning frameworks like TensorFlow, Pytorch, etc. It is

difficult to say which framework is better than others. In this section, let us see

mostly used frameworks in Deep Neural Networks.

3.7.1 TensorFlow

It is developed by Google. It is the most popular framework till date. TF considers

incredible processing clusters and the ability to run models on mobile platforms like

iOS and Android. It operates with static computation graph. It comes with some

extra features like TensorBoard for visualization of network architecture data and

performance metrics.
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Fig. 3.10. Different Frameworks in DNNs

3.7.2 Keras

Keras is one of most user friendly framework. It is the most minimalist approach

to frameworks like TensorFlow and Theano. It can be used as a high level API over

lower level libraries like TensorFlow. It is ideal for prototyping simple concepts.

3.7.3 Pytorch

It is one of the most popular framework that is used after TensorFlow. Unlike

TensorFlow, Pytorch uses dynamically updated graph. It supports wide range of

libraries that support deep learning models. It has some standard debuggers like pdb

or Pycharm. It supports data parallelism. It also contains many pre-trained models.
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3.8 LiveLossPlot

LiveLossPlot is a data visualization library used in Python. It is used to plot

performance metrics of a neural network model. It is used in plotting loss graphs and

accuracy graphs of a CNN/DNN model. It helps us to track the training process for

each epoch. This library has been used in this thesis to plot and visualize the results.
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4. PROPOSED ARCHITECTURE: REDUCED

MOBILENET V2

The proposed architecture Reduced Mobilenet V2 is inspired by the baseline Mo-

bilenet V2 model. It can be expressed as an architecturally modified version of

the Mobilenet V2 model. It includes modifications like disabling downsample lay-

ers, Heterogeneous kernel-based convolutions, mish activation function, and autoaug-

mentation. The first two changes, disabling downsample layers and Heterogeneous

kernel-based convolutions, helped RMNv2 in decreasing the model size. The next two

changes, mish activation function and autoaugmentation, helps RMNv2 in increas-

ing the model accuracy. These changes altogether constitute the proposed model,

RMNv2. This chapter explains about these individual changes in specific and give a

clear picture and intuition for these changes.

• Disabling downsampling layers

• Replacing bottlenecks with HetConv blocks

• Mish Activation function

• Autoaugmentation

This chapter is organized in the above order. It starts with explaining the sec-

tion disabling downsampling layers followed by replacing bottlenecks with HetConv[3]

blocks section. Then, followed by Mish activation[4] function and finally with au-

toaugmentation[5].

4.1 Disabling Downsample Layers

The first change for the proposed model, RMNv2, is disabling downsample layers.

The main intuition for this change is described as follows,
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Table 4.1.
Mobilenet V2 Baseline Architecture Representation

Input operator t c n s

2242 × 3 Conv2D - 32 1 2

1122 × 32 Bottleneck 1 16 1 1

1122 × 16 Bottleneck 6 24 2 2

562 × 24 Bottleneck 6 32 3 2

282 × 32 Bottleneck 6 64 4 2

142 × 64 Bottleneck 6 96 3 1

142 × 96 Bottleneck 6 160 3 2

72 × 160 Bottleneck 6 320 1 1

72 × 320 Conv2D - 1280 1 1

72 × 1280 AvgPool - - 1 -

12 × 1280 Conv2D - k -

The Table 4.1 represents the architectural representation of baseline Mobilenet

V2 model. The baseline Mobilenet V2 is designed for the ImageNet dataset. The

ImageNet dataset consists of 1000 classes. The input image of this dataset has a

resolution of 224 × 224 × 3. In CIFAR10, the input resolution of an input image is

32× 32× 3. To make it compatible with the CIFAR10 dataset, this change has been

implemented to disable downsampling layers. This change can be implemented by

simply changing the strides from 2 to 1.

The Table 4.2 shows the first change in RMNv2 architecture. The boxed numbers

represented in strides section of the Table 4.2 denotes the changes made to existing

baseline Mobilenet V2 model. The mathematical analysis for this change is explained

in the following subsection.
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Table 4.2.
First Change: Strides Change from 2 to 1

Input operator t c n s

2242 × 3 Conv2D - 32 1 1

1122 × 32 Bottleneck 1 16 1 1

1122 × 16 Bottleneck 6 24 2 1

562 × 24 Bottleneck 6 32 3 1

282 × 32 Bottleneck 6 64 4 2

142 × 64 Bottleneck 6 96 3 1

142 × 96 Bottleneck 6 160 3 2

72 × 160 Bottleneck 6 320 1 1

72 × 320 Conv2D - 1280 1 1

72 × 1280 AvgPool - - 1 -

12 × 1280 Conv2D - k -

4.1.1 Mathematical Analysis for Changing Strides from 2 to 1

Consider an input image with spatial height and width, Ai × Ai. Let Ci be the

total number of input channels. Then, the input feature map is given by Ai×Ai×Ci.

