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ABSTRACT
Discovery of rare phases on Mars is important as they

serve as indicators of the geochemistry of the Mars surface
and facilitate understanding of mineral assemblages within
a geologic unit. Identification of rare minerals in high spa-
tial and spectral resolution Compact Reconnaissance Imaging
Spectrometer for Mars (CRISM) visible/shortwave infrared
(VSWIR) images has been a challenge due to the presence of
both additive and multiplicative noise and other artifacts, af-
fecting all collected images, in addition to the limited spatial
extent of regions hosting these minerals. In an effort to auto-
mate this task we evaluate various clustering algorithms using
the detection of rare jarosite, associated with spectrally simi-
lar minerals in CRISM imagery, as a case study. We compare
non-parametric Bayesian and standard clustering algorithms
and show that a recently developed doubly non-parametric
Bayesian model could be effective for this task.

Index Terms— CRISM, jarosite, rare target detection,
non-parametric bayesian, clustering

1. INTRODUCTION

Discovery of small, rare phases on Mars is important for two
reasons. First, specific minerals such as alunite and jarosite
(acidic), serpentine (alkaline, reducing), analcime (alkaline,
saline), prehnite (200◦C - 400◦C), and perhaps phases yet
to be discovered serve as direct environmental indicators of
the geochemistry of waters on the Mars surface. Second,
the identification of rare endmember phases facilitates un-
derstanding the mineral assemblages within a geologic unit,
which are critical for identifying the thermodynamic condi-
tions and fluid composition during interactions of rocks with
liquid water.

The identification of these uncommon and spatially re-
stricted mineral phases is difficult using existing CRISM
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processing techniques. The most common spectral mineral-
identification method involves finding the ratio of the average
spectra from two regions along-track in the image, where
the numerator is the spectrum from the area of interest and
the denominator is the spectrum derived from a spectrally
homogeneous “neutral” region [1]. Spatial averaging fil-
ters additive random noise, whereas spectral ratioing reduces
multiplicative noise. Summary parameters [2, 3] derived from
key absorption bands are used to identify candidate regions
for the numerator and denominator. Ratioing has proven very
effective in the identification of minerals that occur over rel-
atively large spatial extents in images. However, summary
parameters have had limited success to date for identification
of rare phases spanning a limited number of contiguous pixels
in an image.

We consider rare jarosite detection as a case study and
investigate the performances of several clustering algorithms
toward automating rare phase detection in CRISM imagery.
Jarosite is important because it is an indicator mineral for
acidic, oxidizing conditions. Jarosite can be challenging to
detect because its principal absorption occurs in a spectral re-
gion shared by absorptions in aluminum phyllosilicates and
silica phases (Fig. 1) as well as iron-rich phyllosilicates, com-
mon mineral classes on Mars, which form spatially extensive
geologic units [4].

2. METHODS

2.1. Image preprocessing and ground truth

Two images from Nili Fossae (FRT00009971, FRT0000A053)
and one image from Mawrth Vallis (HRL000043EC) were
used. Simple atmospheric and photometric corrections are
applied to all three images using the CRISM Analysis Toolkit
[7, 8]. Only the spectral channels that cover the spectral
region from 1.0 to 2.6µm (248 channels) are used in this
study. The channels corresponding to the remaining part of
the spectrum (0.4-1.0µm and 2.6 to 4.0µm) were excluded
because surface spectral properties at shorter wavelengths are
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Fig. 1. Laboratory spectra of Mars-relevant minerals with ab-
sorptions from 2.17-2.27 µm. Jarosite is best distinguished
from the other phases by its strong 2.2 µm feature with max-
imum absorption at 2.26-2.27 µm, distinctively longward of
the others (red shaded region). Other absorptions are also dis-
tinctive and are sometimes detected in CRISM data, although
vibrational absorptions due to H2O and OH are reduced in
strength on Mars relative to their terrestrial laboratory mea-
surements (gray shaded region). Spectra are from [5] and [6].

largely obscured by ubiquitous Martian dust and the longer
wavelengths show low data quality and residual artifacts.

Jarosite locations are initially identified using the I2GMM
algorithm [9]. Because this algorithm is one of the algorithms
used in this study for comparison, to avoid bias in establish-
ing our ground truth, the final spatial extent of jarosite in each
image is determined by visual inspection by investigating sev-
eral ratioed spectra around this location and choosing the re-
gion that best recovers the distinctive doublet absorption in
the 2.20-2.27µm region characteristic of jarosite in CRISM
imagery. For all three images the extracted spectra are shown
(Fig. 2).

Clustering experiments are performed with approximately
10K pixels obtained from 100 by 100 sub images including
ground truth jarosite locations. Sub-images rather than origi-
nal images are used for two reasons. First, for each algorithm
several different parameter configurations are considered and
for each configuration experiments are run ten times to mea-
sure variations in performance measure across different runs.
Using a sub-image significantly reduces run-time for each al-
gorithm. Second, for more accurate evaluation of the cluster-
ing algorithms, it is important to verify that all false positives
identified by each algorithm are indeed false positives and not
other jarosite regions that were overlooked when establishing

the ground truth. This task can be more easily performed for
a sub-image than the original larger image. Each pixel is pro-
jected onto the top ten principal components of the image I/F
data. I/F data is derived from the radiance data by computing
the ratio of the radiance to the solar irradiance at Mars [13].
Data points in the following presentation refers to pixels rep-
resented as points in this 10-dimensional vector space.

