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ABSTRACT 

Osteoporosis and its consequence of fragility fracture represent a major public health 

problem. Human exposure to heavy metals has received considerable attention over 

the last decades. However, little is known about the influence of co-exposure to 

multiple heavy metals on bone density. The present study aimed to examine the 

association between exposure to metals and bone mineral density (BMD) loss. Blood 

and urine concentrations of 20 chemical elements were selected from 3 cycles (2005-

2010) NHANES (National Health and Nutrition Examination Survey), in which we 

included white women over 50 years of age and previously selected for BMD testing 

(N = 1,892). The bone loss group was defined as participants having T-score < -1.0, 

and the normal group was defined as participants having T-score ≥-1.0. We developed 

classification models based on support vector machines capable of determining which 

factors could best predict BMD loss. The model which included the five-best features-

selected from the random forest were: age, body mass index, urinary concentration of 

arsenic (As), cadmium (Cd), and tungsten (W), which have achieved high scores for 

accuracy (92.18%), sensitivity (90.50%), and specificity (93.35%). These data 

demonstrate the importance of these factors and metals to the classification since they 

alone were capable of generating a classification model with a high prediction of 

accuracy without requiring the other variables. In summary, our findings provide insight 

into the important, yet overlooked impact that arsenic, cadmium, and tungsten have on 

overall bone health. 

 

 



Introduction 

Osteoporosis and its consequences represent a significant public health issue 

with about 40% of white postmenopausal women being affected by osteoporosis, and, 

with an aging population, this number is expected to increase over the next several 

years. The fractures most commonly occur in the spine, hip, or wrist, but other bones 

such as the trochanter, humerus, or ribs can also be affected [1, 2]. 

Fractures that arise as a consequence of osteoporosis result in considerable 

morbidities, increased mortality, and increased health-care costs [3]. Low bone mass 

is a crucial component of fracture risk, but several risk factors, such as age, sex, low 

body-mass index, previous fractures, asthma, cardiovascular disease, chronic liver 

disease, advanced chronic kidney disease, diabetes, rheumatoid arthritis, systemic 

lupus erythematosus, glucocorticoids use, smoking, alcohol, and family history of 

fractures have to be considered as well [4–7]. 

Human exposure to toxic metals and metalloids has received considerable 

attention over the last decades, so much so that the Agency for Toxic Substances and 

Disease Registry (ATSDR) has classified arsenic, cadmium, lead, and mercury in the 

top of the priority list of hazardous substances, requiring constant evaluation of human 

exposure [8]. Exposure to metals and metalloids occurs through various routes, and 

the time and ''dose" of exposure differ widely among individuals. Meanwhile, polluted 

water, soil, air, smoking, and food are known as main routes of exposure [9–11].  

Exposure to toxic metals and metalloids have been reported as a risk factor for 

fractures and degenerative bone diseases such as osteoporosis [12]. On the other 

hand, little is known about the influence of co-exposure to multiple metals and 

metalloids on bone density. Cadmium (Cd) is widely known to have toxic effects on 

bones, in which in vivo and in vitro studies have shown that exposure to Cd decreases 



bone mineralization, alters bone formation, and increases fracture and osteoporosis 

risk [13–16]. Commonly in the environment, lead is easy to be absorbed; and, in human 

adults, trabecular and cortical bones store 90-95% of the lead found within the body 

[17]. Clinical studies have shown that as the amount of lead accumulated in the body 

increases, bone density decreases and fracture risk increases [18, 19]. However, 

research on the association between heavy metals and bone health is scarce, requiring 

further and more specific investigations.  

Data analysis models often associate exposure from a single compound to 

health outcomes. On the other hand, current developments in data mining techniques 

enable an analysis of co-exposure to multiple compounds on health outcomes [20]. 

Therefore, the utilization of such an approach would allow for a better understanding 

of the health effects associated with co-exposure to multiple compounds [21, 22]. 