Similarly, consider the output image with spatial height and width, Ao × Ao. Let

Co be the total number of output channels. where k is the kernel size. The total

computational cost is given by, Cost = Ao×Ao×Ci×Co×k×k. The computational

cost depends upon the resolution of Input Image applied. For the CIFAR10 dataset

the input image is very less when compared to ImageNet dataset. Strides try to

decrease the resolution of image applied using convolutions. So, reducing strides from

2 to 1 helps model in learning essential features without loosing much information.
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4.2 Replacing Bottlenecks with HetConv Blocks

The second modification is to replace Bottlenecks used in Mobilenet V2 with

HetConv blocks.

Fig. 4.1. RMNv2 Architectural Representation using Flowchart

The above Fig. 4.1 shows the architectural representation of RMNv2 architecture

after replacing bottlenecks with HetConv blocks. In general, most of the networks



29

use homogeneous kernels of sizes 1 × 1, 3 × 3, 5 × 5, 7 × 7, etc. Mathematically,

these kernels can be further optimized and can help a model in reducing the number

of FLOPs. The name itself suggests that heterogeneous kernels mean kernels with

varying sizes. These can be a combination of two or more kernel sizes. Implementing

this type of kernels applies to all convolutions such as depthwise convolutions, grouped

convolutions, etc. In heterogeneous kernels, out of all the convolutions, part ‘P’ will

be of size k× k and the remaining kernels will be of size 1× 1. Some of the examples

of HetConv is shown in Fig. 4.2.

Fig. 4.2. Example of HetConv with Kernel Size 3 × 3 and P= 2,4

4.2.1 Mathematical Analysis of HetConv Blocks

Let us consider input image spatial height and width be Ai × Ai. Let M be the

total number of input channels. So, the input feature map is given by,

Ai × Ai ×M (4.1)
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Let us consider the output image spatial height and width be Ao × Ao. Let N be

the total number of output channels. So, the output feature map is given by,

Ao × Ao ×N (4.2)

In Standard convolution filter, the total computational cost will be,

Ao × Ao ×M ×N × k × k (4.3)

It is clear that the computational cost depends upon kernel size. By carefully

designing the kernel size computational cost can be further reduced.

In HetConv, parameter ’P’ is set such that part of 1/P out of total kernels will

be of size k × k and the remaining (1-1/P) will be of 1 × 1 kernels.

The computational cost of k × k size kernels for fraction P is given by,

(Ao × Ao ×M ×N × k × k)/P (4.4)

It reduces cost by factor M/P. For 1 × 1 kernel, the computational cost will be,

Ao × Ao ×N × (M −M/P ) (4.5)

The total computational cost of the system is summation of individual computa-

tional costs for k × k kernel and 1 × 1 kernel. Then, total reduction of parameters is

given by,

Reduction = 1/P + (1 − 1/P )/k2 (4.6)

If P=1 substituted in the above equation, then it is a standard filter.

4.2.2 For Depthwise and Pointwise Convolutions

For Depthwise and Pointwise Convolutions, the computational cost is given by,
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Ao × Ao ×M × k × k + M ×N × Ao × Ao (4.7)

When compared to standard convolution, the total number of reduction is given

by,

Reduction = 1/N + 1/k2 (4.8)

4.2.3 For Groupwise Followed by Pointwise Convolutions

For Groupwise Convolutions followed by Pointwise Convolutions, the total com-

putational cost is given by,

(Ao × Ao ×M ×N × k × k)/G + M ×N × Ao × Ao (4.9)

Where G is number of groups. The total reduction when compared to standard

convolution is given by,

Reduction = 1/G + 1/k2 (4.10)

This analysis show that, model parameters can be further reduced by optimiz-

ing the parameter k carefully. For this reason, the proposed architecture, RMNv2,

replaced bottlenecks with HetConv blocks.

4.3 Mish Activation Function

The mish activation function can be seen in the below diagram,

Mathematically, Mish is defined as,

f(x) = x.tanh(ln(1 + ex)) (4.11)

Nonlinearities help a neural network to increase performance. It plays a crucial

role in getting better accuracy for the model. This nonlinearity is introduced to
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Fig. 4.3. Mish Activation Function

the neural network through an activation function. Some of the commonly used

activation functions include ReLU, Swish, etc. The proposed architecture uses the

Mish activation function because of its better functionality. It gives the best accuracy

when compared to other available activation functions.