2.2. Standard clustering algorithms

The K-means algorithm and finite Gaussian mixture model
(GMM) are popular algorithms for clustering data sets. K-
means fixes the number of clusters K beforehand and as-
signs each pixel to one of the K clusters by minimizing a
predefined distance metric in an iterative fashion. Similar
to the K-means, finite GMM also fixes the number of clus-
ters K beforehand, but unlike K-means fits a K-component
Gaussian mixture model onto the data using the expectation-
maximization algorithm [14]. K-means can be considered as
a special case of GMM that restricts component covariances
to spherical shapes.

2.3. Non-parametric Bayesian clustering algorithms

Finite GMM and K-means algorithms have two major limita-
tions. First, no prior knowledge about cluster characteristics
are used during clustering. Although lack of prior knowledge
may not pose a serious problem for clustering data sets with
balanced and well-defined clusters, prior knowledge may be-
come critical when clustering data sets with rare clusters. Sec-
ond, both finite GMM and K-means require that the number
of components is defined in advance. Although there are sev-
eral ways to predict the number of components in the data in
an offline manner, these techniques are in general suboptimal
as they decouple the two interdependent tasks: predicting the
number of components and predicting model parameters.

A more flexible version of GMM can be derived by tak-
ing the limit over the number of mixture components to in-
finity. With this infinite version of GMM (IGMM) the actual
number of components is automatically estimated during in-
ference along with other component parameters in a single
unified process [15]. IGMM is considered a non-parametric
model as the number of components is no longer fixed dur-
ing inference and can arbitrarily grow to better accommodate
data sets as needed. It is also Bayesian as prior knowledge
about number of clusters, cluster shapes and dispersion can
be encoded into the model. [16].

xi ∼ P (xi|θi)
θi ∼ G (1)
G ∼ DP (αH)

H = N(µ|µ0,Σκ
−1
0 )W−1(Σ|Σ0,m)

The IGMM model used in this study is shown in (1). Ac-
cording to this model individual data points xi ∈ Rd are gen-
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Fig. 2. (A) Averaged spectra for ground truth jarosite locations. Jarosite is identified primarily by the 2.26-2.27 µm absorption
feature, though other absorptions are sometimes present. Library spectra from [5] and [10] are shown for comparison. The
CRISM spectrum from image FRT000043EC is jarosite from an area in Mawrth Vallis previously reported in [11] to contain
ferricopiapite, another indicator of acid sulfate alteration. FRT00009971 and FRT0000A053 are new detections from the Nili
Fossae region. The context of FRT00009971 was previously described in [12]. (B) Follow-on ‘’expert user” analyses based on
findings from FRT0000A053 confirm that jarosite-bearing terrains possess discrete spectral properties relative to other scene
materials and permit spatial mapping of the phase in geologic context, here in association with an aluminum phyllosilicate-
bearing stratigraphic unit. Colors correspond to the minerals indicated, with the figure generated by overlaying mapping of
band strength at 2.24-2.27 µm (red); 2.28-2.31 µm (green) and 2.18-2.22 µm (blue) on a CRISM infrared albedo map. Library
spectra from [5] are compared to spectra from regions in the CRISM image.

erated from Gaussian distributions whose parameters are in
turn drawn from a Dirichlet Process (DP). A Dirichlet Process
(DP) is a distribution over distributions. It generates random
distribution G based on parameters H and α. The parameter
H defines the base distribution from which the discrete prob-
ability masses, i.e., atoms, of G are drawn. The concentration
parameter α changes the sparseness of G, which in turns af-
fects the number of observed components in mixture models.
The random measure G can be considered as a mixture of in-
finitely many atoms with their mixture weights drawn from a
stick-breaking distribution

As data points are modeled by Gaussian clusters the base
distribution H of DP serves as a prior over the cluster mean
vectors µi and covariance matrices Σi in which case θi de-
notes a set of two parameters, i.e., θi = {µi,Σi}. In this case
a conjugate distribution over a Gaussian data model would be
a bivariate priorH that involves a Gaussian prior for the mean
vectors and Inverse Wishart prior for the covariance matrices
as in (1). We will denote this bivariate distribution by NIW.

NIW includes four hyperparameters: {µ0, κ0,Σ0,m}.
The hyperparameter µ0 is the mean of the Gaussian prior

defined over the cluster means. The hyperparameter κ0 is
a scaling constant that adjusts the dispersion of the cluster
centers around µ0. A smaller value for κ0 suggests that clus-
ter centers are expected to be farther apart from each other
whereas a larger value suggests cluster centers closer to each
other. The hyperparameters Σ0 and m dictate the expected
shape of the clusters. The minimum feasible value of m
is equal to d + 2, and the larger the m, the less individual
covariance matrices will deviate from the expected shape.