Therefore, the present study was conducted to examine the associations of blood and 

urinary levels of toxic elements with bone mineral density (BMD) loss in a 

representative sample, who participated in the 2005-2006, 2007-2008 and 2009-2010 

survey cycles of the National Health and Nutrition Examination Survey (NHANES) with 

the use of a data mining approach. 

 

Materials and methods 

Data source 

Data were obtained from 3 cycles (2005-2006, 2007-2008 and 2009-2010) of 

NHANES data. NHANES is a population-based survey of the non-institutionalized U.S. 

population that includes demographic and laboratory data, interview data, and a 

physical examination of the subjects [23–25]. In the present study, we included white 

women in the analysis if they were over 50 years of age and had been selected for 



BMD testing (N = 1,892), since this group has a higher prevalence of osteoporosis. 

The bone loss group was defined as participants having T-score values below -1.0 (T-

score<-1.0), and the normal group was defined as participants having T-score values 

equal to or higher than -1.0 (T-score ≥-1.0). 

 

Metals and metalloids in blood and urine  

We considered the NHANES data reported for individual levels in: 

1. Whole blood: Cadmium (Cd), Lead (Pb), Mercury (Hg - total and inorganic); 

and; 

2. Urine: Arsenic (As - total and speciated), Antimony (Sb), Barium (Ba), 

Beryllium (Be), Cadmium (Cd), Cobalt (Co), Cesium (Cs), Lead (Pb), 

Mercury (Hg), Molybdenum (Mo), Platinum (Pt), Thallium (Tl), Tungsten (W), 

and Uranium (U).  

Trace elements were measured in clinical specimens by the National Center for 

Environmental Health Laboratories (CDC, Atlanta, GA) by using inductively coupled 

plasma-mass spectrometry (ICP-MS) [26]. The creatinine-adjusted levels were 

considered for urinary concentrations. The levels of Be, Co, Cs, Mo, Pb, Tl, U, 

arsenous acid, arsenic acid, arsenocholine, monomethylarsonic acid and 

trimethylarsine oxide in urine were excluded from the data analysis because results 

were below the limit of detection.  

 

Covariates and potential confounders 

Demographic variables (age, body-mass index), medical history (heart attack, 

diabetes, cancer, asthma, chronic liver disease, rheumatoid arthritis), glucocorticoid 



use, heavy alcohol use (eight or more drinks a week), and tobacco use (never, former, 

and current smoker) were considered as covariates in the multivariate models. 

 

Data Analysis 

Feature Selection 

Feature selection is a pre-processing step of data mining, which aims for 

identification and removal of features which are considered unimportant to the 

classification process. We employed a filter wrapper method built around the random 

forest classification algorithm to evaluate individually each feature of the feature set 

and determine their relative importance on T-score [27]. The entire analysis was 

conducted using R software, version 3.6.2 [28]. 

 

Classification algorithms and model evaluation 

 After removing the irrelevant features, we trained a support vector machines 

(SVM) algorithm to verify the importance of the remaining variables and to determine 

which factors could best predict BMD loss. SVM is a classification technique introduced 

by Cortes and Vapnik [29] which has been popularized in the data mining and 

classification literature due to its efficiency and empirical success [30, 31]. SVM 

algorithm aims to obtain an optimal hyperplane with maximum margin to separate the 

classes of samples applying nonlinear kernel functions to map data into high-

dimensional space. In summary, the algorithm computes the decision boundary based 

on the samples that are nearest to the maximum-margin hyperplane, which are 

designated support vectors [30, 31]. 

The construction of the SVM models follows a specific methodology combined 

with the Random Forest measurements (mean decrease in accuracy). We start by 



training the SVM with only one variable which received the highest importance in the 

Random Forest metric. Next, we added the second-best rated variable to the training 

set. This process resulted in K = {k1; k2; . . .; km} feature subsets, which are generated 

and used to train an SVM model, where kj is composed of the j best features according 

to the Random Forest measurements, and m = 30 is the total number of features in 

the original feature set. A total of 30 SVM models were built following this scheme. 