Some of the common activation functions along with Mish activation is shown in

Fig. 4.4. When compared to other activation functions, mish activation is smoother

and non-monotonic activation function.
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Fig. 4.4. Some Common Activation Functions

4.4 AutoAugmentation

Data is important in Convolutional Neural Networks. It is said that, how big

your model is, it can classify the objects with that much accuracy. But if the data

available to train the model is less. Then, the ability to classify different objects is

also less. To explain this problem, when the model is trained with a dataset if the

model is working accurately on test images and is not able to perform well on images

that are not there in the dataset. This situation leads to problems like overfitting

and underfitting. To overcome all these problems, data augmentation is introduced.

Data augmentation is one of the concepts in convolutional neural networks that alters
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the performance of a network. Data augmentation includes some image processing

techniques like cropping an image, rotating, shifting, etc. This helps to expand data

and allow the model to learn new features that can help the model to perform well

on images that are outside the dataset.

Fig. 4.5. Autoaugmentation Policy Example

Autoaugmentation is one of the data augmentation techniques. It automatically

searches for a better augmentation policy that is suitable for the dataset. In policy,

it consists of several sub-policies. Mainly sub policy consists of two functions. One

function is the image processing function and the other function is the magnitude

of image processing function that is applied. The image processing function can be
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translation, rotation, or shearing. The magnitude of image processing function is the

probability of the image processing function.

Fig. 4.6. Sub-Policy Example

From the figure, original image and sub-policies can be seen for an example. Each

Sub-policy has both image processing function as well as probability values of that

Image processing function.



36

5. RESULTS

The proposed model, RMNv2, is trained and tested from scratch on the CIFAR10

dataset. Then the results obtained are compared with the baseline network, Mobilenet

V2, that is trained with the same set of hyperparameters and training setup. The

loss accuracy curves are plotted using LiveLossPlot.

5.1 Training Setup

• Framework - Pytorch(Both baseline and Proposed work)

• GPU - Nvidia GeForce GTX 1080Ti

• Optimizer - SGD

• learning rate - variable learning rate 0.1, 0.01, 0.001

• Total Number of Epochs - 200

• Batch size for Training - 128

• Batch size for Testing - 64

• Variable P in HetConv - 4

Fig. 5.1. HetConv for P = 4
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5.2 Loss and Accuracy Curves

The baseline model, Mobilenet V2, is trained and tested from scratch on the

CIFAR10 dataset. The log loss curves are plotted using the LiveLossPlot library that

is available in Python.

Fig. 5.2. Baseline Curves

Fig. 5.2 shows the baseline results curves. Log loss curve is shown on left. Ac-

curacy curve is shown on right. On the Horizontal axis, it is the total number of

epoch iterations. Upon completing the training process, the total accuracy, number

of parameters, model size is shown in the following table.

Table 5.1.
Baseline Results

Model Model accuracy Total no of Parameters Model Size

Mobilenet V2 94.3% 2.2378M 9.1MB

The Proposed model, RMN V2, is trained and tested from scratch on the CIFAR10

dataset. The log loss curves are plotted using the LiveLossPlot library that is available

in Python.
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Fig. 5.3 shows the Proposed RMNv2 results curves. Log loss curve is shown on

left. Accuracy curve is shown on right. On the Horizontal axis, it is the total number

of epoch iterations.

Fig. 5.3. Proposed RMNv2 Curves

Upon completing the training process, the total accuracy, number of parameters,

model size is shown in the following table.

Table 5.2.
RMNv2 Results

Model Model accuracy Total no of Parameters Model Size

RMNv2 92.4% 1.0691M 4.3MB
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5.3 Comparison between baseline and Proposed model RMNv2

In this section, the proposed model, RMNv2 is compared with baseline model on

various performance metrics.

Table 5.3.
Comparison of Various Results

Model Model accuracy Total no of Parameters Model Size

Mobilenet V2 94.3% 2.2378M 9.1MB

RMNv2 92.4% 1.0691M 4.3MB

The time taken for one epoch as well as for complete training for baseline and

proposed models is shown below,

Table 5.4.
Comparison of Time

Model For one epoch For complete Training

Mobilenet V2 1.907min 6.7hr

RMNv2 0.7621min 2.7hr
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6. IMPLEMENTATION

In this chapter, the proposed architecture RMNv2 is implemented in real-time hard-

ware like NXP Bluebox 2.0 and NXP i.MX RT1060.

6.1 Implementation on NXP Bluebox 2.0

The trained RMNv2 Pytorch model on GPU is tested in NXP Bluebox 2.0 using

RTMaps. RTMaps supports python 3.6 for deploying the model on the hardware.

RTMaps consists of a python module or python block that can allow the user to

write python script in it.

Fig. 6.1. Flowchart of RMNv2 Implementation in NXP Bluebox 2.0

Fig. 6.2 depicts the python component representation in RTMaps by Intempora.