Both IGMM and GMM models each cluster with a sin-
gle Gaussian component. This is a serious limitation if clus-
ters emerge with multi-mode and/or skewed distributions, in
which case IGMM creates additional components to better fit
the data set. As there is no hierarchy in IGMM to allow for
grouping of components into clusters, these additional com-
ponents are treated as separate clusters, leading to subopti-
mal clustering performance. The infinite mixtures of infinite
Gaussian mixture model (I2GMM) is developed to circum-
vent this limitation by offering a two-layer non-parametric
GMM [9]. This model is doubly non-parametric in terms of
the number of clusters and the number of components for each



cluster, allowing for modeling clusters of various shapes. The
generative model of I2GMM is given in (2).

H = NIW (µ0,Σ0, κ0,m)

G ∼ DP (γH)

θj = (µj ,Σj) ∼ G

Hj = N(µj ,Σj/κ1)

Gj ∼ DP (αHj) (2)
µji ∼ Gj

xji ∼ N(µji,Σj)

According to this generative model a discrete mixing
measure G is sampled from a global Dirichlet Process with
base distribution H and concentration parameter γ. Cluster
centers µj and covariances Σj are drawn from G. Local
DPs are defined, one for each cluster generated by the global
DP. The base distributions Hj of local DPs are Gaussian
distributions centered at µj with a covariance of κ−1

1 Σj .
Cluster-specific discrete mixing measures Gj are drawn from
their corresponding local DPs with base distribution Hj and
concentration parameter α. The mean vectors µji of com-
ponents associated with cluster j are drawn from Gj . Data
points are generated from Gaussian components with mean
vector µji and covariance matrix Σj . In a nutshell this hi-
erarchical model creates two level partitioning by clustering
data points into components and components into clusters.

In addition to hyperparameters that already exist in the
IGMM model, I2GMM introduces two additional hyperpa-
rameters κ1 and γ. The hyperparameter κ1 models disper-
sion of component means around corresponding cluster cen-
ter. A larger κ1 leads to smaller variations in component
means with respect to the corresponding cluster center, gen-
erating Gaussian-like clusters, whereas a smaller κ1 dictates
larger variations generating more flexible cluster shapes. The
hyperparameter γ adjusts the number of clusters generated
while α controls the number of components generated for
each cluster.

3. RESULTS

We evaluate K-means, GMM, IGMM, and I2GMM in terms
of their detection accuracy. Each clustering algorithm returns
cluster labesl for each pixel, which are used to compute F1

score for each cluster. For each technique different clustering
configurations are evaluated. K-means and GMM are run by
varying K from 50 to 500 in increments of 50. For IGMM
and I2GMM we set α and γ equal to one, µ0 to the center of
the data, and Σ0 = (m− d− 1)I/s, where s is some scaling
constant, I is the identity matrix, and d is the dimensionality
of the data. The constant (m − d − 1) in Σ0 is chosen to
ensure that the expected Σk is equal to I/s. This leaves us
with three free parameters (m,κ0, s) to tune for IGMM for
which twelve triplets are considered and four free parameters

(m,κ0, κ1, s) to tune for I2GMM for which thirty six quar-
tets are considered. These values are chosen to cover a broad
range of cluster characteristics as discussed in [17]. For each
clustering configuration F1 scores are computed for all clus-
ters and the cluster with the highest F1 is considered as the
most promising jarosite detection by each technique.

K-means GMM IGMM I2GMM
9971 0.60/450 0.59/450 0.48/392 0.77/45
A053 0.46/300 0.44/500 0.46/195 0.70/34
43EC 0.86/400 0.63/400 0.78/190 0.83/101

Table 1. F1 scores and number of clusters K provided in the
format F1/K. Results are averages over ten runs.

The results in Table 1 favors I2GMM as a promising ap-
proach for rare jarosite detection in terms of both accuracy
measured by F1 score and efficiency measured by the number
of clusters generated. Despite generating a significantly less
number of clusters than other techniques, I2GMM achieves
the highest F1 score for two of the images and produces an
F1 score that is comparable to K-means for the third image.

4. CONCLUSIONS

Automated rare phase detection in CRISM imagery is an
important albeit a challenging problem that requires flexible
models. A mixture model with a large number of compo-
nents can more accurately estimate the density of the data.
However, more accurate estimation of the density function
may not improve clustering accuracy as the problem of many-
to-one mappings between components and clusters remains
unsolved in standard mixture models. I2GMM addresses
this limitation by jointly clustering data points into com-
ponents and components into clusters in a unified model
inference offering extreme flexibility in modeling a wide ar-
ray of data distributions. Our preliminary results demonstrate
the promising aspect of this framework for rare jarosite de-
tection. Hyperparameter tuning is not specifically addressed
in this study as we are still in the early stages of developing
domain knowledge. An optimal parameter set that can more
effectively encode domain knowledge can be obtained by
processing several hundred images from different regions of
Mars and performing both qualitative and quantitative eval-
uation of different hyperparameter sets. Additional details
about technical aspects of I2GMM and its implementation
can be found in [17].
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