 For each resulting SVM model, we performed a grid search in order to find the 

best values for the C and σ parameters. The values considered were C = {0,0.01, 0.05, 

0.1, 0.25, 0.5, 0.75, 1, 1.5, 2,5} and σ = {0, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 

0.07, 0.08, 0.09, 0.1, 0.25, 0.5, 0.75, 0.9}. 

To evaluate the performance of the classification model, we used k-fold cross 

validation with k = 10. This method splits the data into k subsets and uses k-1 fold to 

train data and one-fold to test data. The relationship between correct and incorrect 

classifications is organized in a confusion matrix to obtain the measurement 

performances of accuracy, sensitivity, and specificity. The entire analysis was 

conducted using R software, version 3.6.2 [28]. 

 

Results 

Our study subjects consisted of 1,892 white women adults; 793 (41.9%) had the 

T-score greater than or equal to -1.0 and they were categorized in the normal group, 

and 1,099 (58.1%) had the T-score lower than -1.0 and were categorized in the bone 

loss group. Table 1 shows the age, femoral neck BMD, body mass index (BMI), and 

categorical variables: alcohol drinking, smoking status, arthritis, asthma, cancer 

history, diabetes, glucocorticoids therapy, heart attack, liver and thyroid disorder of the 

NHANES participants in two groups divided by the T-score. Participants from the 



normal group were, on average, 63.1 ± 8.9 years old, had a BMI of 31.2 ± 6.0 kg/cm2, 

and had a femoral neck BMD of 0.83 ± 0.08 g/cm2. Regarding the bone loss group, the 

mean age was 70.8 ± 9.5 years old, the mean BMI was 26.8 ± 5.3 kg/cm2, and the 

mean femoral neck BMD was 0.63 ± 0.07 g/cm2 (SD ± 0.1). The prevalence of cancer 

(33.7%), liver disorders (5.5%) as well as thyroid disorders (37.8%) were greater in the 

low BMD group as compared to the normal BMD group. 

Table 2 shows geometric means (GMs) and confidence interval 95% (CI95%) 

of metals and metalloids measured in either whole blood or urine separated by group 

or combined/overall. Several of the metals in the blood and urine were higher in the 

bone loss group as compared to the normal group. Indeed, the elements As, Cd and 

W, had GM (CI95%) urine concentration values of 7.8 (7.3 - 8.3), 0.35 (0.33 - 0.37) 

and 0.070 (0.067 - 0.074) µg/L, respectively, for the bone loss group; and 6.6 (6.0 - 

7.2), 0.25 (0.24 – 0.28) and 0.057 (0.053 - 0.060) µg/L, respectively, for normal group. 

Figure 1 is a graphical representation of the urinary concentration of As, Cd, and W in 

both groups. 

The classification results for the 30 SVM models that were developed are 

presented in Table 3. The model with the best accuracy (96.46%), sensitivity (95.02%), 

and specificity (97.47%) was model #19. Here the training subset was formed by Age, 

BMI, urinary concentration of As, Cd, W, Sb, Ba, Hg, dimethylarsonic acid (DMA), 

arsenobetaine (AB), Hg, Pt, whole blood concentration of Pb, Hg (total & inorganic), 

and also arthritis, cancer, thyroid, and former smoker status. However, the model 

(number #5) which included the five-best features-selected from random forest (Figure 

2), where the training subset formed by Age, BMI, urinary concentration of As, Cd, W, 

also have achieved high scores for accuracy (92.18%), sensitivity (90.50%), and 

specificity (93.35%). Together, these data demonstrate the importance of these factors 



and metals to the classification, since they alone were capable of generating a 

classification model with a high prediction of accuracy without requiring the other 

variables. Figure 3 shows the impact of these variables when compared to other 

models, model #2 has included only age and BMI as variables; model #5 is the model 

formed by Age, BMI, urinary concentration of As, Cd, W; and model #19 is model which 

had the best accuracy, sensitivity, and specificity. 