Due to its GUI based development environment, it is easy to write program using

RTMaps. The python component in RTMaps has a text editor that allow users to

edit their code very easily. In that editor, it consists of three functions. They are

Birth(), Core() and death(). The functionality of these functions are really important

to understand.
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Fig. 6.2. Python Component Representation in RTMaps

• Birth(): It is written at the starting of the code to initialize and setup the

code.

• Core(): It is a function that runs in infinite loop. Therefore, the user code is

written in this function.

• Death(): It is defined at the end, when the program is halted.
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This structure of writing code makes it easier for the user to prototyping and

developing their own code with respect to the application. Once the scripting is

done, the user can use the RTMaps Embedded to run their application on the Bluebox

Platform. The connection between the host pc and the target Bluebox is TCP/IP.

After connecting to host pc, the user can check correct COM ports in the device

manager. Then user should setup Teraterm for LS2 interface and S32V interface.

6.2 NXP Bluebox 2.0 Results

Here, the classifier is trying to work correctly using NXP Bluebox 2.0 platform.

The model is fed with some random images from testset. These images are random

images that are taken from different classes within the CIFAR10 dataset.

Fig. 6.3. RTMaps Console Output

Fig. 6.3 shows the RTMaps console output when the model is running on NXP

Bluebox 2.0. Fig. 6.4 shows the teraterm output when the model is running on NXP

Bluebox 2.0.
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Fig. 6.4. Teraterm Output

6.3 Implementation on NXP i.MX RT1060

Implementing RMNv2 classifier in NXP i.MX RT1060 involves two steps, first to

convert the model to Tensorflow lite model and deploying that tensorflow lite model

onto the board.

• NXP provides a machine learning software development environment called eIQ.

It is specifically designed to develop computer vision algorithms in embedded

platforms like i. MX RT processors. NXP eIQ ML Software development en-

vironment has inference engines like OpenCV, Tensorflow lite, ARM NN and

CMSIS-NN. In the TensorFlow lite inference engine, the pre-trained RMNv2

Keras model that is converted to tf lite model using tf lite converter.

• The MCU Xpresso SDK is specifically designed by NXP to accelerate applica-

tion development in i. MX RT crossover processors. The latest version includes

the updated eIQ libraries and demos. This SDK also supports UART debug

console to run the application on Teraterm. The tflite model is converted into

a C array header file (.h) that can be imported in an embedded project. The

API call is used in the code to load the model using this header file. Then, the

model is debugged and the output can be viewed in Teraterm.
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Fig. 6.5. Flowchart Representation of Deploying RMNv2 on NXP i.MX RT1060

6.4 NXP i.MX RT1060 Results

Random images taken from internet like cat and ship are given as input to the

model. Generally, cat and ship is given because they belong to CIFAR10 class. The

model will try to predict the input image given using the NXP i.MX RT1060. The

output can be seen in Teraterm.

Fig. 6.6. Input Cat Image
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Fig. 6.7. Input Ship Image

Fig. 6.8. Output for Cat Image
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Fig. 6.9. Output for Ship Image
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7. CONCLUSIONS

This thesis concludes by proposing an architecture, RMNv2. The model is trained

and tested on the CIFAR10 dataset. The model is an optimized version of the base-

line Mobilenet V2 model for the CIFAR10 dataset. The model achieved an overall

accuracy of 92.4% with 1.9 less than the baseline accuracy but with a model size

of 4.3MB and a total number of parameters of 1.06M. The model size and number

of parameters are 52.2% lesser than the baseline model. This compact model size

and competitive accuracy make it suitable to deploy in embedded and mobile de-

vices. The model is also tested on real-time hardware like NXP Bluebox 2.0 and

NXP i.MX RT1060. Some of the key changes that made our model stand out is

using Heterogeneous kernels on the convolutions, changing strides, mish activation,

and autoaugmentation.

Therefore, the proposed model, RMNv2, can be used in ADAS applications like

object detection, lane detection, pedestrian detection, steering control, Traffic sign

classification, etc. It is flexible, lightweight and compact making it suitable to deploy

in resource-constrained devices like mobile and embedded devices. The model can be

further expanded to various applications that is explained in the next chapter, future

scope.
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8. FUTURE SCOPE

The proposed model is an architecturally modified version of the baseline model.

However, the model size can be further increased or decreased depending upon the

application using hyperparameters like width and resolution multiplier. The model

can be extended to the application like object detection. It can detect objects in an

image using algorithms like SSD, YOLO, etc. The inference can be performed on

other embedded platforms like the NXP 8M family, etc.

Fig. 8.1. NXP 8M Mini-EVK
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