 

Discussion 

To the best of our knowledge, this study is the first to evaluate the associations 

of blood and urinary levels of toxic elements with bone mineral density (BMD) loss in 

a representative sample of 1,892 individuals with the use of a data mining approach. 

In this study, three NHANES cycle databases were mined for general 

demographic, social, and medical history data from white female participants over 50 

years. Additionally, concentrations of 13 metals in blood [Cd, Hg (total and inorganic) 

and Pb] and urine [As and speciated (arsenobetaine, dimethylarsonic acid), Ba, Cd, 

Hg, Sb, W] samples were examined and BMD was used to separate the participants 

into normal (T-score ≥ -1.0) or bone loss (T-score < -1.0) groups. The resulting 

database underwent SVM modeling to determine which factors could best predict BMD 

loss.  

It is well known that age and BMI are important factors for BMD. Aside from 

these factors, our modeling process was able to identify that inclusion of three metals 

(arsenic, cadmium, and tungsten) was also of critical importance in predicting BMD 

loss. Importantly, participants in the low BMD group had a higher concentration of all 

these metals in their urine than did the normal BMD group (Figure 1). These findings 

might clarify a gap regarding the relationship between metal and metalloid exposure 



and bone health. Remarkably, higher concentrations of these metals showed 

significantly higher correlations to lower BMD than did smoking or diabetes, which are 

well-documented factors leading to bone loss and increased fracture risk [32, 33]. 

Furthermore, previous investigations have shown impaired bone healing due to 

smoking and even passive smoking, which highlights the important, yet neglected, 

impact of heavy metal exposure on bone health [34, 35]. 

Exposure to arsenic typically results from either consumption via contaminated-

arsenic drinking water, soil, and food, or arsenic inhalation in factories [36, 37]. The 

World Health Organization (WHO) considers that around 200 million people globally 

are exposed to the metalloid in drinking water at levels above 10 µg/L, the safety 

threshold [38]. In the present study, the urinary concentration of arsenic was 18.4% 

higher in the low BMD group compared to the normal BMD group.  

Arsenic has the ability to accumulate in bone tissue, likely, competing with the 

phosphate group to reduce the formation of hydroxyapatite crystals, by instead forming 

apatite arsenate and other calcium arsenate crystals [39]. Previous studies have 

shown that exposure to arsenic decreases RANKL and RUNX2 expression, 

compromising osteoblast maturation, concomitant with reductions in the activity of 

alkaline phosphatase,  as well as the VCAM-I adherence molecule causing a decrease 

in osteoblastogenesis and osteoblastic activity thus impairing bone remodeling by 

unbalanced bone turnover [40]. 

Of interest, clinical studies have shown the use of dental paste containing 

arsenic trioxide for endodontic treatment of inflamed pulp can cause alveolar bone 

osteomyelitis and osteonecrosis [41, 42]. In addition, some evidence suggests that 

Paget's disease, which is caused by an imbalance in bone remodeling, might be 

associated with arsenic intoxication [43]. 



Besides, studies have presented a high prevalence of glucose intolerance, 

diabetes, and metabolic syndrome correlated with arsenic exposure, all of these health 

disorders are related to high blood glucose levels [21, 44–47]. Remarkably, high 

glucose concentrations are detrimental to osteocalcin synthesis by the osteoblasts and 

result in accumulation of AGEs [48], which is linked to higher rates of osteoblast 

apoptosis and a higher osteoclast resorptive activity [49, 50]. As a result, bone 

microdamage accumulates, resulting in increased cortical porosity and bone fragility, 

which may lead to osteoporotic fractures. Moreover, the systemic inflammation 

associated with these diseases might activate bone resorption, resulting in decreased 

BMD [51, 52]. β-cell line studies demonstrated the capacity of these cells to 

methylating inorganic arsenic into monomethylarsenous acid (MMA) and 

dimethylarsenous acid (DMA). Specifically, MMA can inhibit mitochondrial function and 

decrease glucose-induced insulin secretion [53–55]. Further, insulin gene expression 

and transcription factor activities suffer significant effects from arsenic exposure. 

Arsenic might induce impairment of β-cell function though a decrease of MafA 

transcriptional activity, such a decrease is an indication of β-cell failure or de-

differentiation [56–58]. 

It has been long known that glucose is a significant substrate for ATP production 

via glycolysis for osteoblasts and its progenitors [59]. Arsenic has the potential to inhibit 

ATP production during the process of glycolysis by replacing the phosphate anion with 

arsenate. This process is called as arsenolysis and might stop feeding osteoblast-

mediated bone formation [60–62]. Parallel to glycolysis, glucose-6-phosphate is 

converted into 6-phosphogluconate using glucose-6-phosphate dehydrogenase via 

pentose phosphate pathway where NADP + is converted into NADPH which keeps 



glutathione in its reduced form. Arsenic can inhibit glucose-6-phosphate 

dehydrogenase activity and, consequently, reduce glutathione levels [63]. 

In our study, we found that the urinary concentration of cadmium was 37.6% 

higher in the low BMD group as compared to that in the normal BMD group. Cadmium 

is widely distributed in the environment, and the exposure to this metal occurs mainly 

during the ingestion of food or inhalation of cigarette smoke. It is estimated that over 

80% of ingested cadmium comes from cereals, primarily rice and wheat [64].  

In vivo studies in experimental animals demonstrate that chronic exposure to 

cadmium decreases bone volume and increases the percentage of TRAP-positive 

osteoclast cells in subchondral tibial bone, which can increase bone resorption [65]. 

Exposure to cadmium may also alter bone formation and mineralization processes 

since cadmium has been linked to decreased expression of RUNX2, osteocalcin, type 

I collagen, and alkaline phosphatase, which are markers of osteoblastic differentiation 

[13]. 

Clinical studies have shown that even low-level exposure to cadmium through 

diet and smoking is associated with low BMD and bone fragility in both 

postmenopausal women and elderly men. Moreover, they also found an association 

between fractures and cadmium in never-smoker patients, whose central exposure 

was from their diet. These findings suggest that long-term cadmium exposure has 

negative consequences on skeletal health [15, 16]. 

Similar to the arsenic, cadmium might affect the energy metabolism of 

osteoblasts and osteoblast progenitor cells [62]. Cadmium inhibits enzymes through 

its high affinity for the free electron pairs in cysteine -SH groups, which are essential 

in enzyme function. By decreasing the phosphofructokinase activity, cadmium has the 

potential to limit the glycolysis process in the liver and muscles [66]. We hypothesize 



that the same imbalance in energy metabolism might happen in bone differentiation 

and formation. 

Mines and industries are the main occupational sources of human exposure to 

tungsten, where exposure can be due to pure tungsten, tungsten ore, or tungsten-

containing alloys. Workers can be exposed through inhalation or dermal contact of 

contaminated air. Moreover, tungsten mineral is naturally present in the soil and 

consumption of contaminated water or air in regions near tungsten mines, industrial 

sites, or military sites, are also environmental sources. Tungsten particulates in the air 

can be generated through weathering or emission from industrial and mining sites 

containing tungsten [67, 68]. 

The current studies have shown that the urinary concentration of tungsten in the 

low BMD group was 0.25-fold higher than the normal BMD group. Tungsten has been 

highlighted as an emerging contaminant, and yet there is limited knowledge of the 

potential human health risks [69]. In vivo evidence suggests that tungsten alters bone 

homeostasis since young male mice exposed to sodium tungstate (orally for 4 weeks) 

had enhanced rosiglitazone (PPARγ ligand)-induced gene expression and 

adipogenesis [70]. In general, within the bone marrow microenvironment increases in 

marrow fat usually result in decreases in bone mass. Therefore, the data that tungsten 

increases adipogenesis may suggest that tungsten increases the commitment of 

progenitor cells to the adipogenic pathway rather than the osteogenic pathway, which 

could have significant implications for bone quality. 

Bone biology is a complex process consisting of the equilibrium between bone 

formation and bone resorption. To have a more expansive landscape of how metals 

and metalloids affect bone remodeling, we have evaluated the effects of multiple 

metals and metalloids on bone biology by an advanced data mining approach. 



Although our model has some limitations, which include the lack of our model validation 

by applying it to a secondary dataset, and the exclusion of several compounds such 

as bisphenols, parabens, and phthalates to evaluate the influence of these upon bone 

health, our findings provide insight into the important impact that arsenic, cadmium, 

and tungsten have on overall bone health (92.18% of accuracy, 90.50% of sensitivity, 

and 93.35% of specificity). In general, our data demonstrated the importance of these 

metals to be classified as risk factors for bone loss since together with age and BMI, 

they were capable of generating a classification model with a high prediction of 

accuracy without requiring any other variables. 
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Figures legends 

Figure 1. Distribution of the concentration level of urine heavy metals across the two 

groups: normal and bone loss groups based on femoral hip T-score. 

 

Figure 2. Bar plots of relative importance of the compounds and other variables on 

BMD according to the Random Forest values computed. 

 

Figure 3. Receiver Operating Characteristics Curve (ROC) traces the percentage of 

true positives to be accurately predicted, by a given logit model, as the prediction 

probability cutoff is lowered from 1 to 0. 

  



Tables 

Table 1. Characteristics of the study population overall and by groups. 

 Normal 
(N = 793) 

Bone Loss 
(N = 1,099) 

Overall 
(N = 1,892) 

CONTINUOUS 
mean (SD)    

Age (years) 63.1 ± 8.9 70.8 ± 9.5 67.6 ± 10.0 

BMD (mg/cm2) 0.8 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 

BMI (kg/cm2) 31.2 ± 6.0 26.8 ± 5.3 28.7 ± 6.0 
CATEGORICAL 

number (%)    

Heavy alcohol use 13 (1.6) 0 (0) 13 (0.7) 

Smoking Status    

Never 399 (50) 599 (55) 998 (53) 

Former 274 (35) 354 (32) 628 (33) 

Current 120 (15) 146 (13) 266 (14) 

Arthritis 458 (58) 626 (57) 1084 (57) 

Asthma 178 (22) 191 (17) 369 (20) 

Cancer historical 162 (20) 370 (34) 532 (28) 

Diabetes 52 (7) 41 (4) 93 (5) 

Glucocorticoid 38 (5) 58 (5) 96 (5) 

Heart attack 55 (7) 99 (9) 154 (8) 

Liver disorder 19 (2) 61 (6) 80 (4) 

Thyroid disorder 356 (45) 416 (38) 772 (41) 
BMD = femoral neck bone mineral density and BMI = body mass index. 

  



Table 2. Geometric means and confidence interval 95% (CI 95%) of metals and 
metalloids overall and by groups. 

 Normal 
(N = 793) 

Bone Loss 
(N = 1,099) 

Overall 
(N = 1,892) 

In whole blood (μg/L)    

Cadmium 0.43 
(0.41 - 0.46) 

0.5 
(0.4 - 0.5) 0.4 (0.4 - 0.5) 

Lead 1.5 
(1.5 - 1.6) 

1.7 
(1.7 - 1.8) 

1.6 
(1.6 - 1.7) 

Total Mercury 1.0 
(0.9 - 1.1) 

0.9 
(0.9 – 1.0) 

0.9 
(0.9 – 1.0) 

Inorganic Mercury 0.30 
(0.29 - 0.31) 

0.31 
(0.30 - 0.32) 

0.31 
(0.30 - 0.31) 

In urine (μg/L)    

Antimony 0.047 
(0.045 - 0.049) 

0.052 
(0.050 - 0.055) 

0.050 
(0.048 - 0.052) 

Total Arsenic 6.6 
(6.0 - 7.2) 

7.8 
(7.3 - 8.3) 

7.2 
(6.9 - 7.6) 

Arsenobetaine 1.5 
(1.4 - 1.8) 

1.5 
(1.4 - 1.7) 

1.5 
(1.4 - 1.7) 

Dimethylarsonic acid 2.8 
(2.6 - 2.9) 

3.2 
(3.0 - 3.3) 

3.0 
(2.9 - 3.1) 

Barium 1.2 
(1.1 - 1.2) 

1.3 
(1.2 - 1.3) 

1.2 
(1.2 - 1.3) 

Cadmium 0.25 
(0.24 – 0.28) 

0.35 
(0.33 - 0.37) 

0.30 
(0.29 - 0.32) 

Mercury 0.36 
(0.33 - 038) 

0.41 
(0.39 - 0.44) 

0.39 
(0.38 - 0.41) 

Platinum 0.0070 
(0.0066 - 0.0074) 

0.0080 
(0.0074 - 0.0085) 

0.0076 
(0.0072 - 0.0079) 

Tungsten 0.057 
(0.053 - 0.060) 

0.070 
(0.067 - 0.074) 

0.064 
(0.062 - 0.067) 

 
 



Table 3. Accuracy, sensitivity and specificity values obtained by the SVM model trained on different feature subsets 1 

 2 
BMI = body mass index; DMA = dimethylarsonic acid, AB = arsenobetaine, tHg = total mercury and iHg = inorganic mercury 3 
# = whole blood concentration 4 

no Model Accuracy Sensitivity Specificity 

01 Age 0.64 0.57 0.69 

02 Age + BMI 0.71 0.60 0.79 

03 Age + BMI + As 0.79 0.78 0.79 

04 Age + BMI + As + Cd 0.87 0.82 0.90 

05 Age + BMI + As + Cd + W 0.92 0.90 0.93 

06 Age + BMI + As + Cd + W + Pb# 0.92 0.89 0.93 

07 Age + BMI + As + Cd + W + Pb# + Hg# 0.94 0.91 0.96 

08 Age + BMI + As + Cd + W + Pb# + tHg# + Sb 0.95 0.93 0.96 

09 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# 0.94 0.92 0.96 

10 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba 0.95 0.95 0.94 

11 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg 0.95 0.92 0.97 

12 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA 0.95 0.93 0.96 

13 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB 0.95 0.92 0.97 

14 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# 0.95 0.94 0.96 

15 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt 0.95 0.94 0.96 

16 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis 0.96 0.93 0.98 

17 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer 0.96 0.93 0.98 

18 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer + thyroid 0.96 0.94 0.98 

19 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer + thyroid + former smoker 0.96 0.95 0.97 

20 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer + thyroid + former smoker + never smoker 0.96 0.93 0.98 

21 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer + thyroid + former smoker + never smoker + smoking 0.95 0.93 0.97 

22 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer + thyroid + former smoker + never smoker + smoking + asthma 0.96 0.94 0.97 

23 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer + thyroid + former smoker + never smoker + smoking + asthma + liver 0.96 0.95 0.97 

24 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer + thyroid + former smoker + never smoker + smoking + asthma + liver + heart attack 0.95 0.93 0.9 

25 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer + thyroid + former smoker + never smoker + smoking + asthma + liver + heart attack + diabetes 0.95 0.94 0.97 

26 Age + BMI + As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt + arthritis + cancer + thyroid + former smoker + never smoker + smoking + asthma + liver + heart attack + diabetes + heavy drink 0.95 0.94 0.97 

     

27 As 0.65 0.32 0.89 

28 As + Cd 0.66 0.45 0.81 

29 As + Cd + W 0.75 0.62 0.83 

30 As + Cd + W + Pb# + tHg#+ Sb + Cd# + Ba + Hg + DMA + AB + iHg# + Pt 0.95 0.91 0.97 
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